Study on Collaborative Emission Reduction in Green-House and Pollutant Gas Due to COVID-19 Lockdown in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. Remotely Sensed Products
2.2.2. Ground Monitoring Data
2.3. Analysis Method
3. Results and Discussions
3.1. Spatial Distribution of Remotely Sensed CO2 Concentrations
3.2. Analysis of Changes in XCO2
3.3. Analysis of Changes in the Concentration of Gases (NO2 and O3) from Top-Down and Down-Top, Respectively
3.4. The Relation of NO2 and O3 Concentration on XCO2
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO. Coronavirus Disease (COVID-19) Outbreak Situation World Health Organization. 2020. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed on 10 July 2020).
- Petit, J.-R.; Raynaud, D. Forty years of ice-core records of CO2. Nature 2020, 579, 505–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Quéré, C.; Jackson, R.B.; Jones, M.W.; Smith, A.; Abernethy, S.; Andrew, R.M.; De-Gol, A.J.; Willis, D.R.; Shan, Y.; Canadell, J.G.; et al. Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nat. Clim. Chang. 2020, 10, 647–653. [Google Scholar] [CrossRef]
- Zhu, Y.; Xie, J.; Huang, F.; Cao, L. Association between short-term exposure to air pollu tion and COVID-19 infection: Evidence from China. Sci. Total Environ. 2020, 727, 138704. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Global Energy Review. IEA: Pari, France. 2020. Available online: https://www.iea.org/reports/global-energy-review-2020 (accessed on 2 September 2021).
- Mahato, S.; Pal, S.; Ghosh, K.G. Effect of lockdown amid COVID-19 pandemic on air quality of the megacity Delhi, India. Sci. Total Environ. 2020, 730, 139086. [Google Scholar] [CrossRef]
- Otmani, A.; Benchrif, A.; Tahri, M.; Bounakhla, M.; Chakir, E.M.; El Bouch, M.; Krombi, M.H. Impact of COVID-19 lockdown on PM10, SO2 and NO2 concentrations in Salé City (Morocco). Sci. Total Environ. 2020, 735, 139541. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Zhang, M.; Gao, J.; Zhang, H.; Kota, S.H. Effect of restricted emissions during COVID-19 on air quality in India. Sci. Total Environ. 2020, 728, 138878. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Chen, K.; Zhu, S.; Wang, P.; Zhang, H. Severe air pollution events not avoided by reduced anthropogenic activities during COVID-19 outbreak. Resour. Conserv. Recycl. 2020, 158, 104814. [Google Scholar] [CrossRef]
- Pei, Z.; Han, G.; Ma, X.; Su, H.; Gong, W. Response of major air pollutants to COVID-19 lockdowns in China. Sci. Total. Environ. 2020, 743, 140879. [Google Scholar] [CrossRef] [PubMed]
- Dantas, G.; Siciliano, B.; França, B.B.; da Silva, C.M.; Arbilla, G. The impact of COVID-19 partial lockdown on the air quality of the city of Rio de Janeiro, Brazil. Sci. Total Environ. 2020, 729, 139085. [Google Scholar] [CrossRef] [PubMed]
- Şahin, M. Impact of weather on COVID-19 pandemic in Turkey. Sci. Total Environ. 2020, 728, 138810. [Google Scholar] [CrossRef] [PubMed]
- Ogen, Y. Assessing nitrogen dioxide (NO2) levels as a contributing factor to coronavirus (COVID-19) fatality. Sci. Total Environ. 2020, 726, 138605. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.; Dong, Y.; Yan, H.; Zhao, C.; Li, X.; Liu, W.; He, M.; Tang, S.; Xi, S. Impact of temperature on the dynamics of the COVID-19 outbreak in China. Sci. Total. Environ. 2020, 728, 138890. [Google Scholar] [CrossRef] [PubMed]
- Buchwitz, M.; Reuter, M.; Noël, S.; Bramstedt, K.; Schneising, O.; Hilker, M.; Andrade, B.F.; Bovensmann, H.; Burrows, J.P.; Di Noia, A.; et al. Can a regional-scale reduction of atmospheric CO2 during the COVID-19 pandemic be detected from space? A case study for East China using satellite XCO2 retrievals. Atmos. Meas. Tech. 2021, 14, 2141–2166. [Google Scholar] [CrossRef]
- Yusup, Y.; Kayode, J.S.; Ahmad, M.I.; Yin, C.S.; Hisham, M.S.M.N.; Lsa, H.M. Atmospheric CO2 and total electricity production before and during the nation-wide restriction of activities as a consequence of the COVID-19 pandemic. arXiv 2020, arXiv:2006.04407. [Google Scholar]
- Mitra, A.; Ray Chadhuri, T.; Mitra, A.; Pramanick, P.; Zaman, S. Impact of COVID-19 related shutdown on atmospheric carbon dioxide level in the city of Kolkata. Parana J. Sci. Educ. 2020, 6, 84–92. [Google Scholar]
- Xie, X.; Wang, T.; Yue, X.; Li, S.; Zhuang, B.; Wang, M. Effects of atmospheric aerosols on terrestrial carbon fluxes and CO2 concentrations in China. Atmos. Res. 2020, 237, 104859. [Google Scholar] [CrossRef]
- Shi, T.; Ma, X.; Han, G.; Xu, H.; Qiu, R.; He, B.; Gong, W. Measurement of CO2 rectifier effect during summer and winter using ground-based differential absorption LiDAR. Atmos. Environ. 2019, 220, 117097. [Google Scholar] [CrossRef]
- Han, G.; Ma, X.; Liang, A.; Zhang, T.; Zhao, Y.; Zhang, M.; Gong, W. Performance Evaluation for China’s Planned CO2-IPDA. Remote Sens. 2017, 9, 768. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.; Wang, X.; Wang, S.; Zhang, L. Advances in spaceborne hyperspectral remote sensing in China. Geo Spat. Inf. Sci. 2021, 24, 95–120. [Google Scholar] [CrossRef]
- Dong, Y.; Liang, T.; Zhang, Y.; Du, B. Spectral–Spatial Weighted Kernel Manifold Embedded Distribution Alignment for Remote Sensing Image Classification. IEEE Trans. Cybern. 2021, 51, 3185–3197. [Google Scholar] [CrossRef]
- Jos van Geffen, K.; Boersma, K.F.; Eskes, H.; Sneep, M.; ter Linden, M.; Zara, M.; Veefkind, J.P. S5P/TROPOMI NO2 slant column retrieval: Method, stability, uncertainties, and comparisons against OMI. Atmos. Meas. Tech. Discuss. 2019, 13, 1315–1335. [Google Scholar] [CrossRef] [Green Version]
- GEE. Available online: https://developers.google.com/earthengine/datasets/catalog (accessed on 2 September 2021).
- GOSATData. Available online: https://data2.gosat.nies.go.jp/GosatDataArchiveService/usr/download/ProductPage/view (accessed on 2 September 2021).
- GOSAT Instruments and Observational Methods. Available online: https://www.gosat.nies.go.jp/en/about_%ef%bc%92_observe.html (accessed on 2 September 2021).
- China Air Quality Network. Available online: https://www.aqistudy.cn/historydata/ (accessed on 2 September 2021).
- Liu, C.; Wang, W.; Sun, Y. TCCON Data from Hefei, China, Release GGG2014R0, TCCON Data Archive, Hosted by Caltech DATA; California Institute of Technology: Pasadena, CA, USA, 2018. [Google Scholar] [CrossRef]
- TCCON Data from Hefei. Available online: https://data.caltech.edu/records/1092 (accessed on 2 September 2021).
- Ma, X.; Zhang, H.; Han, G.; Mao, F.; Xu, H.; Shi, T.; Hu, H.; Sun, T.; Gong, W. A Regional Spatiotemporal Downscaling Method for CO2 Columns. IEEE Trans. Geosci. Remote Sens. 2021, 1–10. [Google Scholar] [CrossRef]
- Gribov, A.; Krivoruchko, K. New flexible non-parametric data transformation for trans-Gaussian kriging. Geostat. Oslo 2012, 17, 51–65. [Google Scholar]
- Krivoruchko, K.; Gribov, A. Pragmatic Bayesian kriging for nonstationary and moderately non-Gaussian data. In Mathematics of Planet Earth; Springer: Berlin/Heidelberg, Germany, 2013; Volume 4, pp. 61–64. [Google Scholar]
- Pilz, J.; Spöck, G. Why do we need and how should we implement Bayesian kriging methods. Stoch. Environ. Res. Risk Assess. 2007, 22, 621–632. [Google Scholar] [CrossRef]
- Dlugokencky, E.J.; Mund, J.W.; Crotwell, A.M.; Crotwell, M.J.; Thoning, K.W. Atmospheric Carbon Dioxide Dry Air Mole Fractions from the NOAA GML Carbon Cycle Cooperative Global Air Sampling Network, 1968–2019. Version: 2020-07. 2020. Available online: https://doi.org/10.15138/wkgj-f215 (accessed on 2 September 2021).
- Guangzhou Municipal Party Committee Deployed Epidemic Prevention and Control Work. 2020. Available online: http://www.gz.gov.cn/xw/gzyw/content/post_6892412.html (accessed on 2 September 2021).
- Healthpeople. 2020. Available online: http://health.people.com.cn/n1/2020/1124/c14739-31941753.html (accessed on 2 September 2021).
- Shanghai. 2020. Available online: http://sh.bendibao.com/news/20201110/233277.shtm (accessed on 2 September 2021).
- Economic Opera Tion of Wuhan in 2020. 2020. Available online: http://tjj.wuhan.gov.cn/ztzl_49/xwfbh/202102/t20210202_1624524.shtml (accessed on 2 September 2021).
- Six Local Cases Have Been Confirmed in Shanghai. 2020. Available online: http://www.chinanews.com/sh/2020/12-22/9368036.shtml (accessed on 2 September 2021).
- Chinanews. 2020. Available online: http://www.gov.cn/zhengce/2020-06/07/content_5517737.htm (accessed on 2 September 2021).
- Shi, C.; Wang, S.; Liu, R.; Zhou, R.; Li, D.; Wang, W.; Li, Z.; Cheng, T.; Zhou, B. A study of aerosol optical properties during ozone pollution episodes in 2013 over Shanghai, China. Atmos. Res. 2015, 153, 235–249. [Google Scholar] [CrossRef]
- Shao, P.; An, J.; Xin, J.; Wu, F.; Wang, J.; Ji, D.; Wang, Y. An analysis on the relationship between ground-level ozone and particulate matter in an industrial area in the Yangtze River delta during summertime. Atmos. Sci. 2017, 41, 618–628. (In Chinese) [Google Scholar]
- Park, H.; Jeong, S.; Park, H.; Labzovskii, L.D.; Bowman, K.W. An assessment of emission characteristics of Northern Hemisphere cities using spaceborne observations of CO2, CO, and NO2. Remote Sens. Environ. 2021, 254, 112246. [Google Scholar] [CrossRef]
Data Type | Temporal Interval | Use Type |
---|---|---|
GOSAT_FTS_L3_V2.95 | 201601–202012 | Analyze changes in CO2 concentration |
TCCON (Hefei Sites) | 201601–201612 | To evaluate the accuracy of the monthly averaged CO2 concentration data from our algorithm |
Sentinel-5_Offline_ L3_ NO2 and Sentinel-5_Offline_L3_O3 | 201901–202012 | To analyze the effects of NO2 and O3 concentrations on change in XCO2 with top-down |
NO2 and O3 from China Air Quality Network | 201901–202012 | To analyze the effects of NO2 and O3 concentrations on change in XCO2 with bottom-up |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Ma, X.; Han, G.; Xu, H.; Shi, T.; Zhong, W.; Gong, W. Study on Collaborative Emission Reduction in Green-House and Pollutant Gas Due to COVID-19 Lockdown in China. Remote Sens. 2021, 13, 3492. https://doi.org/10.3390/rs13173492
Zhang H, Ma X, Han G, Xu H, Shi T, Zhong W, Gong W. Study on Collaborative Emission Reduction in Green-House and Pollutant Gas Due to COVID-19 Lockdown in China. Remote Sensing. 2021; 13(17):3492. https://doi.org/10.3390/rs13173492
Chicago/Turabian StyleZhang, Haowei, Xin Ma, Ge Han, Hao Xu, Tianqi Shi, Wanqin Zhong, and Wei Gong. 2021. "Study on Collaborative Emission Reduction in Green-House and Pollutant Gas Due to COVID-19 Lockdown in China" Remote Sensing 13, no. 17: 3492. https://doi.org/10.3390/rs13173492
APA StyleZhang, H., Ma, X., Han, G., Xu, H., Shi, T., Zhong, W., & Gong, W. (2021). Study on Collaborative Emission Reduction in Green-House and Pollutant Gas Due to COVID-19 Lockdown in China. Remote Sensing, 13(17), 3492. https://doi.org/10.3390/rs13173492