Analysis of Temporal and Spatial Variability of Fronts on the Amery Ice Shelf Automatically Detected Using Sentinel-1 SAR Data
Abstract
:1. Introduction
2. Methods
2.1. Ice shelf Detection Using CFAR Method
2.2. Profile Analysis Based Frontal Point Extraction
3. Results and Discussion
3.1. Visual Performance and Comparison of Ice-Shelf Frontal Point Extraction
3.2. Spatio-Temporal Changes in the Ice-Shelf Frontal Line from 2015 to 2021
3.3. Ice Velocity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Porter-Smith, R.; McKinlay, J.; Fraser, A.D.; Massom, R.A. Coastal complexity of the Antarctic continent. Earth Syst. Sci. Data 2021, 13, 3103–3114. [Google Scholar] [CrossRef]
- Walker, C.C.; Becker, M.K.; Fricker, H.A. A High Resolution, Three-Dimensional View of the D-28 Calving Event from Amery Ice Shelf with ICESat-2 and Satellite Imagery. Geophys. Res. Lett. 2021, 48, e2020GL091200. [Google Scholar] [CrossRef]
- Walker, C.C.; Bassis, J.N.; Fricker, H.A.; Czerwinski, R.J. Structural and environmental controls on Antarctic ice shelf rift propagation inferred from satellite monitoring. J. Geophys. Res. Earth Surf. 2013, 118, 2354–2364. [Google Scholar] [CrossRef]
- Walker, C.C.; Bassis, J.N.; Fricker, H.A.; Czerwinski, R.J. Observations of interannual and spatial variability in rift propagation in the Amery Ice Shelf, Antarctica, 2002–2014. J. Glaciol. 2015, 61, 243–252. [Google Scholar] [CrossRef] [Green Version]
- Tong, X.; Liu, S.; Li, R.; Xie, H.; Liu, S.; Qiao, G. Multi-track extraction of two-dimensional surface velocity by the combined use of di ff erential and multiple-aperture InSAR in the Amery Ice Shelf, East Antarctic. Remote Sens. Environ. 2018, 204, 122–137. [Google Scholar] [CrossRef]
- Pittard, M.L.; Roberts, J.L.; Warner, R.C.; Galton-Fenzi, B.K.; Watson, C.S.; Coleman, R. Flow of the Amery Ice Shelf and its tributary glaciers. In Proceedings of the 18th Australasian Fluid Mechanics Conference, AFMC 2012, Launceston, Australia, 3–7 December 2012; pp. 18–21. [Google Scholar]
- Young, N.W.; Hyland, G. Velocity and strain rates derived from InSAR analysis over the Amery Ice Shelf, East Antarctica. Ann. Glaciol. 2002, 34, 228–234. [Google Scholar] [CrossRef] [Green Version]
- Köhler, A.; Nuth, C.; Kohler, J.; Berthier, E.; Weidle, C.; Schweitzer, J. A 15 year record of frontal glacier ablation rates estimated from seismic data. Geophys. Res. Lett. 2016, 43, 12155–12164. [Google Scholar] [CrossRef] [Green Version]
- Fricker, H.A.; Young, N.W.; Allison, I.; Coleman, R. Iceberg calving from the Amery Ice Shelf, East Antarctica. Ann. Glaciol. 2002, 34, 241–246. [Google Scholar] [CrossRef] [Green Version]
- Glasser, N.F.; Scambos, T.A. A structural glaciological analysis of the 2002 Larsen B ice-shelf collapse. J. Glaciol. 2008, 54, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Rignot, E.; Mouginot, J.; Scheuchl, B.; Van Den Broeke, M.; Van Wessem, M.J.; Morlighem, M. Four decades of Antarctic ice sheet mass balance from 1979–2017. Proc. Natl. Acad. Sci. USA 2019, 116, 1095–1103. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.; Greenbaum, J.S.; Lang, S.; Zhao, X.; Li, L.; Guo, J.; Sun, B. The Scientific Operations of Snow Eagle 601 in Antarctica in the Past Five Austral Seasons. Remote Sens. 2020, 12, 2994. [Google Scholar] [CrossRef]
- Kachouie, N.N.; Huybers, P.; Schwartzman, A. Localization of mountain glacier termini in Landsat multi-spectral images. Pattern Recognit. Lett. 2013, 34, 94–106. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Sam, L.; Singh, S.; Kumar, R. Automated detection and temporal monitoring of crevasses using remote sensing and their implications for glacier dynamics. Ann. Glaciol. 2016, 57, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Jeong, S.; Howat, I.M.; Bassis, J.N. Accelerated ice shelf rifting and retreat at Pine Island Glacier, West Antarctica. Geophys. Res. Lett. 2016, 43, 11720–11725. [Google Scholar] [CrossRef]
- Euillades, L.D.; Euillades, P.A.; Riveros, N.C.; Masiokas, M.H.; Ruiz, L.; Pitte, P.; Elefante, S.; Casu, F.; Balbarani, S. Detection of glaciers displacement time-series using SAR. Remote Sens. Environ. 2016, 184, 188–198. [Google Scholar] [CrossRef]
- Wesche, C.; Jansen, D.; Dierking, W. Calving Fronts of Antarctica: Mapping and Classification. Remote Sens. 2013, 5, 6305–6322. [Google Scholar] [CrossRef] [Green Version]
- Baumhoer, C.A.; Dietz, A.J.; Kneisel, C.; Kuenzer, C. Automated extraction of antarctic glacier and ice shelf fronts from Sentinel-1 imagery using deep learning. Remote Sens. 2019, 11, 2529. [Google Scholar] [CrossRef] [Green Version]
- Seale, A.; Christoffersen, P.; Mugford, R.I.; O’Leary, M. Ocean forcing of the Greenland Ice Sheet: Calving fronts and patterns of retreat identified by automatic satellite monitoring of eastern outlet glaciers. J. Geophys. Res. Earth Surf. 2011, 116, 1847. [Google Scholar] [CrossRef]
- Kumar, A.; Srivastava, A.; Yadav, J.; Mohan, R. Spatio-temporal changes and prediction of Amery ice shelf, east Antarctica: A remote sensing and statistics-based approach. J. Environ. Manag. 2020, 267, 110648. [Google Scholar] [CrossRef]
- Liu, H.; Jezek, K.C. A complete high-resolution coastline of antarctica extracted from orthorectified radarsat SAR imagery. Photogramm. Eng. Remote Sens. 2004, 70, 605–616. [Google Scholar] [CrossRef] [Green Version]
- Borstad, C.; Khazendar, A.; Scheuchl, B.; Morlighem, M.; Larour, E.; Rignot, E. A constitutive framework for predicting weakening and reduced buttressing of ice shelves based on observations of the progressive deterioration of the remnant Larsen B Ice Shelf. Geophys. Res. Lett. 2016, 43, 2027–2035. [Google Scholar] [CrossRef] [Green Version]
- Borstad, C.; McGrath, D.; Pope, A. Fracture propagation and stability of ice shelves governed by ice shelf heterogeneity. Geophys. Res. Lett. 2017, 44, 4186–4194. [Google Scholar] [CrossRef]
- Rosenau, R.; Scheinert, M.; Dietrich, R. A processing system to monitor Greenland outlet glacier velocity variations at decadal and seasonal time scales utilizing the Landsat imagery. Remote Sens. Environ. 2015, 169, 1–19. [Google Scholar] [CrossRef]
- Han, L.; Floricioiu, D.; Baessler, M.; Eineder, M. An algorithm for the detection of calving glaciers frontal position from TerraSAR-X imagery. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 6171–6174. [Google Scholar] [CrossRef]
- Ni, W.; Yan, W.; Wu, J.; Zheng, G.; Lu, Y. Statistical analysis and modeling of TerraSAR-X images for CFAR based target detection. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Melbourne, Australia, 21–26 July 2013; pp. 1983–1986. [Google Scholar] [CrossRef]
- Anastassopoulos, V.; Lampropoulos, G.A. Optimal CFAR Detection in Weibull Clutter. IEEE Trans. Aerosp. Electron. Syst. 1995, 31, 52–64. [Google Scholar] [CrossRef]
- Tao, D.; Doulgeris, A.P.; Brekke, C. A Segmentation-Based CFAR Detection Algorithm Using Truncated Statistics. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2887–2898. [Google Scholar] [CrossRef] [Green Version]
- Hou, B.; Chen, X.; Jiao, L. Multilayer CFAR detection of ship targets in very high resolution SAR images. IEEE Geosci. Remote Sens. Lett. 2015, 12, 811–815. [Google Scholar] [CrossRef]
- Lee, I.K.; Shamsoddini, A.; Li, X.; Trinder, J.C.; Li, Z. Extracting hurricane eye morphology from spaceborne SAR images using morphological analysis. ISPRS J. Photogramm. Remote Sens. 2016, 117, 115–125. [Google Scholar] [CrossRef]
- Modava, M.; Akbarizadeh, G. Coastline extraction from SAR images using spatial fuzzy clustering and the active contour method. Int. J. Remote Sens. 2017, 38, 355–370. [Google Scholar] [CrossRef]
- Perron, J.T.; Royden, L. An integral approach to bedrock river profile analysis. Earth Surf. Process. Landf. 2013, 38, 570–576. [Google Scholar] [CrossRef] [Green Version]
- Gao, G.; Liu, L.; Zhao, L.; Shi, G.; Kuang, G. An adaptive and fast CFAR algorithm based on automatic censoring for target detection in high-resolution SAR images. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1685–1697. [Google Scholar] [CrossRef]
- Di Bisceglie, M.; Galdi, C. CFAR detection of extended objects in high-resolution SAR images. IEEE Trans. Geosci. Remote Sens. 2005, 43, 833–843. [Google Scholar] [CrossRef]
- Krylov, V.A.; Moser, G.; Serpico, S.B.; Zerubia, J. On the method of logarithmic cumulants for parametric probability density function estimation. IEEE Trans. Image Process. 2013, 22, 3791–3806. [Google Scholar] [CrossRef]
- Gil, J.Y.; Kimmel, R. Efficient dilation, erosion, opening, and closing algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 1606–1617. [Google Scholar] [CrossRef] [Green Version]
- Mouginot, J.; Scheuch, B.; Rignot, E. Mapping of ice motion in antarctica using synthetic-aperture radar data. Remote Sens. 2012, 4, 2753–2767. [Google Scholar] [CrossRef] [Green Version]
- Rignot, E.; Mouginot, J.; Scheuchl, B. Ice flow of the Antarctic ice sheet. Science 2011, 333, 1427–1430. [Google Scholar] [CrossRef] [Green Version]
Date | Average Distance of Frontal Position Compared with Reference Frontal Line [m] | |||||
---|---|---|---|---|---|---|
Region 1 | Region 2 | Region 3 | ||||
Proposed | Comparison | Proposed | Comparison | Proposed | Comparison | |
2015-03-26 | 26.44 | 156.34 | 38.23 | 145.21 | 12.33 | 33.21 |
2016-03-22 | 28.32 | 143.25 | 44.21 | 165.36 | 9.24 | 32.55 |
2017-03-22 | 22.07 | 166.57 | 39.56 | 165.33 | 8.75 | 27.88 |
2018-03-15 | 26.33 | 124.32 | 45.12 | 154.06 | 13.65 | 24.35 |
2019-03-17 | 26.21 | 156.36 | 40.55 | 168.31 | 7.88 | 30.22 |
2020-03-18 | 23.21 | 137.45 | 35.66 | 144.23 | 10.44 | 25.48 |
2021-03-18 | 24.83 | 147.06 | 37.23 | 135.23 | 8.75 | 27.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, T.; Cui, X.; Zhang, Y. Analysis of Temporal and Spatial Variability of Fronts on the Amery Ice Shelf Automatically Detected Using Sentinel-1 SAR Data. Remote Sens. 2021, 13, 3528. https://doi.org/10.3390/rs13173528
Zhu T, Cui X, Zhang Y. Analysis of Temporal and Spatial Variability of Fronts on the Amery Ice Shelf Automatically Detected Using Sentinel-1 SAR Data. Remote Sensing. 2021; 13(17):3528. https://doi.org/10.3390/rs13173528
Chicago/Turabian StyleZhu, Tingting, Xiangbin Cui, and Yu Zhang. 2021. "Analysis of Temporal and Spatial Variability of Fronts on the Amery Ice Shelf Automatically Detected Using Sentinel-1 SAR Data" Remote Sensing 13, no. 17: 3528. https://doi.org/10.3390/rs13173528
APA StyleZhu, T., Cui, X., & Zhang, Y. (2021). Analysis of Temporal and Spatial Variability of Fronts on the Amery Ice Shelf Automatically Detected Using Sentinel-1 SAR Data. Remote Sensing, 13(17), 3528. https://doi.org/10.3390/rs13173528