An Improved Cloud Gap-Filling Method for Longwave Infrared Land Surface Temperatures through Introducing Passive Microwave Techniques
Abstract
:1. Introduction
1.1. Prior Cloud Gap-Filling Research
1.2. Research Objective
2. Study Area and Datasets
2.1. Study Area and In Situ LST Ground Observations
2.2. Satellite Datasets
3. Methodology
3.1. Step 1: STDF Methodology
3.1.1. Methodology Description
3.1.2. Method Sensitivity Analysis
3.2. Step 2: Cloud Shadowing Bias Adjustment with PM-Derived LST Data
4. Results
4.1. Overview of Cloud Gap-Filling
4.2. Validation against In Situ LST Ground Observations
4.3. Validation against SEVIRI Geostationary LST
4.4. Influence of Cloud Duration on PM-Based Calibration
5. Discussion
5.1. Improvement and Universality of the Gap-Filling Methodology
5.2. Uncertainty and Limitations of the Current Study
5.3. Future Work
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Terms | Acronym |
Land surface temperature | LST |
Normalised difference vegetation index | NDVI |
the Moderate Resolution Imaging Spectroradiometer | MODIS |
the Advanced Microwave Scanning Radiometer | AMSR |
passive microwave | PM |
spatio-temporal data fusion | STDF |
the Global Change Observation Mission1-Water | GCOM-W1 |
land surface energy balance | LSEB |
Long wave infrared | LWIR |
numerical weather prediction | NWP |
brightness temperature | BT |
Global Climate Observing System Essential Climate Variable | GCOS-ECV |
Visible infrared Imaging Radiometer | VIIRS |
International Livestock Research Institute | ILRI |
Shuttle Radar Topography Mission | SRTM |
digital elevation model | DEM |
Japan Aerospace Exploration Agency | JAXA |
National Aeronautics and Space Administration | NASA |
European Space Agency | ESA |
European Organization for the Exploitation of the Meteorologcial Satellites | EUMETSAT |
view zenith angle | VZA |
Land Surface Analysis Satellite Application Facility | LSA-SAF |
the Spinning Enhanced Visible and Infra-Red Imager | SEVIRI |
quality control | QC |
Bidirectional Reflectance Distribution Function | BRDF |
Universal Time Coordinated | UTC |
cloud duration fraction | CDF |
bias adjustment fraction | BAF |
References
- Hollmann, R.; Merchant, C.J.; Saunders, R.; Downy, C.; Buchwitz, M.; Cazenave, A.; Chuvieco, E.; Defourny, P.; de Leeuw, G.; Forsberg, R.; et al. The Esa Climate Change Initiative Satellite Data Records for Essential Climate Variables. Bull. Am. Meteorol. Soc. 2013, 94, 1541–1552. [Google Scholar] [CrossRef] [Green Version]
- Khanal, S.; Fulton, J.; Shearer, S. An overview of current and potential applications of thermal remote sensing in precision agriculture. Comput. Electron. Agric. 2017, 139, 22–32. [Google Scholar] [CrossRef]
- Quattrochl, D.A.; Luvall, J.C.; Rickman, D.L.; Estes, M.G.; Laymon, C.A.; Howell, B.F. A decision support information system for urban landscape management using thermal infrared data. PERS Photogramm. Eng. Remote Sens. 2000, 66, 1195–1207. [Google Scholar]
- Ganci, G.; Vicari, A.; Cappello, A.; Del Negro, C. An emergent strategy for volcano hazard assessment: From thermal satellite monitoring to lava flow modeling. Remote Sens. Environ. 2012, 119, 197–207. [Google Scholar] [CrossRef]
- Yao, Y.; Liang, S.; Cheng, J.; Liu, S.; Fisher, J.B.; Zhang, X.; Jia, K.; Zhao, X.; Qin, Q.; Zhao, B.; et al. MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley–Taylor algorithm. Agric. For. Meteorol. 2013, 171–172, 187–202. [Google Scholar] [CrossRef]
- Zhang, Y.; Kong, D.; Gan, R.; Chiew, F.H.S.; Mcvicar, T.R.; Zhang, Q.; Yang, Y. Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002-2017. Remote Sens. Environ. 2019, 222, 165–182. [Google Scholar] [CrossRef]
- Jin, M.S.; Kessomkiat, W.; Pereira, G. Satellite-Observed Urbanization Characters in Shanghai, China: Aerosols, Urban Heat Island Effect, and Land-Atmosphere Interactions. Remote Sens. 2011, 3, 83–99. [Google Scholar] [CrossRef] [Green Version]
- Williamson, S.N.; Hik, D.S.; Gamon, J.A.; Kavanaugh, J.L.; Koh, S. Evaluating Cloud Contamination in Clear-Sky MODIS Terra Daytime Land Surface Temperatures Using Ground-Based Meteorology Station Observations. J. Clim. 2013, 26, 1551–1560. [Google Scholar] [CrossRef]
- Gutman, G.; Tarpley, D.; Ohring, G. Cloud Screening for Determination of Land Surface Characteristics in a Reduced Resolution Satellite Data Set. Int. J. Remote Sens. 1987, 8, 859–870. [Google Scholar] [CrossRef]
- Tomlinson, C.J.; Chapman, L.; Thornes, J.E.; Baker, C. Remote sensing land surface temperature for meteorology and climatology: A review. Meteorol. Appl. 2011, 18, 296–306. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.M.; Shen, Y.; Wu, Z.Y. Spatial and Temporal Variations of Land Surface Temperature Over the Tibetan Plateau Based on Harmonic Analysis. Mt. Res. Dev. 2013, 33, 85–94. [Google Scholar] [CrossRef]
- Wan, Z.; Wang, P.; Li, X. Using MODIS Land Surface Temperature and Normalized Difference Vegetation Index products for monitoring drought in the southern Great Plains, USA. Int. J. Remote Sens. 2004, 25, 61–72. [Google Scholar] [CrossRef]
- Stathopoulou, M.; Cartalis, C. Use of Satellite Remote Sensing in Support of Urban Heat Island Studies. Adv. Build. Energy Res. 2007, 1, 203–212. [Google Scholar] [CrossRef]
- Coppo, P. Simulation of fire detection by infrared imagers from geostationary satellites. Remote Sens. Environ. 2015, 162, 84–98. [Google Scholar] [CrossRef]
- Ghaderpour, E.; Vujadinovic, T. The Potential of the Least-Squares Spectral and Cross-Wavelet Analyses for Near-Real-Time Disturbance Detection within Unequally Spaced Satellite Image Time Series. Remote Sens. 2020, 12, 2446. [Google Scholar] [CrossRef]
- Su, H.; Liu, J.; Wang, C.; Wang, P.; Huang, J.; Yang, M. Studies on Reconstructing MODIS LST Products Based on Time Series. J. Agric. Sci. Technol. 2014, 16, 99–107. [Google Scholar]
- Yan, J.; Shen, R.; Bao, Y.; Li, X. Research on the Reconstructing of MODIS LST Product of Jiangsu Province. Environ. Sci. Technol. 2014, 37, 160–167. [Google Scholar]
- Ghafarian Malamiri, H.; Rousta, I.; Olafsson, H.; Zare, H.; Zhang, H. Gap-Filling of MODIS Time Series Land Surface Temperature (LST) Products Using Singular Spectrum Analysis (SSA). Atmosphere 2018, 9, 334. [Google Scholar] [CrossRef] [Green Version]
- Frey, C.; Kuenzer, C. Two algorithms to fill cloud gaps in LST time series. In Proceedings of the European Geosciences Union—General Assembly 2013, Vienna, Austria, 7–12 April 2013. [Google Scholar]
- Jin, M.L.; Dickinson, R.E. Land surface skin temperature climatology: Benefitting from the strengths of satellite observations. Environ. Res. Lett. 2010, 5, 044004. [Google Scholar] [CrossRef] [Green Version]
- Zaksek, K.; Ostir, K. Downscaling land surface temperature for urban heat island diurnal cycle analysis. Remote Sens. Environ. 2012, 117, 114–124. [Google Scholar] [CrossRef]
- Linghong, K.E.; Wang, Z.; Song, C.; Zhenquan, L.U. Reconstruction of MODIS LST Time Series and Comparison with Land Surface Temperature (T) among Observation Stations in the Northeast Qinghai-Tibet Plateau. Prog. Geogr. 2011, 30, 819–826. [Google Scholar]
- Neteler, M. Estimating daily land surface temperatures in mountainous environments by reconstructed MODIS LST data. Remote Sens. 2010, 2, 333–351. [Google Scholar] [CrossRef] [Green Version]
- Stewart, S.B.; Nitschke, C.R. Improving temperature interpolation using MODIS LST and local topography: A comparison of methods in south east Australia. Int. J. Climatol. 2017, 37, 3098–3110. [Google Scholar] [CrossRef]
- Yu, W.; Nan, Z.; Wang, Z.; Chen, H.; Wu, T.; Zhao, L. An Effective Interpolation Method for MODIS Land Surface Temperature on the Qinghai-Tibet Plateau. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4539–4550. [Google Scholar] [CrossRef]
- Sun, L.; Chen, Z.; Gao, F.; Anderson, M.; Song, L.; Wang, L.; Hu, B.; Yang, Y. Reconstructing daily clear-sky land surface temperature for cloudy regions from MODIS data. Comput. Geosci. 2017, 105, 10–20. [Google Scholar] [CrossRef]
- Zeng, C.; Shen, H.; Zhong, M.; Zhang, L.; Wu, P. Reconstructing MODIS LST Based on Multitemporal Classification and Robust Regression. IEEE Geosci. Remote Sens. Lett. 2015, 12, 512–516. [Google Scholar] [CrossRef]
- Cheng, Q.; Shen, H.; Zhang, L.; Yuan, Q.; Zeng, C. Cloud removal for remotely sensed images by similar pixel replacement guided with a spatio-temporal MRF model. ISPRS J. Photogramm. Remote Sens. 2014, 92, 54–68. [Google Scholar] [CrossRef]
- Wang, T.; Shi, J.; Ma, Y.; Husi, L.; Comyn-Platt, E.; Ji, D.; Zhao, T.; Xiong, C. Recovering Land Surface Temperature Under Cloudy Skies Considering the Solar-Cloud-Satellite Geometry: Application to MODIS and Landsat-8 Data. J. Geophys. Res. Atmos. 2019, 124, 3401–3416. [Google Scholar] [CrossRef]
- Song, P.; Huang, J.; Mansaray, L.R. An improved surface soil moisture downscaling approach over cloudy areas based on geographically weighted regression. Agric. For. Meteorol. 2019, 275, 146–158. [Google Scholar] [CrossRef]
- Zeng, C.; Long, D.; Shen, H.; Wu, P.; Cui, Y.; Hong, Y. A two-step framework for reconstructing remotely sensed land surface temperatures contaminated by cloud. ISPRS J. Photogramm. Remote Sens. 2018, 141, 30–45. [Google Scholar] [CrossRef]
- Wang, T.; Shi, J.; Letu, H.; Ma, Y.; Li, X.; Zheng, Y. Detection and Removal of Clouds and Associated Shadows in Satellite Imagery Based on Simulated Radiance Fields. J. Geophys. Res. Atmos. 2019, 124, 7207–7225. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Sun, W.W.; Shen, H.F.; Meng, X.C.; Li, J.L. An Integrated Method for Reconstructing Daily MODIS Land Surface Temperature Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 1026–1040. [Google Scholar] [CrossRef]
- Fu, P.; Xie, Y.H.; Weng, Q.H.; Myint, S.; Meacham-Hensold, K.; Bernacchi, C. A physical model-based method for retrieving urban land surface temperatures under cloudy conditions. Remote Sens. Environ. 2019, 230, 111191. [Google Scholar] [CrossRef]
- Zhao, W.; Duan, S.-B. Reconstruction of daytime land surface temperatures under cloud-covered conditions using integrated MODIS/Terra land products and MSG geostationary satellite data. Remote Sens. Environ. 2020, 247, 111931. [Google Scholar] [CrossRef]
- Wang, K.C.; Zhou, X.J.; Liu, J.M.; Sparrow, M. Estimating surface solar radiation over complex terrain using moderate-resolution satellite sensor data. Int. J. Remote Sens. 2005, 26, 47–58. [Google Scholar] [CrossRef]
- Orth, R.; Dutra, E.; Trigo, I.F.; Balsamo, G. Advancing land surface model development with satellite-based Earth observations. Hydrol. Earth Syst. Sci. 2017, 21, 2483–2495. [Google Scholar] [CrossRef] [Green Version]
- Trigo, I.F.; Boussetta, S.; Viterbo, P.; Balsamo, G.; Beljaars, A.; Sandu, I. Comparison of model land skin temperature with remotely sensed estimates and assessment of surface-atmosphere coupling. J. Geophys. Res. Atmos. 2015, 120, 12111–12609. [Google Scholar] [CrossRef] [Green Version]
- Johannsen, F.; Ermida, S.; Martins, J.P.A.; Trigo, I.F.; Nogueira, M.; Dutra, E. Cold Bias of ERA5 Summertime Daily Maximum Land Surface Temperature over Iberian Peninsula. Remote Sens. 2019, 11, 2570. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.N.; Prigent, C. Comparisons of Diurnal Variations of Land Surface Temperatures from Numerical Weather Prediction Analyses, Infrared Satellite Estimates and In Situ Measurements. Remote Sens. 2020, 12, 583. [Google Scholar] [CrossRef] [Green Version]
- Holmes, T.R.H.; Hain, C.R.; Anderson, M.C.; Crow, W.T. Cloud tolerance of remote-sensing technologies to measure land surface temperature. Hydrol. Earth Syst. Sci. 2016, 20, 3263–3275. [Google Scholar] [CrossRef] [Green Version]
- Duan, S.B.; Han, X.J.; Huang, C.; Li, Z.L.; Leng, P. Land Surface Temperature Retrieval from Passive Microwave Satellite Observations: State-of-the-Art and Future Directions. Remote Sens. 2020, 12, 2573. [Google Scholar] [CrossRef]
- Duan, S.; Li, Z.; Leng, P. A framework for the retrieval of all-weather land surface temperature at a high spatial resolution from polar-orbiting thermal infrared and passive microwave data. Remote Sens. Environ. 2017, 195, 107–117. [Google Scholar] [CrossRef]
- Hain, C.R.; Crow, W.T.; Mecikalski, J.R.; Anderson, M.C.; Holmes, T. An intercomparison of available soil moisture estimates from thermal infrared and passive microwave remote sensing and land surface modeling. J. Geophys. Res. Atmos. 2011, 116, D15107. [Google Scholar] [CrossRef]
- Kou, X.; Jiang, L.; Bo, Y.; Yan, S.; Chai, L. Estimation of land surface temperature through blending MODIS and AMSR-E data with the bayesian maximum entropy method. Remote Sens. 2016, 8, 105. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.L.; Li, Y.; Zhan, X.W.; Houser, P.; Yang, C.W.; Chiu, L.; Yang, R.X. Land Surface Temperature Derivation under All Sky Conditions through Integrating AMSR-E/AMSR-2 and MODIS/GOES Observations. Remote Sens. 2019, 11, 1704. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhou, J.; Göttsche, F.-M.; Zhan, W.; Liu, S.; Cao, R. A Method Based on Temporal Component Decomposition for Estimating 1-km All-Weather Land Surface Temperature by Merging Satellite Thermal Infrared and Passive Microwave Observations. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4670–4691. [Google Scholar] [CrossRef]
- Zhang, X.D.; Zhou, J.; Liang, S.L.; Chai, L.N.; Wang, D.D.; Liu, J. Estimation of 1-km all-weather remotely sensed land surface temperature based on reconstructed spatial-seamless satellite passive microwave brightness temperature and thermal infrared data. ISPRS J. Photogramm. Remote Sens. 2020, 167, 321–344. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, J.; Liang, S.; Wang, D. A practical reanalysis data and thermal infrared remote sensing data merging (RTM) method for reconstruction of a 1-km all-weather land surface temperature. Remote Sens. Environ. 2021, 260, 112437. [Google Scholar] [CrossRef]
- Long, D.; Yan, L.; Bai, L.L.; Zhang, C.J.; Li, X.Y.; Lei, H.M.; Yang, H.B.; Tian, F.Q.; Zeng, C.; Meng, X.Y.; et al. Generation of MODIS-like land surface temperatures under all-weather conditions based on a data fusion approach. Remote Sens. Environ. 2020, 246, 111863. [Google Scholar] [CrossRef]
- Yoo, C.; Im, J.; Cho, D.; Yokoya, N.; Xia, J.; Bechtel, B. Estimation of All-Weather 1 km MODIS Land Surface Temperature for Humid Summer Days. Remote Sens. 2020, 12, 1398. [Google Scholar] [CrossRef]
- Shwetha, H.R.; Kumar, D.N. Prediction of high spatio-temporal resolution land surface temperature under cloudy conditions using microwave vegetation index and ANN. ISPRS J. Photogramm. Remote Sens. 2016, 117, 40–55. [Google Scholar] [CrossRef]
- Survey, B.G. Climate of Kenya, Climatic Research Unit at the University of East Anglia, UK, Africa Groundwater Atlas. Climate. British Geological Survey. 2017. Available online: http://earthwise.bgs.ac.uk/index.php/Climate (accessed on 1 June 2021).
- Gottsche, F.M.; Olesen, F.S.; Trigo, I.F.; Bork-Unkelbach, A.; Martin, M.A. Long Term Validation of Land Surface Temperature Retrieved from MSG/SEVIRI with Continuous in-Situ Measurements in Africa. Remote Sens. 2016, 8, 410. [Google Scholar] [CrossRef] [Green Version]
- Van de griend, A.A.; Owe, M.; Groen, M.; Stoll, M.P. Measurement and Spatial Variation of Thermal Infrared Surface Emissivity in a Savanna Environment. Water Resour. Res. 1991, 27, 371–379. [Google Scholar] [CrossRef]
- Trigo, I.F.; Dacamara, C.C.; Viterbo, P.; Roujean, J.-L.; Olesen, F.; Barroso, C.; Camacho-de-Coca, F.; Carrer, D.; Freitas, S.C.; García-Haro, J.; et al. The Satellite Application Facility for Land Surface Analysis. Int. J. Remote Sens. 2011, 32, 2725–2744. [Google Scholar] [CrossRef]
- Metz, M.; Rocchini, D.; Neteler, M. Surface Temperatures at the Continental Scale: Tracking Changes with Remote Sensing at Unprecedented Detail. Remote Sens. 2014, 6, 3822–3840. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Kimball, J.S.; Shi, J.; Jones, L.A.; Wu, S.; Sun, R.; Yang, H. Inter-calibration of satellite passive microwave land observations from AMSR-E and AMSR2 using overlapping FY3B-MWRI sensor measurements. Remote Sens. 2014, 6, 8594–8616. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Dai, F.; Zhang, X.; Zhao, S.; Li, M. Developing a temporally land cover-based look-up table (TL-LUT) method for estimating land surface temperature based on AMSR-E data over the Chinese landmass. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 35–50. [Google Scholar] [CrossRef]
- Fily, M.; Royer, A.; Goita, K.; Prigent, C. A simple retrieval method for land surface temperature and fraction of water surface determination from satellite microwave brightness temperatures in sub-arctic areas. Remote Sens. Environ. 2003, 85, 328–338. [Google Scholar] [CrossRef]
- Holmes, T.R.H.; De Jeu, R.A.M.; Owe, M.; Dolman, A.J. Land surface temperature from Ka band (37 GHz) passive microwave observations. J. Geophys. Res. Atmos. 2009, 114, D04113–D04127. [Google Scholar] [CrossRef] [Green Version]
- Prigent, C.; Jimenez, C.; Aires, F. Toward “all weather,” long record, and real-time land surface temperature retrievals from microwave satellite observations. J. Geophys. Res. Atmos. 2016, 121, 5699–5717. [Google Scholar] [CrossRef]
- Jones, L.A.; Ferguson, C.R.; Kimball, J.S.; Zhang, K.; Chan, S.T.K.; McDonald, K.C.; Njoku, E.G.; Wood, E.F. Satellite microwave remote sensing of daily land surface air temperature minima and maxima from AMSR-E. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 111–123. [Google Scholar] [CrossRef]
- Owe, M.; Van De Griend, A.A. On the relationship between thermodynamic surface temperature and high-frequency (37 GHz) vertically polarized brightness temperature under semi-arid conditions. Int. J. Remote Sens. 2001, 22, 3521–3532. [Google Scholar] [CrossRef]
- Song, P.; Huang, J.; Mansaray, L.R.; Wen, H.; Wu, H.; Liu, Z.; Wang, X. An Improved Soil Moisture Retrieval Algorithm Based on the Land Parameter Retrieval Model for Water-Land Mixed Pixels Using AMSR-E Data. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7643–7657. [Google Scholar] [CrossRef]
- Du, J.Y.; Kimball, J.S.; Jones, L.A. Satellite microwave retrieval of total precipitable water vapor and surface air temperature over land from AMSR2. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2520–2531. [Google Scholar] [CrossRef]
- Armstrong, R.L.; Brodzik, M.J. An earth-gridded SSM/I data set for cryospheric studies and global change monitoring. Adv. Space Res. 1995, 16, 155–163. [Google Scholar] [CrossRef]
- Njoku, E.G.; Li, L. Retrieval of land surface parameters using passive microwave measurements at 6-18 GHz. IEEE Trans. Geosci. Remote Sens. 1999, 37, 79–93. [Google Scholar] [CrossRef] [Green Version]
- Korb, A.R.; Salisbury, J.W.; D’Aria, D.M. Thermal-infrared remote sensing and Kirchhoff’s law 2. Field measurements. J. Geophys. Res. Solid Earth 1999, 104, 15339–15350. [Google Scholar] [CrossRef]
- Metz, M.; Andreo, V.; Neteler, M. A New Fully Gap-Free Time Series of Land Surface Temperature from MODIS LST Data. Remote Sens. 2017, 9, 1333. [Google Scholar] [CrossRef] [Green Version]
- Crosson, W.L.; Al-Hamdan, M.Z.; Hemmings, S.N.J.; Wade, G.M. A daily merged MODIS Aqua-Terra land surface temperature data set for the conterminous United States. Remote Sens. Environ. 2012, 119, 315–324. [Google Scholar] [CrossRef]
- Jarvis, A.; Reuter, H.I.; Nelson, H.I.; Guevara, E. Hole-filled SRTM for the Globe Version 4. 2008. Available online: https://cgiarcsi.community/data/srtm-90m-digital-elevation-database-v4-1/ (accessed on 1 June 2021).
- Xie, X.; Meng, W.; Dong, K.; Gu, S.; Li, X. In-Orbit Calibration of FengYun-3C Microwave Radiation Imager: Characterization of Backlobe Intrusion for the Hot-Load Reflector. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 99, 1. [Google Scholar]
Study | Main Method Description | Spatial Scale | Limitations |
---|---|---|---|
1. Kou et al. [45] | A Bayesian Maximum Entropy (BME) blending approach to merge PM and LWIR data, achieving a Root Mean Square Error (RMSE) in LST of between 2.3–4.5 K. | A relatively small 100 × 100 km2 region | Only used on night-time data over a small region, with its universality requiring more validation. |
2. Duan et al. [43] | An empirical model based on a digital elevation model (DEM) and clear sky LWIR-derived LST at neighboring pixels to downscale PM-derived data for achieving LST of cloudy LWIR pixels. | China | Downscaling of PM LST only relies on DEM, may be theoretically less effective in areas where the topographical variation is not important (e.g., low altitude plains). |
3. Sun et al. [46] | A downscaling method for PM LST using NDVI and DEM data applied for gap-filling of LWIR LST at a finer resolution. | China | (1) Penetration depth difference between PM and LWIR not considered. (2) The method was applied over a large area but only validated at limited sites. (3) PM data were downscaled to 5 km but the feasibility of the method at a finer resolution (e.g., 1 km) requires further investigation. |
4. Zhang et al. [47]; Zhang et al. [48]; Zhang et al. [49]; | A temporal component decomposition developed for merging observations that achieved a 1-km all-weather daily LST data. | Northeastern China; the Tibetan Plateau | Both microwave data and reanalysis data are required as essential inputs to reconstruct the real LST under cloud. But this increases the complexity of the method and risks increased uncertainty from data inputs. Therefore, it should be cautiously discussed when applied in other regions. |
5. Long et al. [50] | A data fusion method used to merge LWIR observations and PM-like coarse-resolution reanalysis datasets, based on correlations between images taken a limited time apart. | 3 plots of 80 × 80 km2 in China | (1) This time-interpolation-like fusion method has strict requirement on the availability of its input datasets at neighboring dates [49]. (2) The method only addresses situations of temporally discontinuous pixel loss across relatively small study regions. |
6. Yoo et al. [51]; Shwetha and Kumar [52] | Machine-learning based models to fuse LST at different spatial scales. | South Korea, about 10,000 km2; Cauvery river basin in India, about 80,000 km2 | The physics behind machine learning models remains unclear, and it is difficult to justify the global universality of these models when the relationships they derive cannot be explicitly formalized. |
Sensitivity of LST(t1) on the Input Variables X, i.e., | Observation Time | Average | Standard Deviation | Upper Threshold (90th Percentile) | Lower Threshold (10th Percentile) |
---|---|---|---|---|---|
NDVI (K/0.1) | Day-time | −1.11 | 0.89 | 2.88 | −4.28 |
Night-time | −0.06 | 0.17 | 0.76 | −0.93 | |
DEM (K/100 m) | Daytime | −0.42 | 0.35 | 1.21 | −6.30 |
Night-time | −0.36 | 0.42 | 1.43 | −5.69 | |
LST(t0) (K/K) | Daytime | 0.50 | 0.84 | 1.72 | −0.80 |
Night-time | 0.59 | 0.25 | 1.49 | −0.71 |
MODIS LST Data Type | RMSE (K) | Mean Bias (K) | r | N | |
---|---|---|---|---|---|
Day | MODISClear | 2.7 | −1.6 | 0.96 ** | 198 |
MODISSTDF | 4.3 | 2.5 | 0.94 ** | 71 | |
MODISPMBC | 2.6 | 0.2 | 0.97 ** | 71 | |
Night | MODISClear | 1.1 | −0.4 | 0.93 ** | 115 |
MODISSTDF | 1.0 | −0.6 | 0.93 ** | 119 | |
MODISPMBC | 0.8 | −0.2 | 0.94 ** | 119 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dowling, T.P.F.; Song, P.; Jong, M.C.D.; Merbold, L.; Wooster, M.J.; Huang, J.; Zhang, Y. An Improved Cloud Gap-Filling Method for Longwave Infrared Land Surface Temperatures through Introducing Passive Microwave Techniques. Remote Sens. 2021, 13, 3522. https://doi.org/10.3390/rs13173522
Dowling TPF, Song P, Jong MCD, Merbold L, Wooster MJ, Huang J, Zhang Y. An Improved Cloud Gap-Filling Method for Longwave Infrared Land Surface Temperatures through Introducing Passive Microwave Techniques. Remote Sensing. 2021; 13(17):3522. https://doi.org/10.3390/rs13173522
Chicago/Turabian StyleDowling, Thomas P. F., Peilin Song, Mark C. De Jong, Lutz Merbold, Martin J. Wooster, Jingfeng Huang, and Yongqiang Zhang. 2021. "An Improved Cloud Gap-Filling Method for Longwave Infrared Land Surface Temperatures through Introducing Passive Microwave Techniques" Remote Sensing 13, no. 17: 3522. https://doi.org/10.3390/rs13173522
APA StyleDowling, T. P. F., Song, P., Jong, M. C. D., Merbold, L., Wooster, M. J., Huang, J., & Zhang, Y. (2021). An Improved Cloud Gap-Filling Method for Longwave Infrared Land Surface Temperatures through Introducing Passive Microwave Techniques. Remote Sensing, 13(17), 3522. https://doi.org/10.3390/rs13173522