A Technical Review of Planet Smallsat Data: Practical Considerations for Processing and Using PlanetScope Imagery
Abstract
:1. Introduction
2. Review of the PlanetScope (PS) Sensors
3. Radiometric and Geometric Calibration and Corrections
3.1. Geometric Corrections
3.2. Radiometric Calibration and Corrections
4. Summary and Conclusions
- (1)
- The geometric and radiometric quality of PS images does not match quality the remote sensing community has come to expect from ‘analysis ready’ datasets that can immediately be integrated into analytical processing pipelines. Knowing the geometric and radiometric quality of each image based on specific sensor and processing level is a first step to determine its fitness for application. Additional corrections are often needed beyond the baseline processing completed by Planet. While Planet offers services for additional processing and can generate products that may better meet user expectations, access to these services depends on the licensing agreement.
- (2)
- The user community has proven resourceful in repurposing existing geometric and radiometric correction techniques as well as developing innovative techniques specifically for PS products. As access to PS datasets increases and the user community grows, it is anticipated that the codes, algorithms, and other software resources needed to implement these techniques and adjustment the imagery will continue to improve and be made openly available.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sens. Environ. 2012, 122, 2–10. [Google Scholar] [CrossRef]
- Zhu, Z.; Wulder, M.A.; Roy, D.P.; Woodcock, C.E.; Hansen, M.C.; Radeloff, V.C.; Healey, S.P.; Schaaf, C.; Hostert, P.; Strobl, P.; et al. Benefits of the free and open Landsat data policy. Remote Sens. Environ. 2019, 224, 382–385. [Google Scholar] [CrossRef]
- Davis, L.A.; Filip, L. How Long Does It Take to Develop and Launch Government Satellite Systems? International Cost Estimating and Analysis Association. AEROSPACE REPORT; AEROSPACE: El Segundo, CA, USA, 2015. [Google Scholar]
- Crusan, J.; Galica, C. NASA’s CubeSat Launch Initiative: Enabling broad access to space. Acta Astronaut. 2019, 157, 51–60. [Google Scholar] [CrossRef]
- Nag, S.; Dabney, P.; Ravindra, V.; Anderson, C. Planning a Reference Constellation for Radiometric Cross-Calibration of Commercial Earth Observing Sensors. arXiv 2020, arXiv:2010.09946. [Google Scholar]
- Csillik, O.; Asner, G.P. Near-real time aboveground carbon emissions in Peru. PLoS ONE 2020, 15, e0241418. [Google Scholar] [CrossRef]
- Houborg, R.; McCabe, M.F. A Cubesat enabled Spatio-Temporal Enhancement Method (CESTEM) utilizing Planet, Landsat and MODIS data. Remote Sens. Environ. 2018, 209, 211–226. [Google Scholar] [CrossRef]
- NASA. Earth Science Division Commercial SmallSat Data Acquisition Program Pilot Evaluation Report; NASA: Washington, DC, USA, 2020.
- Wilson, N.; Greenberg, J.; Jumpasut, A.; Collison, A.; Weichelt, H. Absolute Radiometric Calibration of Planet Dove Satellites, Flocks 2p & 2e; Planet Labs: San Francisco, CA, USA, 2017; 2p. [Google Scholar]
- Huang, H.; Roy, D.P. Characterization of Planetscope-0 Planetscope-1 surface reflectance and normalized difference vegetation index continuity. Egypt. J. Remote Sens. Space Sci. 2021, 3, 100014. [Google Scholar] [CrossRef]
- Planet Planet Imagery Product Specification: PlanetScope and RapidEye; Planet Labs, Inc.: San Francisco, CA, USA, 2016.
- Kääb, A.; Altena, B.; Mascaro, J. River-ice and water velocities using the Planet optical cubesat constellation. Hydrol. Earth Syst. Sci. 2019, 23, 4233–4247. [Google Scholar] [CrossRef] [Green Version]
- Planet Planet Imagery Product Specifications; Planet Labs, Inc.: San Francisco, CA, USA, 2021.
- Planet Understanding PlanetScope Instruments. Available online: https://developers.planet.com/docs/apis/data/sensors/ (accessed on 27 April 2021).
- Pritchett, C.; Smith, N.; Jumpasut, A.; Fernandez-Saldivar, J.; Zuleta, I. The Spectral Response of Planet Doves: Pre-launch Method and Results 2020. Available online: https://digitalcommons.usu.edu/calcon/CALCON2020/all2020content/35/ (accessed on 1 August 2021).
- Planet PlanetScope Product Specifications; Planet Labs, Inc.: San Francisco, CA, USA, 2021.
- Planet Planet Imagery Product Specifications—June 2020; Planet Labs, Inc.: San Francisco, CA, USA, 2020.
- Baddock, M.C.; Bryant, R.G.; Acosta, M.D.; Gill, T.E. Understanding dust sources through remote sensing: Making a case for CubeSats. J. Arid. Environ. 2021, 184, 104335. [Google Scholar] [CrossRef]
- Houborg, R.; McCabe, M.F. High-resolution NDVI from Planet’s constellation of earth observing nano-satellites: A new data source for precision agriculture. Remote Sens. 2016, 8, 768. [Google Scholar] [CrossRef] [Green Version]
- Wicaksono, P.; Lazuardi, W. Assessment of PlanetScope images for benthic habitat and seagrass species mapping in a complex optically shallow water environment. Int. J. Remote Sens. 2018, 39, 5739–5765. [Google Scholar] [CrossRef]
- John, A.; Ong, J.; Theobald, E.J.; Olden, J.D.; Tan, A.; HilleRisLambers, J. Detecting Montane Flowering Phenology with CubeSat Imagery. Remote Sens. 2020, 12, 2894. [Google Scholar] [CrossRef]
- Mudereri, B.T.; Dube, T.; Adel-Rahman, E.M.; Niassy, S.; Kimathi, E.; Khan, Z.; Landmann, T. A comparative analysis of PlanetScope and Sentinel-2 space-borne sensors in mapping Striga weed using Guided Regularised Random Forest classification ensemble. In Proceedings of the The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W13, 2019 ISPRS Geospatial Week 2019, Enschede, The Netherlands, 10–14 June 2019; Volume 42. [Google Scholar]
- Cannistra, A.F.; Shean, D.E.; Cristea, N.C. High-resolution CubeSat imagery and machine learning for detailed snow-covered area. Remote Sens. Environ. 2021, 258, 112399. [Google Scholar] [CrossRef]
- Leach, N.; Coops, N.C.; Obrknezev, N. Normalization method for multi-sensor high spatial and temporal resolution satellite imagery with radiometric inconsistencies. Comput. Electron. Agric. 2019, 164, 104893. [Google Scholar] [CrossRef]
- Scheffler, D.; Hollstein, A.; Diedrich, H.; Segl, K.; Hostert, P. AROSICS: An Automated and Robust Open-Source Image Co-Registration Software for Multi-Sensor Satellite Data. Remote Sens. 2017, 9, 676. [Google Scholar] [CrossRef] [Green Version]
- Ghuffar, S. DEM Generation from Multi Satellite PlanetScope Imagery. Remote Sens. 2018, 10, 1462. [Google Scholar] [CrossRef] [Green Version]
- Aati, S.; Avouac, J.-P. Optimization of Optical Image Geometric Modeling, Application to Topography Extraction and Topographic Change Measurements Using PlanetScope and SkySat Imagery. Remote Sens. 2020, 12, 3418. [Google Scholar] [CrossRef]
- Chavez, P.S. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sens. Environ. 1988, 24, 459–479. [Google Scholar] [CrossRef]
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective; Prentice Hall Inc.: Hoboken, NJ, USA, 2016; Volume 4. [Google Scholar]
- Csillik, O.; Kumar, P.; Mascaro, J.; O’Shea, T.; Asner, G.P. Monitoring tropical forest carbon stocks and emissions using Planet satellite data. Sci. Rep. 2019, 9, 17831. [Google Scholar] [CrossRef] [Green Version]
- Csillik, O.; Kumar, P.; Asner, G.P. Challenges in Estimating Tropical Forest Canopy Height from Planet Dove Imagery. Remote Sens. 2020, 12, 1160. [Google Scholar] [CrossRef] [Green Version]
- Csillik, O.; Asner, G.P. Aboveground carbon emissions from gold mining in the Peruvian Amazon. Environ. Res. Lett. 2020, 15, 014006. [Google Scholar] [CrossRef]
- Kimm, H.; Guan, K.; Jiang, C.; Peng, B.; Gentry, L.F.; Wilkin, S.C.; Wang, S.; Cai, Y.; Bernacchi, C.J.; Peng, J.; et al. Deriving high-spatiotemporal-resolution leaf area index for agroecosystems in the U.S. Corn Belt using Planet Labs CubeSat and STAIR fusion data. Remote Sens. Environ. 2020, 239, 111615. [Google Scholar] [CrossRef]
- Xu, Y.; Vaughn, N.R.; Knapp, D.E.; Martin, R.E.; Balzotti, C.; Li, J.; Foo, S.A.; Asner, G.P. Coral Bleaching Detection in the Hawaiian Islands Using Spatio-Temporal Standardized Bottom Reflectance and Planet Dove Satellites. Remote Sens. 2020, 12, 3219. [Google Scholar] [CrossRef]
- Canty, M.J.; Nielsen, A.A.; Schmidt, M. Automatic radiometric normalization of multitemporal satellite imagery. Remote Sens. Environ. 2004, 91, 441–451. [Google Scholar] [CrossRef] [Green Version]
- Aragon, B.; Houborg, R.; Tu, K.; Fisher, J.B.; McCabe, M. CubeSats Enable High Spatiotemporal Retrievals of Crop-Water Use for Precision Agriculture. Remote Sens. 2018, 10, 1867. [Google Scholar] [CrossRef] [Green Version]
- Houborg, R.; McCabe, M.F. Daily Retrieval of NDVI and LAI at 3 m Resolution via the Fusion of CubeSat, Landsat, and MODIS Data. Remote Sens. 2018, 10, 890. [Google Scholar] [CrossRef] [Green Version]
- Sadeh, Y.; Zhu, X.; Dunkerley, D.; Walker, J.P.; Zhang, Y.; Rozenstein, O.; Manivasagam, V.S.; Chenu, K. Fusion of Sentinel-2 and PlanetScope time-series data into daily 3 m surface reflectance and wheat LAI monitoring. Int. J. Appl. Earth Obs. Geoinf. 2021, 96, 102260. [Google Scholar] [CrossRef]
- Li, W.; Jiang, J.; Guo, T.; Zhou, M.; Tang, Y.; Wang, Y.; Zhang, Y.; Cheng, T.; Zhu, Y.; Cao, W.; et al. Generating Red-Edge Images at 3 M Spatial Resolution by Fusing Sentinel-2 and Planet Satellite Products. Remote Sens. 2019, 11, 1422. [Google Scholar] [CrossRef] [Green Version]
- Latte, N.; Lejeune, P. PlanetScope Radiometric Normalization and Sentinel-2 Super-Resolution (2.5 m): A Straightforward Spectral-Spatial Fusion of Multi-Satellite Multi-Sensor Images Using Residual Convolutional Neural Networks. Remote Sens. 2020, 12, 2366. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, X.; Vogelmann, J.E.; Gao, F.; Jin, S. A simple and effective method for filling gaps in Landsat ETM+ SLC-off images. Remote Sens. Environ. 2011, 115, 1053–1064. [Google Scholar] [CrossRef]
- Traganos, D.; Cerra, D.; Reinartz, P. Cubesat-derived detection of seagrasses using planet imagery following unmixing-based denoising: Is small the next big? Int. Arch. Photogramm. 2017, 42, 23–287. [Google Scholar] [CrossRef] [Green Version]
- Cerra, D.; Müller, R.; Reinartz, P. Noise Reduction in Hyperspectral Images Through Spectral Unmixing. IEEE Geosci. Remote Sens. Lett. 2014, 11, 109–113. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Guan, K.; Nafziger, E.; Chowdhary, G.; Peng, B.; Jin, Z.; Wang, S.; Wang, S. Detecting In-Season Crop Nitrogen Stress of Corn for Field Trials Using UAV- and CubeSat-Based Multispectral Sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 5153–5166. [Google Scholar] [CrossRef]
- Cheng, Y.; Vrieling, A.; Fava, F.; Meroni, M.; Marshall, M.; Gachoki, S. Phenology of short vegetation cycles in a Kenyan rangeland from PlanetScope and Sentinel-2. Remote Sens. Environ. 2020, 248, 112004. [Google Scholar] [CrossRef]
- Wang, J.; Yang, D.; Chen, S.; Zhu, X.; Wu, S.; Bogonovich, M.; Guo, Z.; Zhu, Z.; Wu, J. Automatic cloud and cloud shadow detection in tropical areas for PlanetScope satellite images. Remote Sens. Environ. 2021, 264, 112604. [Google Scholar] [CrossRef]
Sensor | Instrument | No. of Satellites | Launch Epoch | Swath Size | GSD * (m) | Spatial Res. ** (m) |
---|---|---|---|---|---|---|
Dove Classic | PS2 | ~36 | 2016–2017 | 24 × 8 km | 3.7 | 3.9 |
Dove-R | PS2.SD | ~150 | 2017–2018 | 24 × 16 km | 3.7 | 3.7 |
SuperDove | PSB.SD | ~36 | 2018- | 32.5 × 19.6 km | 3.7 | 3–12 |
Product/Level | Description | Sensor/Radiometric Correction | Geometric Correction | Atmospheric Corrections |
---|---|---|---|---|
Basic Scene (Level 1B) | Scaled TOA (at sensor) radiance; designed for users with advanced image processing and geometric correction capabilities. | √ Conversion to absolute radiometric values based on calibration coefficients. Values scaled by 100. | -- Platform effects corrected with telemetry and best available ephemeris data, refined using GCPs. | X |
Ortho Scene–Analytic (Level 3B) | Orthorectified scaled TOA (at sensor) radiance or surface reflectance product. | √ Conversion to absolute radiometric values based on calibration coefficients. Values scaled by 100. | √ Sensor-related effects corrected with telemetry and sensor model. Platform effect corrected with attitude telemetry and best available ephemeris data. Orthorectified using GCPs and DEM. Projected to UTM. | √ Conversion to TOA using at-sensor radiance and supplied coefficients. Conversion to SR using 6SV2.1 radiative transfer code and MODIS NRT data. Reflectance scaled by 10,000 to reduce quantization error. |
Ortho Scene–Visual (Level 3) | Orthorectified and color corrected; suitable for cartographic or visual operations | X | -- Sensor-related effects corrected with telemetry and sensor model. Orthrectified using GCPs and DEM. Positional accuracy: <10 m | X |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frazier, A.E.; Hemingway, B.L. A Technical Review of Planet Smallsat Data: Practical Considerations for Processing and Using PlanetScope Imagery. Remote Sens. 2021, 13, 3930. https://doi.org/10.3390/rs13193930
Frazier AE, Hemingway BL. A Technical Review of Planet Smallsat Data: Practical Considerations for Processing and Using PlanetScope Imagery. Remote Sensing. 2021; 13(19):3930. https://doi.org/10.3390/rs13193930
Chicago/Turabian StyleFrazier, Amy E., and Benjamin L. Hemingway. 2021. "A Technical Review of Planet Smallsat Data: Practical Considerations for Processing and Using PlanetScope Imagery" Remote Sensing 13, no. 19: 3930. https://doi.org/10.3390/rs13193930
APA StyleFrazier, A. E., & Hemingway, B. L. (2021). A Technical Review of Planet Smallsat Data: Practical Considerations for Processing and Using PlanetScope Imagery. Remote Sensing, 13(19), 3930. https://doi.org/10.3390/rs13193930