Spatial and Temporal Variation Characteristics of Heatwaves in Recent Decades over China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Utilized and Processing
2.3. Methodology
2.3.1. Heatwave Index and Levels
2.3.2. Calculation of Seasonal HW Parameters
3. Results and Discussion
3.1. Spatial Distribution and Variations of High-Temperature Days
3.2. Variations of Heatwave Frequency
3.3. Change Trends of Key Parameters at Different Heatwave Levels
4. Discussion
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Classification | Abbreviation | Full Name |
---|---|---|
Place name | XJ | Xinjiang |
QTP | Qinghai–Tibetan Plateau | |
NW | Northwest | |
NE | Northeast | |
NC | Northern China | |
SW | Southwest | |
SC | Southern China | |
Climate variables | MAXT | maximum temperature |
SH | Specific Humidity | |
Temperature parameter | HTD | High Temperature Day |
Heatwave parameters | HW | Heatwave |
HWI | Heatwave index | |
HWO | Onset of heatwave | |
HWT | Termination of heatwave | |
HWD | Heatwave duration | |
HWF | Heatwave frequency | |
THWF | Total heatwave frequency | |
LHWF | Light heatwave frequency | |
MHWF | Moderate heatwave frequency | |
SHWF | Severe heatwave frequency | |
Program/Mission | TRMM | Tropical Rainfall Monitoring Mission |
GLDAS | Global Land Data Assimilation System | |
GEWEX-SRB | Global Energy and Water Exchanges-Surface Radiation Budget | |
MERRA | Modern-Era Retrospective analysis for Research and Applications | |
Method | TPS | Thin Plate Spline |
Organization | CMA | China Meteorological Administration |
RESDC | Resource and Environment Science and Data Center | |
TPDC | National Tibetan Plateau/Third Pole Environment Data Center | |
NMIC | National Meteorological Information Center | |
WMO | World Meteorological Organization |
References
- Perkins-Kirkpatrick, S.E.; Lewis, S.C. Increasing trends in regional heatwaves. Nat. Commun. 2020, 11, 3357. [Google Scholar] [CrossRef]
- Qin, D.; Ding, Y.; Mu, M. Climate and Environmental Change in China: 1951–2012; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Anderson, G.B.; Bell, M.L.; Peng, R.D. Methods to calculate the heat index as an exposure metric in environmental health research. Environ. Health Perspect. 2013, 121, 1111–1119. [Google Scholar] [CrossRef]
- Steadman, R.G. The assessment of sultriness. Part I: A temperature-humidity index based on human physiology and clothing science. J. Appl. Meteorol. 1979, 18, 861–873. [Google Scholar] [CrossRef] [Green Version]
- Erdenebat, E.; Sato, T. Recent increase in heat wave frequency around Mongolia: Role of atmospheric forcing and possible influence of soil moisture deficit. Atmos. Sci. Lett. 2016, 17, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Habeeb, D.; Vargo, J.; Stone, B. Rising heat wave trends in large US cities. Nat. Hazards 2015, 76, 1651–1665. [Google Scholar] [CrossRef]
- Kuglitsch, F.G. Heat wave changes in the eastern Mediterranean since 1960. Geophys. Res. Lett. 2010, 37, L04802. [Google Scholar] [CrossRef] [Green Version]
- Perkins, S.E.; Alexander, L.V.; Nairn, J.R. Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys. Res. Lett. 2012, 39, L20714. [Google Scholar] [CrossRef]
- Campbell, S.; Remenyi, T.; White, C.; Johnston, F. Heatwave and health impact research: A global review. Health Place 2018, 53, 210–218. [Google Scholar] [CrossRef]
- Chen, K.; Huang, L.; Zhou, L.; Ma, Z.; Bi, J.; Li, T. Spatial analysis of the effect of the 2010 heat wave on stroke mortality in Nanjing, China. Sci. Rep. 2015, 5, 10816. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, D.; Heaviside, C.; Vardoulakis, S.; Huntingford, C.; Masato, G.; Guillod, P.B.; Frumhoff, P.; Bowery, A.; Wallom, D.; Allen, M. Attributing human mortality during extreme heat waves to anthropogenic climate change. Environ. Res. Lett. 2016, 11, 074006. [Google Scholar] [CrossRef]
- Åström, O.D.; Forsberg, B.; Ebi, K.L.; Rocklöv, J. Attributing mortality from extreme temperatures to climate change in Stockholm, Sweden. Nat. Clim. Chang. 2013, 3, 1050–1054. [Google Scholar] [CrossRef]
- Vardoulakis, S. Comparative assessment of the effects of climate change on heat-and cold-related mortality in the United Kingdom and Australia. Environ. Health Perspect. 2014, 122, A320. [Google Scholar] [CrossRef] [Green Version]
- Black, M.T.; Karoly, D.J.; King, A.D. The contribution of anthropogenic forcing to the Adelaide and Melbourne, Australia, heat waves of January 2014. Bull. Am. Meteorol. Soc. 2015, 96, S145–S148. [Google Scholar] [CrossRef]
- Dong, B.; Sutton, R.; Shaffrey, L.; Wilcox, L. The 2015 European heat wave. Bull. Am. Meteorol. Soc. 2016, 97, S57–S62. [Google Scholar] [CrossRef]
- Wang, J.; Yan, Z.; Quan, X.-W.; Feng, J. Urban warming in the 2013 summer heat wave in eastern China. Clim. Dyn. 2017, 48, 3015–3033. [Google Scholar] [CrossRef]
- Anderson, B.; Bell, M. Heat waves in the United States: Mortality risk during heat waves and effect modification by heat wave characteristics in 43 USA communities. Environ. Health Perspect. 2010, 119, 210–218. [Google Scholar] [CrossRef] [Green Version]
- Ma, F.; Yuan, X.; Jiao, Y.; Ji, P. Unprecedented Europe heat in June–July 2019: Risk in the historical and future context. Geophys. Res. Lett. 2020, 47, e2020GL087809. [Google Scholar] [CrossRef]
- Huang, W.; Kan, H.; Kovats, S. The impact of the 2003 heat wave on mortality in Shanghai, China. Sci. Total Environ. 2010, 408, 2418–2420. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Zheng, Y.; Song, G.; Kalkstein, L.S.; Kalkstein, A.J.; Tang, X. Heat wave impacts on mortality in Shanghai, 1998 and 2003. Int. J. Biometeorol. 2007, 51, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Sun, Q.; Zhou, X.; Li, X.; Yang, M.; Yu, A.; Geng, F. Heat wave impact on mortality in Pudong New Area, China in 2013. Sci. Total Environ. 2014, 493, 789–794. [Google Scholar] [CrossRef] [PubMed]
- Peng, J. An investigation of the formation of the heat wave in Southern China in summer 2013 and the relevant abnormal subtropical high activities. Atmos. Ocean. Sci. Lett. 2014, 7, 286–290. [Google Scholar] [CrossRef]
- Ding, T.; Ke, Z. Characteristics and changes of regional wet and dry heat wave events in China during 1960–2013. Theor. Appl. Climatol. 2015, 122, 651–665. [Google Scholar] [CrossRef]
- Ye, D.-X.; Yin, J.; Chen, Z.-H.; Zheng, Y.-F.; Wu, R.-J. Spatial and temporal variations of heat waves in China from 1961 to 2010. Adv. Clim. Chang. Res. 2014, 5, 66–73. [Google Scholar] [CrossRef]
- Guo, X.; Huang, J.; Luo, Y.; Zhao, Z.; Xu, Y. Projection of heat waves over China for eight different global warming targets using 12 CMIP5 models. Theor. Appl. Climatol. 2017, 128, 507–522. [Google Scholar] [CrossRef]
- Basara, J.; Basara, H.; Illston, B.; Crawford, K. The impact of the urban heat island during an intense heat wave in Oklahoma city. Adv. Meteorol. 2010, 2010, 230365. [Google Scholar] [CrossRef] [Green Version]
- Cristo, R.D.; Mazzarella, A.; Viola, R. An analysis of heat index over Naples (Southern Italy) in the context of European heat wave of 2003. Nat. Hazards 2007, 40, 373–379. [Google Scholar] [CrossRef]
- Gaffen, D.J.; Ross, R.J. Climatology and trends of U.S. Surface humidity and temperature. J. Clim. 1999, 12, 811–828. [Google Scholar] [CrossRef]
- Morjani, Z.E.A.E.; Ebener, S.; Boos, J.; Ghaffar, E.A.; Musani, A. Modelling the spatial distribution of five natural hazards in the context of the WHO/EMRO Atlas of Disaster Risk as a step towards the reduction of the health impact related to disasters. Int. J. Health Geogr. 2007, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Patricola, C.M.; Cook, K.H. Northern African climate at the end of the twenty-first century: An integrated application of regional and global climate models. Clim. Dyn. 2010, 35, 193–212. [Google Scholar] [CrossRef] [Green Version]
- Schoen, C. A new empirical model of the temperature-humidity index. J. Appl. Meteorol. 2005, 44, 1413–1420. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, H.; Tian, H. Research on the heat wave index. Meteorol. Mon. 2011, 37, 345–351. [Google Scholar]
- Guo, H.; Bao, A.; Liu, T.; Chen, S.; Ndayisaba, F. Evaluation of PERSIANN-CDR for meteorological drought monitoring over China. Remote Sens. 2016, 8, 379. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.; Wang, Z.; Zheng, C.; Fang, J. Biodiversity in China’s mountains. Front. Ecol. Environ. 2006, 4, 347–352. [Google Scholar] [CrossRef]
- Qian, W.; Lin, X. Regional trends in recent precipitation indices in China. Meteorol. Atmos. Phys. 2005, 90, 193–207. [Google Scholar] [CrossRef]
- He, J.; Yang, K.; Tang, W.; Lu, H.; Qin, J.; Chen, Y.; Li, X. The first high-resolution meteorological forcing dataset for land process studies over China. Sci. Data 2020, 7, 25. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; He, J. China Meteorological Forcing Dataset (1979–2018); National Tibetan Plateau Data Center: Beijing, China, 2019. [Google Scholar] [CrossRef]
- Yang, K.; He, J.; Tang, W.; Qin, J.; Cheng, C.C.K. On downward shortwave and longwave radiations over high altitude regions: Observation and modeling in the Tibetan Plateau. Agric. For. Meteorol. 2010, 150, 38–46. [Google Scholar] [CrossRef]
- Murray, F.W. On the computation of saturation vapor pressure. J. Appl. Meteorol. Climatol. 1967, 6, 203–204. [Google Scholar] [CrossRef]
- Shaman, J.; Kohn, M. Absolute humidity modulates influenza survival, transmission, and seasonality. Proc. Natl. Acad. Sci. USA 2009, 106, 3243–3248. [Google Scholar] [CrossRef] [Green Version]
- Thom, E.C. The discomfort index. Weatherwise 1959, 12, 57–61. [Google Scholar] [CrossRef]
- Chen, W.; Jiang, Z.; Li, L.; Yiou, P. Simulation of regional climate change under the IPCC A2 scenario in southeast China. Clim. Dyn. 2011, 36, 491–507. [Google Scholar] [CrossRef]
- Zhou, Y.; Ren, G. Change in extreme temperature event frequency over mainland China, 1961–2008. Clim. Res. 2011, 50, 125–139. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Jiang, Z.; Li, J.; Zhong, S.; Wang, L. Possible association of the western Tibetan Plateau snow cover with the decadal to interdecadal variations of northern China heatwave frequency. Clim. Dyn. 2012, 39, 2393–2402. [Google Scholar] [CrossRef]
- Sun, J.; Wang, H.; Wei, A.Y. Decadal variability of the extreme hot event in China and its association with atmospheric circulations. Clim. Environ. Res. 2011, 16, 199–208. [Google Scholar]
- Collins, M.; An, S.-I.; Cai, W.; Ganachaud, A.; Guilyardi, E.; Jin, F.-F.; Jochum, M.; Lengaigne, M.; Power, S.; Timmermann, A.; et al. The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci. 2010, 3, 391–397. [Google Scholar] [CrossRef]
- Luo, M.; Lau, N.-C. Amplifying effect of ENSO on heat waves in China. Clim. Dyn. 2019, 52, 3277–3289. [Google Scholar] [CrossRef]
- Russo, S.; Sillmann, J.; Sterl, A. Humid heat waves at different warming levels. Sci. Rep. 2017, 7, 7477. [Google Scholar] [CrossRef]
- Russo, S.; Dosio, A.; Graversen, R.G.; Sillmann, J.; Carrao, H.; Dunbar, M.B.; Singleton, A.; Montagna, P.; Barbola, P.; Vogt, J.V. Magnitude of extreme heat waves in present climate and their projection in a warming world. J. Geophys. Res. Atmos. 2014, 119, 12,500–12,512. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Chan, T.O.; Luo, M. Different changes in dry and humid heat waves over China. Int. J. Climatol. 2021, 41, 1369–1382. [Google Scholar] [CrossRef]
- Matthews, T. Humid heat and climate change. Prog. Phys. Geogr. Earth Environ. 2018, 42, 391–405. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.; Eltahir, E.A.B. North China Plain threatened by deadly heatwaves due to climate change and irrigation. Nat. Commun. 2018, 9, 2894. [Google Scholar] [CrossRef] [Green Version]
- Yuan, W.; Cai, W.; Chen, Y.; Liu, S.; Dong, W.; Zhang, H.; Yu, G.; Chen, Z.; He, H.; Guo, W.; et al. Severe summer heatwave and drought strongly reduced carbon uptake in Southern China. Sci. Rep. 2016, 6, 18813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, J.; Hu, Z. Spatial and temporal features and trend of different level heat waves over China. Adv. Earth Sci. 2017, 32, 546–559. [Google Scholar]
- Yang, Y.; Jin, C.; Ali, S. Projection of heat wave in China under global warming targets of 1.5 °C and 2 °C by the ISIMIP models. Atmos. Res. 2020, 244, 105057. [Google Scholar] [CrossRef]
- Dosio, A.; Mentaschi, L.; Fischer, E.M.; Wyser, K. Extreme heat waves under 1.5 °C and 2 °C global warming. Environ. Res. Lett. 2018, 13, 054006. [Google Scholar] [CrossRef] [Green Version]
- Xia, Y.; Li, Y.; Guan, D.; Tinoco, D.M.; Xia, J.; Yan, Z.; Yang, J.; Liu, Q.; Huo, H. Assessment of the economic impacts of heat waves: A case study of Nanjing, China. J. Clean. Prod. 2018, 171, 811–819. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Wen, Y.; Duan, Y.; Yan, S.; Liao, Y.; Pan, H.; Zhu, J.; Yin, P.; Cheng, J.; Jiang, H. The impact of extreme heat and heat waves on emergency ambulance dispatches due to external cause in Shenzhen, China. Environ. Pollut. 2020, 261, 114156. [Google Scholar] [CrossRef]
- Varotsos, C.A.; Mazei, Y.A. Future Temperature Extremes Will Be More Harmful: A New Critical Factor for Improved Forecasts. Int. J. Environ. Res. Public Health 2019, 16, 4015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Subregion | TMAX Average | RH Average | Predominant Climate |
---|---|---|---|
(I) XJ | 26.4 °C | 0.29 | Temperate continental climate |
(II) QTP | 12.8 °C | 0.58 | Subfrigid climate |
(III) NW | 24.1 °C | 0.39 | Arid and semiarid climate |
(IV) NE | 23.8 °C | 0.48 | Humid and semihumid climate |
(V) NC | 28.0 °C | 0.52 | Semihumid climate |
(VI) SW | 25.2 °C | 0.65 | Humid climate |
(VII) SC | 29.3 °C | 0.61 | Humid climate |
Level | Classification Criteria |
---|---|
Light | 2.8 ≤ HWI < 6.5 |
Moderate | 6.5 ≤ HWI < 10.5 |
Severe | HWI ≥ 10.5 |
Region | THWF | LHWF | MHWF | SHWF | ||||
---|---|---|---|---|---|---|---|---|
PCR * | Sig. * | PCR | Sig. | PCR | Sig. | PCR | Sig. | |
China | 66.7 | 37.3 | 64.8 | 32.1 | 57.1 | 21.7 | 42.4 | 14.5 |
XJ | 89.7 | 57.3 | 80.5 | 37.7 | 81.8 | 46.1 | 80.3 | 55.2 |
QTP | 4.6 | 0.1 | 4.6 | 0.1 | 1.4 | 0 | 0.4 | 0 |
NW | 91.8 | 44.7 | 91.4 | 35.6 | 74.5 | 19.7 | 44.6 | 8.3 |
NE | 80.4 | 9.4 | 77.6 | 10.1 | 65.5 | 6.9 | 28.2 | 2.7 |
NC | 98.0 | 63.1 | 97.9 | 60.3 | 91.9 | 24.5 | 72.4 | 7.3 |
SW | 64.4 | 36.0 | 63.2 | 34.6 | 48.0 | 21.3 | 35.2 | 11.4 |
SC | 96.4 | 83.2 | 96.4 | 80.5 | 89.6 | 46.5 | 73.4 | 17.8 |
Region | Light | Moderate | Severe | ||||||
---|---|---|---|---|---|---|---|---|---|
Start | End | Duration | Start | End | Duration | Start | End | Duration | |
XJ | 6/30 | 8/9 | 40 | 7/13 | 8/2 | 20 | 7/20 | 7/31 | 11 |
QTP | 8/4 | 8/6 | 2 | 8/5 | 8/8 | 3 | 8/13 | 8/19 | 6 |
NW | 7/6 | 7/19 | 13 | 7/11 | 7/16 | 5 | 7/16 | 7/19 | 3 |
NE | 6/28 | 7/6 | 9 | 6/24 | 6/28 | 5 | 6/18 | 6/23 | 5 |
NC | 6/19 | 7/19 | 30 | 6/28 | 7/8 | 10 | 7/4 | 7/6 | 2 |
SW | 7/16 | 8/3 | 18 | 8/1 | 8/12 | 10 | 8/9 | 8/17 | 7 |
SC | 7/6 | 8/10 | 36 | 7/20 | 7/31 | 12 | 7/29 | 8/5 | 6 |
Region | Light | Moderate | Severe | ||||||
---|---|---|---|---|---|---|---|---|---|
Onset | Termination | Duration | Onset | Termination | Duration | Onset | Termination | Duration | |
XJ | 87.7 | 92.6 | 97.0 | 77.4 | 78.9 | 88.7 | 56.7 | 95.5 | 87.6 |
QTP | 27.4 | 69.4 | 23.8 | 10.0 | 90.0 | 50.0 | 31.6 | 67.8 | 44.8 |
NW | 68.9 | 62.9 | 77.6 | 63.8 | 56.1 | 70.4 | 55.6 | 63.3 | 71.7 |
NE | 69.1 | 49.3 | 62.0 | 77.0 | 34.8 | 53.9 | 78.1 | 46.5 | 46.4 |
NC | 65.3 | 87.4 | 89.3 | 31.9 | 82.8 | 74.3 | 31.6 | 67.8 | 44.8 |
SW | 60.4 | 89.5 | 88.4 | 68.2 | 75.4 | 84.8 | 68.2 | 45.1 | 79.0 |
SC | 85.8 | 95.4 | 95.9 | 50.3 | 82.5 | 81.6 | 38.8 | 67.9 | 70.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Ren, Y.; Tao, H.; Shalamzari, M.J. Spatial and Temporal Variation Characteristics of Heatwaves in Recent Decades over China. Remote Sens. 2021, 13, 3824. https://doi.org/10.3390/rs13193824
Liu J, Ren Y, Tao H, Shalamzari MJ. Spatial and Temporal Variation Characteristics of Heatwaves in Recent Decades over China. Remote Sensing. 2021; 13(19):3824. https://doi.org/10.3390/rs13193824
Chicago/Turabian StyleLiu, Jinping, Yanqun Ren, Hui Tao, and Masoud Jafari Shalamzari. 2021. "Spatial and Temporal Variation Characteristics of Heatwaves in Recent Decades over China" Remote Sensing 13, no. 19: 3824. https://doi.org/10.3390/rs13193824
APA StyleLiu, J., Ren, Y., Tao, H., & Shalamzari, M. J. (2021). Spatial and Temporal Variation Characteristics of Heatwaves in Recent Decades over China. Remote Sensing, 13(19), 3824. https://doi.org/10.3390/rs13193824