Comparative Analysis of PM2.5 and O3 Source in Beijing Using a Chemical Transport Model
Abstract
:1. Introduction
2. Methodology
2.1. Model Description and Configuration
2.2. Simulation Design
2.3. Model Performance
3. Results and Discussion
3.1. Spatial–Temporal Variations of Air Pollution and Meteorological Factors
3.2. Source Apportionment of PM2.5
3.3. Source Apportionment of Secondary Inorganic Components and Their Precursor Gases
3.4. Source Apportionment of O3
3.5. Regional Sensitivity Coefficient Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ma, Y.; Xin, J.; Zhang, W.; Liu, Z.; Ma, Y.; Kong, L.; Wang, Y.; Deng, Y.; Lin, S.; He, Z. Long-term variations of the PM2.5 concentration identified by MODIS in the tropical rain forest. Southeast Asia. Atmos. Res. 2019, 219, 140–152. [Google Scholar] [CrossRef]
- Song, C.; Wu, L.; Xie, Y.; He, J.; Chen, X.; Wang, T.; Lin, Y.; Jin, T.; Wang, A.; Liu, Y.; et al. Air pollution in China: Status and spatiotemporal variations. Environ. Pollut. 2017, 227, 334–347. [Google Scholar] [CrossRef]
- Wang, T.; Xue, L.; Brimblecombe, P.; Lam, Y.F.; Li, L.; Zhang, L. Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects. Sci. Total Environ. 2017, 575, 1582–1596. [Google Scholar] [CrossRef]
- Lang, J.; Cheng, S.; Li, J.; Chen, D.; Zhou, Y.; Wei, X.; Han, L.; Wang, H. A Monitoring and Modeling Study to Investigate Regional Transport and Characteristics of PM2.5 Pollution. Aerosol Air Qual. Res. 2013, 13, 943–956. [Google Scholar] [CrossRef] [Green Version]
- The United Nation Environment Program: A Review of Air Pollution Control in Beijing: 1998–2013. Available online: www.unep.org/publications (accessed on 15 July 2020).
- Wen, W.; Cheng, S.; Chen, X.; Wang, G.; Li, S.; Wang, X.; Liu, X. Impact of emission control on PM2.5 and the chemical composition change in Beijing-Tianjin-Hebei during the APEC summit 2014. Environ. Sci. Pollut. Res. 2015, 23, 4509–4521. [Google Scholar] [CrossRef]
- MEP: 2017 Air Pollution Prevention and Management Plan for the Beijing-Tianjin-Hebei Region and Its Surrounding Areas. Available online: http://dqhj.mee.gov.cn/dtxx/201703/t20170323_408663.shtml (accessed on 18 August 2018).
- Beijing Municipal Environmental Protection Bureau (BMEPB). Available online: http://www.bjepb.gov.cn/bjhrb/xxgk/jgzn/jgsz/jjgjgszjzz/xcjyc/xwfb/827457/index.html (accessed on 15 October 2020).
- Wang, W.-N.; Cheng, T.-H.; Gu, X.-F.; Chen, H.; Guo, H.; Wang, Y.; Bao, F.-W.; Shi, S.-Y.; Xu, B.-R.; Zuo, X.; et al. Assessing Spatial and Temporal Patterns of Observed Ground-Level Ozone in China. Sci. Rep. 2017, 7, 3651. [Google Scholar] [CrossRef]
- Liu, H.; Liu, S.; Xue, B.; Lv, Z.; Meng, Z.; Yang, X.; Xue, T.; Yu, Q.; He, K. Ground-level ozone pollution and its health impacts in China. Atmos. Environ. 2018, 173, 223–230. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.; Li, J.; Wu, Q.; Wang, H.; Du, H.; Yang, W.; Wang, Z.; Zhu, L. Modeling Ozone Source Apportionment and Performing Sensitivity Analysis in Summer on the North China Plain. Atmosphere 2020, 11, 992. [Google Scholar] [CrossRef]
- Thurston, G.D.; Spengler, J.D. A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston. Atmos. Environ. (1967) 1985, 19, 9–25. [Google Scholar] [CrossRef]
- Habre, R.; Coull, B.; Koutrakis, P. Impact of source collinearity in simulated PM2.5 data on the PMF receptor model solution. Atmos. Environ. 2011, 45, 6938–6946. [Google Scholar] [CrossRef]
- Park, E.S.; Sullivan, D.W.; Kang, D.H.; Ying, Q.; Spiegelman, C.H. Assessment of mobile source contributions in El Paso by PMF receptor modeling coupled with wind direction analysis. Sci. Total Environ. 2020, 720, 137527. [Google Scholar] [CrossRef] [PubMed]
- Yatkin, S.; Gerboles, M.; Belis, C.; Karagulian, F.; Lagler, F.; Barbiere, M.; Borowiak, A. Representativeness of an air quality monitoring station for PM2.5 and source apportionment over a small urban domain. Atmos. Pollut. Res. 2020, 11, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Galvão, E.S.; Reis, N.C.; Santos, J.M. The role of receptor models as tools for air quality management: A case study of an industrialized urban region. Environ. Sci. Pollut. Res. 2020, 27, 35918–35929. [Google Scholar] [CrossRef] [PubMed]
- Belis, C.; Pernigotti, D.; Pirovano, G.; Favez, O.; Jaffrezo, J.; Kuenen, J.; van der Gon, H.D.; Reizer, M.; Riffault, V.; Alleman, L.; et al. Evaluation of receptor and chemical transport models for PM10 source apportionment. Atmos. Environ. X 2020, 5, 100053. [Google Scholar] [CrossRef]
- Burr, M.J.; Zhang, Y. Source apportionment of fine particulate matter over the Eastern U.S. Part I: Source sensitivity simulations using CMAQ with the Brute Force method. Atmos. Pollut. Res. 2011, 2, 300–317. [Google Scholar] [CrossRef] [Green Version]
- Ansari, T.; Ojha, N.; Chandrasekar, R.; Balaji, C.; Singh, N.; Gunthe, S.S. Competing impact of anthropogenic emissions and meteorology on the distribution of trace gases over Indian region. J. Atmos. Chem. 2016, 73, 363–380. [Google Scholar] [CrossRef]
- Ojha, N.; Sharma, A.; Kumar, M.; Girach, I.; Ansari, T.; Sharma, S.K.; Singh, N.; Pozzer, A.; Gunthe, S.S. On the widespread enhancement in fine particulate matter across the Indo-Gangetic Plain towards winter. Sci. Rep. 2020, 10, 5862. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Liu, W.; Xu, Y.; Yi, K.; Zhou, M.; Tao, S.; Liu, W. Characteristics and oxidative potential of atmospheric PM2.5 in Beijing: Source apportionment and seasonal variation. Sci. Total Environ. 2019, 650, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Dai, W.; Shao, M.; Liu, Y.; Lu, S.; Kuster, W.; Goldan, P. Comparison of receptor models for source apportionment of volatile organic compounds in Beijing, China. Environ. Pollut. 2008, 156, 174–183. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Nie, T.; Qi, J.; Chen, J.; Wu, Q. Source apportionment of PM2.5 pollution in the central six districts of Beijing, China. J. Clean. Prod. 2018, 174, 661–669. [Google Scholar] [CrossRef]
- Gao, J.; Zhu, B.; Xiao, H.; Kang, H.; Hou, X.; Shao, P. A case study of surface ozone source apportionment during a high concentration episode, under frequent shifting wind conditions over the Yangtze River Delta, China. Sci. Total Environ. 2016, 544, 853–863. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Chen, Y.; Hu, J.; Zhang, H.; Ying, Q. Source apportionment of summertime ozone in China using a source oriented chemical transport model. Atmos. Environ. 2019, 211, 79–90. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Y.; Wen, W.; Liang, L.; Ma, X.; Jiao, J.; Guo, K. Source Identification of Trace Elements in PM2.5 at a Rural Site in the North China Plain. Atmosphere 2020, 11, 179. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.Y.; Wang, W.; Powers, J.G. Description of the Advanced Research WRF Version 3 (No. NCAR/TN-475+STR); University Corporation for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar]
- Yarwood, G.; Rao, S.; Yocke, M.; Whitten, G. Updates to the Carbon Bond Chemical Mechanism: CB05. Final Report prepared for US EPA. Available online: http://www.camx.com/publ/pdfs/CB05_Final_Report_120805.pdf (accessed on 15 December 2020).
- Chang, J.S.; Brost, R.A.; Isaksen, I.S.A.; Madronich, S.; Middleton, P.; Stockwell, W.; Walcek, C.J. A three-dimensional Eulerian acid deposition model: Physical concepts and formulation. J. Geophys. Res. Space Phys. 1987, 92, 14681–14700. [Google Scholar] [CrossRef]
- Fann, N.; Baker, K.R.; Fulcher, C.M. Characterizing the PM2.5-related health benefits of emission reductions for 17 industrial, area and mobile emission sectors across the U.S. Environ. Int. 2012, 49, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, S.-Y. Fine Scale Modeling of Agricultural Air Quality over the Southeastern United States Using Two Air Quality Models. Part II. Sensitivity Studies and Policy Implications. Aerosol Air Qual. Res. 2013, 13, 1475–1491. [Google Scholar] [CrossRef] [Green Version]
- Michael, G.B.; Eladio, M.K. Insights from the BRAVO study on nesting global models to specify boundary conditions in regional air quality modeling simulations. Atmos Environ. 2006, 40, 574–582. [Google Scholar]
- Wang, L.T.; Wei, Z.; Yang, J.; Zhang, Y.; Zhang, F.F.; Su, J.; Meng, C.C.; Zhang, Q. The 2013 severe haze over southern Hebei, China: Model evaluation, source apportionment, and policy implications. Atmos. Chem. Phys. Discuss. 2014, 14, 3151–3173. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhou, Y.; Cheng, S.; Wang, G. Characterization and regional transmission impact of water-soluble ions in PM2.5 during winter in typical cities. China Environ. Sci. 2016, 36, 2289–2296. [Google Scholar]
- Wen, W.; Ma, X.; Wei, P.; Cheng, S.; Wang, X.; He, X.; Liu, L. Understanding the Regional Transport Contributions of Primary and Secondary PM2.5 Components over Beijing during a Severe Pollution Episodes. Aerosol Air Qual. Res. 2018, 18, 1720–1733. [Google Scholar] [CrossRef] [Green Version]
- Levelt, P.F.; Van Den Oord, G.H.; Dobber, M.R.; Malkki, A.; Visser, H.; De Vries, J.; Stammes, P.; Lundell, J.O.; Saari, H. The ozone monitoring instrument. IEEE Trans. Geosci. Remote 2006, 44, 1093–1101. [Google Scholar] [CrossRef]
- Wang, X.; Wei, W.; Cheng, S.; Yao, S.; Zhang, H.; Zhang, C. Characteristics of PM2.5 and SNA components and meteorological factors impact on air pollution through 2013–2017 in Beijing, China. Atmos. Pollut. Res. 2019, 10, 1976–1984. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Q.; Zhang, Y.; Zheng, B.; Wang, K.; Chen, Y.; Wallington, T.J.; Han, W.; Shen, W.; Zhang, X.; et al. Source contributions of urban PM2.5 in the Beijing–Tianjin–Hebei region: Changes between 2006 and 2013 and relative impacts of emissions and meteorology. Atmos. Environ. 2015, 123, 229–239. [Google Scholar] [CrossRef] [Green Version]
- Ye, Z.; Guo, X.; Cheng, L.; Cheng, S.; Chen, D.; Wang, W.; Liu, B. Reducing PM2.5 and secondary inorganic aerosols by agricultural ammonia emission mitigation within the Beijing-Tianjin-Hebei region, China. Atmos. Environ. 2019, 219, 116989. [Google Scholar] [CrossRef]
- Li, L.; Chen, C.H.; Huang, C.; Huang, H.Y.; Zhang, G.F.; Wang, Y.J.; Wang, H.L.; Lou, S.R.; Qiao, L.P.; Zhou, M.; et al. Process analysis of regional ozone formation over the Yangtze River Delta, China using the Community Multi-scale Air Quality modeling system. Atmos. Chem. Phys. Discuss. 2012, 12, 10971–10987. [Google Scholar] [CrossRef] [Green Version]
- Derwent, R.; Simmonds, P.; Seuring, S.; Dimmer, C. Observation and interpretation of the seasonal cycles in the surface concentrations of ozone and carbon monoxide at mace head, Ireland from 1990 to 1994. Atmos. Environ. 1998, 32, 145–157. [Google Scholar] [CrossRef]
- Tsinghua University. Multi-Resolution Emission Inventory for China. 2016. Available online: http://www.meicmodel.org/ (accessed on 15 March 2020).
- Cheng, J.; Su, J.; Cui, T.; Li, X.; Dong, X.; Sun, F.; Yang, Y.; Tong, D.; Zheng, Y.; Li, Y.; et al. Dominant Role of Emission Reduction in PM2.5 Air Quality Improvement in Beijing during 2013–2017: A Model-based Decomposition Analysis. Atmos. Chem. Phys. 2019, 19, 6125–6146. [Google Scholar] [CrossRef] [Green Version]
Simulation | Month | Categories of Sources | Source Regions | Emissions |
---|---|---|---|---|
Run 1 | January | Industry, traffic, residential, power, agriculture | 13 | Real emission inventory of January 2016 |
Run 2 | January | Industry, traffic, residential, power, agriculture | 13 | Same pollutant emissions in each grid cell |
Run 3 | July | Industry, traffic, residential, power, agriculture | 13 | Real emission inventory of July 2016 |
Run 4 | July | Industry, traffic, residential, power, agriculture | 13 | Same pollutant emissions in each grid cell |
Simulation | Observation | NMB (%) | NME (%) | RC | ||
---|---|---|---|---|---|---|
WRF | T2 (K)—winter | 268.33 | 268.91 | −0.22 | 0.38 | 0.96 |
WS10 (m s−1)—winter | 2.81 | 2.40 | 16.92 | 28.01 | 0.84 | |
RH2 (%)—winter | 39.50 | 37.04 | 6.58 | 14.3 | 0.88 | |
T2 (K)—summer | 302.25 | 300.69 | 0.52 | 0.56 | 0.83 | |
WS10 (m s−1)—summer | 2.94 | 2.01 | 46.44 | 48.08 | 0.66 | |
RH2 (%)—summer | 61.06 | 69.37 | −11.98 | 15.34 | 0.77 | |
CAMx | PM2.5 (μg m−3)—winter | 94.72 | 66.50 | 42.43 | 63.96 | 0.73 |
SO2 (μg m−3)—winter | 34.72 | 20.11 | 72.71 | 80.51 | 0.72 | |
NO2 (μg m−3)—winter | 52.95 | 50.80 | 2.41 | 32.96 | 0.52 | |
O3 (μg m−3)—winter | 55.80 | 43.13 | 28.93 | 32.68 | 0.52 | |
PM2.5 (μg m−3)—summer | 84.00 | 75.88 | 10.71 | 38.83 | 0.78 | |
SO2 (μg m−3)—summer | 5.14 | 3.70 | 38.75 | 48.81 | 0.52 | |
NO2 (μg m−3)—summer | 30.07 | 33.67 | −10.69 | 17.05 | 0.55 | |
O3 (μg m−3)—summer | 122.15 | 162.3 | −24.74 | 36.18 | 0.61 |
SO2 | NOx | PM2.5 | |
---|---|---|---|
Tangshan | 193,593 | 351,055 | 104,186 |
Shijiazhuang | 137,704 | 275,644 | 83,467 |
Tianjin | 121,170 | 328,158 | 65,259 |
Handan | 100,533 | 189,702 | 63,110 |
Baoding | 96,388 | 195,790 | 71,567 |
Cangzhou | 87,703 | 172,004 | 57,502 |
Xingtai | 66,736 | 124,695 | 45,135 |
Langfang | 49,502 | 113,533 | 35,905 |
Hengshui | 45,043 | 87,247 | 32,175 |
Zhangjiakou | 44,112 | 92,119 | 30,051 |
Chengde | 39,667 | 73,207 | 27,239 |
Beijing | 33,068 | 224,451 | 53,052 |
Qinhuangdao | 31,802 | 66,841 | 20,516 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, W.; Shen, S.; Liu, L.; Ma, X.; Wei, Y.; Wang, J.; Xing, Y.; Su, W. Comparative Analysis of PM2.5 and O3 Source in Beijing Using a Chemical Transport Model. Remote Sens. 2021, 13, 3457. https://doi.org/10.3390/rs13173457
Wen W, Shen S, Liu L, Ma X, Wei Y, Wang J, Xing Y, Su W. Comparative Analysis of PM2.5 and O3 Source in Beijing Using a Chemical Transport Model. Remote Sensing. 2021; 13(17):3457. https://doi.org/10.3390/rs13173457
Chicago/Turabian StyleWen, Wei, Song Shen, Lei Liu, Xin Ma, Ying Wei, Jikang Wang, Yi Xing, and Wei Su. 2021. "Comparative Analysis of PM2.5 and O3 Source in Beijing Using a Chemical Transport Model" Remote Sensing 13, no. 17: 3457. https://doi.org/10.3390/rs13173457
APA StyleWen, W., Shen, S., Liu, L., Ma, X., Wei, Y., Wang, J., Xing, Y., & Su, W. (2021). Comparative Analysis of PM2.5 and O3 Source in Beijing Using a Chemical Transport Model. Remote Sensing, 13(17), 3457. https://doi.org/10.3390/rs13173457