Monitoring Coastline Changes of the Malay Islands Based on Google Earth Engine and Dense Time-Series Remote Sensing Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Platform
2.2. Coastline Extraction Method
2.2.1. Method Overview
2.2.2. Specific Method
- Supplement the missing smaller islands.
- Modify the inappropriate shoreline caused by the river.
- Change the wrong land extraction inside the river.
- Delete the extra incorrect islands.
- Correct the incorrectly drawn islands connected to the land.
- Delete redundant details inside rivers.
- Handle marine farmed crops properly.
- Distinguish the border of inland rivers formed by seawater inflow reasonably.
- Supplement the coastline that has not been extracted for some reason.
- Correct the sea area divided by narrow estuaries.
- Draw simple and practical shorelines for complex coastal features reasonably.
2.3. Study Area
2.4. Missing Data Supplement
3. Verification and Application
3.1. Consistency Comparison between Coastline Extraction Results and Other Data Products
3.2. Dynamic Monitoring of the Malay Islands Coastline
3.2.1. Islands Data Supplement
3.2.2. Expansion and Retreat of Coastlines
3.2.3. Analysis of Typical Change Areas
- Changes driven by natural factors
- 2.
- Changes driven by human factors
4. Conclusions and Discussions
- The phenomena of land expansion and land contraction coexisted, but the overall land area followed a shrinking trend. Among the changes, the changes in Indonesia were the most significant.
- The phenomenon of reclamation was serious. Singapore, Dolac, and Guava all showed signs of large-scale reclamation.
- Some small atolls or reef islands have been undergoing geographic and morphological changes, which should not be ignored.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shen, J.; Zhai, J.; Guo, H.J.H.S.C. Study on coastline extraction technology. Hydrogr. Surv. Charting 2009, 29, 74–77. [Google Scholar]
- Bird, E.C. Coastal Geomorphology: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Gens, R. Remote sensing of coastlines: Detection, extraction and monitoring. Int. J. Remote. Sens. 2010, 31, 1819–1836. [Google Scholar] [CrossRef]
- Muhammad, Y.; Sheng, H.; Huang, B.; Ur, R.S. Coastline extraction and land use change analysis using remote sensing (RS) and geographic information system (GIS) technology—A review of the literature. Rev. Environ. Health 2020, 35. [Google Scholar] [CrossRef]
- Splinter, K.D.; Harley, M.D.; Turner, I.L. Remote sensing is changing our view of the coast: Insights from 40 years of monitoring at Narrabeen-Collaroy, Australia. Remote. Sens. 2018, 10, 1744. [Google Scholar] [CrossRef] [Green Version]
- Alesheikh, A.A.; Ghorbanali, A.; Nouri, N. Coastline change detection using remote sensing. Int. J. Environ. Sci. Tech. 2007, 4, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Maglione, P.; Parente, C.; Vallario, A. Coastline extraction using high resolution WorldView-2 satellite imagery. Eur. J. Remote. Sens. 2014, 47, 685–699. [Google Scholar] [CrossRef]
- Paravolidakis, V.; Ragia, L.; Moirogiorgou, K.; Zervakis, M.E. Automatic coastline extraction using edge detection and optimization procedures. Geosciences 2018, 8, 407. [Google Scholar] [CrossRef] [Green Version]
- Sayre, R.; Noble, S.; Hamann, S.; Smith, R.; Wright, D.; Breyer, S.; Butler, K.; Van Graafeiland, K.; Frye, C.; Karagulle, D.J.; et al. A new 30 meter resolution global shoreline vector and associated global islands database for the development of standardized ecological coastal units. J. Oper. Oceanogr. 2019, 12, S47–S56. [Google Scholar] [CrossRef] [Green Version]
- Luijendijk, A.; Hagenaars, G.; Ranasinghe, R.; Baart, F.; Donchyts, G.; Aarninkhof, S. The state of the world’s beaches. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hou, X. Characteristics of coastline changes on southeast Asia Islands from 2000 to 2015. Remote. Sens. 2020, 12, 519. [Google Scholar] [CrossRef] [Green Version]
- Brockmann, C.W.; Dippner, J.W. Tidal correction of hydrographic measurements. Ocean Dyn. 1987, 40, 241–260. [Google Scholar] [CrossRef]
- Chen, W.-W.; Chang, H.-K. Estimation of shoreline position and change from satellite images considering tidal variation. Estuar. Coast. Shelf Sci. 2009, 84, 54–60. [Google Scholar] [CrossRef]
- Pan, H.; Jia, Y.; Zhao, D.; Xiu, T.; Duan, F. A Tidal Flat Wetlands Delineation and Classification Method for High-Resolution Imagery. ISPRS Int. J. Geo-Inf. 2021, 10, 451. [Google Scholar] [CrossRef]
- Savage, J.C.; Plafker, G. Tide gage measurements of uplift along the south coast of Alaska. J. Geophys. Res. B Solid Earth 1991, 96, 4325–4335. [Google Scholar] [CrossRef]
- Adebisi, N.; Balogun, A.-L.; Min, T.H.; Tella, A. Advances in estimating Sea Level Rise: A review of tide gauge, satellite altimetry and spatial data science approaches. Ocean. Coast. Manag. 2021, 208, 105632. [Google Scholar] [CrossRef]
- Stockdonf, H.F.; Sallenger Jr, A.H.; List, J.H.; Holman, R.A. Estimation of shoreline position and change using airborne topographic lidar data. J. Coast. Res. 2002, 18, 502–513. [Google Scholar]
- Allan, J.C.; Komar, P.D.; Priest, G.R. Shoreline variability on the high-energy Oregon coast and its usefulness in erosion-hazard assessments. J. Coast. Res. 2003, 38, 83–105. [Google Scholar]
- Liu, H.; Sherman, D.; Gu, S. Automated extraction of shorelines from airborne light detection and ranging data and accuracy assessment based on Monte Carlo simulation. J. Coast. Res. 2007, 23, 1359–1369. [Google Scholar] [CrossRef]
- Xu, N.J.A. Detecting coastline change with all available landsat data over 1986–2015: A case study for the state of Texas, USA. Atmosphere 2018, 9, 107. [Google Scholar] [CrossRef] [Green Version]
- Pelich, R.; Chini, M.; Hostache, R.; Matgen, P.; López-Martínez, C. Coastline detection based on Sentinel-1 time series for ship-and flood-monitoring applications. IEEE Geosci. Remote. Sens. Lett. 2020, 1–5. [Google Scholar] [CrossRef]
- Baumhoer, C.A.; Dietz, A.J.; Kneisel, C.; Kuenzer, C. Automated extraction of antarctic glacier and ice shelf fronts from sentinel-1 imagery using deep learning. Remote. Sens. 2019, 11, 2529. [Google Scholar] [CrossRef] [Green Version]
- Obu, J.; Lantuit, H.; Fritz, M.; Pollard, W.H.; Sachs, T.; Günther, F.J.P.R. Relation between planimetric and volumetric measurements of permafrost coast erosion: A case study from Herschel Island, western Canadian Arctic. Polar Res. 2016, 35, 30313. [Google Scholar] [CrossRef] [Green Version]
- Chalabi, A.; Mohd-Lokman, H.; Mohd-Suffian, I.; Karamali, K.; Karthigeyan, V.; Masita, M. Monitoring shoreline change using Ikonos image and aerial photographs: A case study of Kuala Terengganu area, Malaysia. In Proceedings of the ISPRS Commission VII mid-term symposium “Remote sensing: From pixels to processes”, Enschede, The Netherlands, 8–11 May 2006; pp. 8–11. [Google Scholar]
- Grizonnet, M.; Fontannaz, D.; Nasser, G.; Mangin, A. Study of coastal monitoring indicators from pleiades-like data: Detection of boats mooring areas and coastline monitoring. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 7106–7109. [Google Scholar]
- White, K.; El Asmar, H.M.J.G. Monitoring changing position of coastlines using Thematic Mapper imagery, an example from the Nile Delta. Geomorphology 1999, 29, 93–105. [Google Scholar] [CrossRef]
- Apostolopoulos, D.; Nikolakopoulos, K. A review and meta-analysis of remote sensing data, GIS methods, materials and indices used for monitoring the coastline evolution over the last twenty years. Eur. J. Remote. Sens. 2021, 54, 240–265. [Google Scholar] [CrossRef]
- Li, M.; Zheng, X.C. A second modified normalized difference water index (SMNDWI) in the case of extracting the shoreline. Mar. Sci. Bull. 2016, 18, 15–27. [Google Scholar]
- Guo, Y.; Lu, X.; Shao, F. Remote Sensing Information Abstraction of Lianyungang Coastal Line Based on Wavelet Transformation. J. Huaihai Inst. Technol. 2009, 18, 86–89. [Google Scholar]
- Wang, X.; Liu, Y.; Ling, F.; Liu, Y.; Fang, F. Spatio-temporal change detection of Ningbo coastline using Landsat time-series images during 1976–2015. ISPRS Int. J. Geo-Inf. 2017, 6, 68. [Google Scholar] [CrossRef] [Green Version]
- Elnabwy, M.T.; Elbeltagi, E.; El Banna, M.M.; Elshikh, M.M.; Motawa, I.; Kaloop, M.R. An approach based on Landsat images for shoreline monitoring to support integrated coastal management—A case study, Ezbet Elborg, Nile Delta, Egypt. ISPRS Int. J. Geo-Inf. 2020, 9, 199. [Google Scholar] [CrossRef] [Green Version]
- Baiocchi, V.; Brigante, R.; Dominici, D.; Radicioni, F. Coastline detection using high resolution multispectral satellite images. In Proceedings of the FIG working week, Rome, Italy, 6–10 May 2012. [Google Scholar]
- Amani, M.; Ghorbanian, A.; Ahmadi, S.A.; Kakooei, M.; Moghimi, A.; Mirmazloumi, S.M.; Moghaddam, S.H.A.; Mahdavi, S.; Ghahremanloo, M.; Parsian, S.; et al. Google earth engine cloud computing platform for remote sensing big data applications: A comprehensive review. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2020, 13, 5326–5350. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote. Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Aktaş, Ü.R.; Can, G.; Vural, F.T.Y. Edge-aware segmentation in satellite imagery: A case study of shoreline detection. In Proceedings of the 7th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS), Tsukuba Science City, Japan, 11 November 2012; pp. 1–4. [Google Scholar]
- Dong, Y.; Zhang, J.; Xu, F. Auto localization for coastal satellite imagery based on curve matching. In Proceedings of the 2014 International Conference on Multisensor Fusion and Information Integration for Intelligent Systems (MFI), Beijing, China, 28–29 September 2014; pp. 1–6. [Google Scholar]
- Guo, Q.; Pu, R.; Zhang, B.; Gao, L. A comparative study of coastline changes at Tampa Bay and Xiangshan Harbor during the last 30 years. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 5185–5188. [Google Scholar]
- De Moivre, A. The Doctrine of Chances: A Method of Calculating the Probabilities of Events in Play; Routledge: London, UK, 2020. [Google Scholar]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Aedla, R.; Dwarakish, G.; Reddy, D.V. Automatic shoreline detection and change detection analysis of netravati-gurpurrivermouth using histogram equalization and adaptive thresholding techniques. Aquat. Procedia 2015, 4, 563–570. [Google Scholar] [CrossRef]
- Liu, H.; Jezek, K.C. Automated extraction of coastline from satellite imagery by integrating Canny edge detection and locally adaptive thresholding methods. Int. J. Remote. Sens. 2004, 25, 937–958. [Google Scholar] [CrossRef]
- Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 6, 679–698. [Google Scholar] [CrossRef]
- Kumar, M.; Saxena, R. Algorithm and technique on various edge detection: A survey. Signal Image Process. 2013, 4, 65. [Google Scholar]
- Maini, R.; Aggarwal, H. Study and comparison of various image edge detection techniques. Int. J. Image Process. 2009, 3, 1–11. [Google Scholar]
- Jenks, G.F.; Caspall, F.C. Error on choroplethic maps: Definition, measurement, reduction. Ann. Assoc. Am. Geogr. 1971, 61, 217–244. [Google Scholar] [CrossRef]
- Liu, C.; Shi, R.; Zhang, Y.H. Global multiple scale shorelines dataset based on Google Earth images (2015)[DB/OL]. Glob. Chang. Res. Data Publ. Repos. 2019. [Google Scholar] [CrossRef]
- Small, C.; Nicholls, R.J. A global analysis of human settlement in coastal zones. J. Coast. Res. 2003, 19, 584–599. [Google Scholar]
- Frederikse, T.; Landerer, F.; Caron, L.; Adhikari, S.; Parkes, D.; Humphrey, V.; Dangendorf, S.; Hogarth, P.; Zanna, L.; Cheng, L.; et al. The causes of sea-level rise since 1900. Nature 2020, 584, 393–397. [Google Scholar] [CrossRef]
- Brunel, C.; Sabatier, F. Potential influence of sea-level rise in controlling shoreline position on the French Mediterranean Coast. Geomorphology 2009, 107, 47–57. [Google Scholar] [CrossRef]
- Bamunawala, J.; Ranasinghe, R.; Dastgheib, A.; Nicholls, R.J.; Murray, A.B.; Barnard, P.L.; Sirisena, T.; Duong, T.M.; Hulscher, S.J.; Van Der Spek, A.J.S.r. Twenty-first-century projections of shoreline change along inlet-interrupted coastlines. Sci. Rep. 2021, 11, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Vousdoukas, M.I.; Ranasinghe, R.; Mentaschi, L.; Plomaritis, T.A.; Athanasiou, P.; Luijendijk, A.; Feyen, L.J.N.c.c. Sandy coastlines under threat of erosion. Nat. Clim. Chang. 2020, 10, 260–263. [Google Scholar] [CrossRef]
- Vasconcelos, M.; Biai, J.M.; Araujo, A.; Diniz, M.A. Land cover change in two protected areas of Guinea-Bissau (1956-1998). Appl. Geogr. 2002, 22, 139–156. [Google Scholar] [CrossRef]
- White, A.T.; Ross, M.; Flores, M. Benefits and costs of coral reef and wetland management, Olango Island, Philippines. In Collected Essays on the Economics of Coral Reefs; Cesar, H.S.J., Ed.; CORDIO, Kalmar University: Kalmar, Sweden, 2000; pp. 215–227. [Google Scholar]
- Syifa, M.; Kadavi, P.R.; Lee, C.-W.J.S. An artificial intelligence application for post-earthquake damage mapping in Palu, central Sulawesi, Indonesia. Sensors 2019, 19, 542. [Google Scholar] [CrossRef] [Green Version]
- Bulmer, S. Settlement and economy in prehistoric Papua New Guinea: A review of the archeological evidence. J. De La Société Des Océanistes 1975, 31, 7–75. [Google Scholar] [CrossRef]
- Wang, W.; Liu, H.; Li, Y.; Su, J. Development and management of land reclamation in China. Ocean. Coast. Manag. 2014, 102, 415–425. [Google Scholar] [CrossRef]
- Han, G.; Xing, Q.; Yu, J.; Luo, Y.; Li, D.; Yang, L.; Wang, G.; Mao, P.; Xie, B.; Mikle, N. Agricultural reclamation effects on ecosystem CO2 exchange of a coastal wetland in the Yellow River Delta. Agric. Ecosyst. Environ. 2014, 196, 187–198. [Google Scholar] [CrossRef]
- Glaser, R.; Haberzettl, P.; Walsh, R.P.D. Land reclamation in Singapore, Hong Kong and Macau. GeoJournal 1991, 24, 365–373. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, Y.; Yang, X.; Jin, H.; Wang, Z.; Liu, Y.; Liu, B.; Zhang, J.; Liu, X.; Gao, K.; Meng, D. Monitoring Coastline Changes of the Malay Islands Based on Google Earth Engine and Dense Time-Series Remote Sensing Images. Remote Sens. 2021, 13, 3842. https://doi.org/10.3390/rs13193842
Ding Y, Yang X, Jin H, Wang Z, Liu Y, Liu B, Zhang J, Liu X, Gao K, Meng D. Monitoring Coastline Changes of the Malay Islands Based on Google Earth Engine and Dense Time-Series Remote Sensing Images. Remote Sensing. 2021; 13(19):3842. https://doi.org/10.3390/rs13193842
Chicago/Turabian StyleDing, Yaxin, Xiaomei Yang, Hailiang Jin, Zhihua Wang, Yueming Liu, Bin Liu, Junyao Zhang, Xiaoliang Liu, Ku Gao, and Dan Meng. 2021. "Monitoring Coastline Changes of the Malay Islands Based on Google Earth Engine and Dense Time-Series Remote Sensing Images" Remote Sensing 13, no. 19: 3842. https://doi.org/10.3390/rs13193842
APA StyleDing, Y., Yang, X., Jin, H., Wang, Z., Liu, Y., Liu, B., Zhang, J., Liu, X., Gao, K., & Meng, D. (2021). Monitoring Coastline Changes of the Malay Islands Based on Google Earth Engine and Dense Time-Series Remote Sensing Images. Remote Sensing, 13(19), 3842. https://doi.org/10.3390/rs13193842