Three-Dimensional Surface Deformation Characteristics Based on Time Series InSAR and GPS Technologies in Beijing, China
Abstract
:1. Introduction
2. Description of the Study Area
3. Data sets and Methods
3.1. Data Sets
3.1.1. SAR Data
3.1.2. GPS and Leveling Data
3.1.3. Groundwater and Extensometer Data
3.2. Methods
3.2.1. Permanent Scatterers Interferometry (PSI) Technology
3.2.2. GPS Monitoring
4. Results
4.1. Vertical Deformation
4.1.1. Regional Land Subsidence Characteristics
4.1.2. Cumulative Land Subsidence Characteristics
4.1.3. Verification Accuracy of PSI and GPS Vertical Deformation
4.2. Horizontal Deformation
4.2.1. Horizontal Velocity of GPS under the ITRF2005 Reference Frame
4.2.2. Accuracy Analysis of GPS Horizontal Velocity
4.2.3. Horizontal Velocity of GPS under the Eurasian Reference Frame
5. Discussion
5.1. The Control Effect of Base Structure on 3D Deformation
5.1.1. The Control Effect of Basement Structure on Vertical Deformation
5.1.2. The Control Effect of Basement Structure on Horizontal Deformation
5.2. Influence of Groundwater Exploitation on 3D Deformation
5.2.1. Influence of Groundwater Exploitation on Land Subsidence
5.2.2. Influence of Groundwater Exploitation on Horizontal Deformation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, R.; Yue, Z.; Wang, L.; Wang, S. Review on current status and challenging issues of land subsidence in China. Eng. Geol. 2004, 76, 65–77. [Google Scholar] [CrossRef]
- Pritchard, M.E.; Simons, M. A satellite geodetic survey of large-scale deformation of volcanic centres in the central Andes. Nature 2002, 418, 167–171. [Google Scholar] [CrossRef]
- Jo, M.J.; Jung, H.S.; Won, J.S.; Lundgren, P. Measurement of three-dimensional surface deformation by Cosmo-SkyMed X-band radar interferometry: Application to the March 2011 Kamoamoa fissure eruption, Kīlauea Volcano, Hawai’i. Remote Sens. Environ. 2015, 169, 176–191. [Google Scholar] [CrossRef]
- Hu, J.; Chu, H.; Hou, C.; Lai, T.; Chen, R.; Nien, P. The contribution to tectonic subsidence by groundwater abstraction in the Pingtung area, southwestern Taiwan as determined by GPS measurements. Quat. Int. 2006, 147, 62–69. [Google Scholar] [CrossRef]
- Samsonov, S.V.; Tiampo, K.F.; Rundle, J.B. Application of DInSAR-GPS optimization for derivation of three-dimensional surface motion of the southern California region along the San Andreas fault. Comput. Geosci. 2008, 34, 503–514. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, G.; Hu, Z.; Ding, X.; Yang, Y. Mapping ground 3-D displacement with GPS and PS-InSAR networking in the Pingtung area, southwestern Taiwan. Chin. J. Geophys. 2012, 55, 3248–3258. [Google Scholar] [CrossRef]
- Zhang, Y.; Gong, H.; Gu, Z.; Wang, R.; Li, X.; Zhao, W. Characterization of land subsidence induced by groundwater withdrawals in the plain of Beijing city. Hydrogeol. J. 2014, 22, 397–409. [Google Scholar] [CrossRef]
- Lei, K.; Luo, Y.; Liu, H. Land Subsidence Monitoring Report of Beijing in 2019; Beijing institute of Hydrogeology and Engineering Geology: Beijing, China, 2019. [Google Scholar]
- Zhu, L.; Gong, H.; Chen, Y.; Wang, S.; Ke, Y.; Guo, G.; Li, X.; Chen, B.; Wang, H.; Teatini, P. Effects of Water Diversion Project on groundwater system and land subsidence in Beijing. Eng. Geol. 2020, 276, 105763. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef]
- Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 2004, 31, 1–5. [Google Scholar] [CrossRef]
- Ge, L.; Ng, H.; Li, X.; Abidin, H.Z.; Gumilar, I. Land subsidence characteristics of Bandung Basinas revealed by ENVISAT ASAR and ALOS PALSAR interferometry. Remote Sens. Environ. 2014, 154, 46–60. [Google Scholar] [CrossRef]
- Qu, F.; Zhang, Q.; Lu, Z.; Zhao, C.; Yang, C.; Zhang, J. Land subsidence and ground fissures in Xi’an, China 2005–2012 revealed by multi-band InSAR time-series analysis. Remote Sens. Environ. 2014, 155, 366–376. [Google Scholar] [CrossRef]
- Bonì, R.; Herrera, G.; Meisina, C. Twenty-year advanced dinsar analysis of severe land subsidence: The alto guadalentín basin (spain) case study. Eng. Geol. 2015, 198, 40–52. [Google Scholar] [CrossRef]
- Castellazzi, P.; Arroyo, N.; Martel, R.; Calderhead, A.I.; Normand, J.C.; Gárfias, J.; Rivera, A. Land subsidence in major cities of central Mexico: Interpreting InSAR-derived land subsidence mapping with hydrogeological data. Int. J. Appl. Earth Obs. Geoinf. 2016, 47, 102–111. [Google Scholar] [CrossRef]
- Galloway, D.L.; Burbey, T.J. Review: Regional land subsidence accompanying groundwater extraction. Hydrogeology 2011, 19, 1459–1486. [Google Scholar] [CrossRef]
- Ma, F.; Wei, A.; Han, Z.; Zhao, H.; Guo, J. The Characteristics and Causes of Land Subsidence in Tanggu Based on the GPS Survey System and Numerical Simulation. Acta Geol. Sin. 2011, 85, 1495–1507. [Google Scholar] [CrossRef]
- Hu, B.; Wang, H.; Sun, Y.; Hou, J.; Liang, J. Long-term land subsidence monitoring of Beijing (China) using the small baseline subset (SBAS) technique. Remote Sens. 2014, 6, 3648–3661. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, H.; Kang, Y.; Zhu, C. Ground subsidence in the Beijing-Tianjin-Hebei region from 1992 to 2014 revealed by multiple SAR stacks. Remote Sens. 2016, 8, 675. [Google Scholar] [CrossRef]
- Chen, B.; Gong, H.; Li, X.; Lei, K.; Zhu, L.; Gao, M.; Zhou, C. Characterization and causes of land subsidence in Beijing. Int. J. Remote Sens. 2017, 38, 808–826. [Google Scholar] [CrossRef]
- Corbau, C.; Simeoni, U.; Zoccarato, C.; Mantovani, G.; Teatini, P. Coupling land use evolution and subsidence in the Po Delta, Italy: Revising the past occurrence and prospecting the future management challenges. Sci. Total Environ. 2019, 654, 1196–1208. [Google Scholar] [CrossRef] [PubMed]
- Gambolati, G.; Teatini, P. Geomechanics of subsurface water withdrawal and injection. Water Resour. 2015, 51, 3922–3955. [Google Scholar] [CrossRef]
- Zhu, L.; Gong, H.; Li, X.; Wang, R.; Chen, B.; Dai, Z.; Teatini, P. Land subsidence due to groundwater withdrawal in the northern Beijing plain, China. Eng. Geol. 2015, 193, 243–255. [Google Scholar] [CrossRef]
- Lei, K.; Luo, Y.; Chen, B.; Guo, G.; Zhou, Y. Distribution characteristics and influence factors of land subsidence in Beijing area. Geol. China 2016, 43, 2216–2225. [Google Scholar] [CrossRef]
- Gong, H.; Pan, Y.; Zheng, L.; Li, X.; Zhu, L.; Zhang, C.; Huang, Z.; Li, Z.; Wang, H.; Zhou, C. Long-term groundwater storage changes and land subsidence development in the North China Plain (1971–2015). Hydrogeology 2018, 26, 1417–1427. [Google Scholar] [CrossRef]
- Du, Z.; Ge, L.; Ng, H.; Zhu, Q.; Yang, X.; Li, L. Correlating the subsidence pattern and land use in Bandung, Indonesia with both Sentinel-1/2 and ALOS-2 satellite images. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 54–68. [Google Scholar] [CrossRef]
- Jiang, L.; Bai, L.; Zhao, Y.; Cao, G.; Wang, H.; Sun, Q. Combining InSAR and hydraulic head measurements to estimate aquifer parameters and storage variations of confined aquifer-system in Cangzhou, North China Plain. Water Resour. 2018, 54, 8234–8252. [Google Scholar] [CrossRef]
- Chen, B.; Gong, H.; Lei, K.; Li, X.; Zhou, C.; Gao, M.; Guan, H.; Lv, W. Land subsidence lagging quantification in the main exploration aquifer layers in Beijing plain. Int. J. Appl. Earth Obs. Geoinf. 2019, 75, 54–67. [Google Scholar] [CrossRef]
- Hu, L.; Dai, K.; Xing, C.; Li, Z.; Tomás, R.; Clark, B.; Shi, X.; Chen, M.; Zhang, R.; Qiu, Q.; et al. Land subsidence in Beijing and its relationship with geological faults revealed by Sentinel-1 InSAR observations. Int J. Appl. Earth Obs. Geoinf. 2019, 82, 101886. [Google Scholar] [CrossRef]
- Burbey, T.J. Effects of horizontal strain in estimating specific storage and compaction in confined and leaky aquifer systems. Hydrogeol. J. 1999, 7, 521–532. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, Y.; Chen, Z.; Wang, W. Horizontal strain of aquifer induced by groundwater pumping—A new mechanism for ground fissure movement. J. Eng. Geol. 2002, 10, 46–50. [Google Scholar] [CrossRef]
- Helm, D.C. Three-dimensional consolidation theory in terms of the velocity of solids. Geotechnique 1987, 37, 369–392. [Google Scholar] [CrossRef]
- Helm, D.C. Horizontal aquifer movement in a Theis-Thiem confined system. Water Resour. Res. 1994, 30, 953–964. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, W.; Liang, W.; Liu, L. Horizontal aquifer movement induced by groundwater pumping and its applications to the analysis of some geological disasters. Acta Seismol. Sin. 1997, 10, 535–543. [Google Scholar] [CrossRef]
- Burbey, T.J.; Warner, S.M.; Blewitt, G.; Bell, J.W.; Hill, E. Three-dimensional deformation and strain induced by municipal pumping, part 1: Analysis of field data. J. Hydrol. 2006, 330, 422–434. [Google Scholar] [CrossRef]
- Galloway, D.L.; Hudnut, K.W.; Ingebritsen, S.; Phillips, S.P.; Peltzer, G.; Rogez, F.; Rosen, P.A. Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California. Water Resour. Res. 1998, 34, 2573–2585. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Hoffmann, J.; Zebker, H.A.; Galloway, D.L.; Amelung, F. Seasonal subsidence and rebound in Las Vegas Valley, Nevada, observed by synthetic aperture radar interferometry. Water Resour. 2001, 37, 1551–1566. [Google Scholar] [CrossRef]
- Hoffmann, J.; Galloway, D.L.; Zebker, H.A. Inverse modeling of interbed storage parameters using land subsidence observations, Antelope Valley, California. Water Resour. 2003. [Google Scholar] [CrossRef]
- Hooper, A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys. Res. Lett. 2008, 35, 96–106. [Google Scholar] [CrossRef]
- Tomas, R.; Herrera, G.; Lopez-Sanchez, J.M.; Vicente, F.; Cuenca, A.; Mallorqui, J.J. Study of the land subsidence in Orihuela City (SE Spain) using PSI data: Distribution, evolution and correlation with conditioning and triggering factors. Eng. Geol. 2010, 115, 105–121. [Google Scholar] [CrossRef]
- Zhou, C.; Gong, H.; Chen, B.; Li, J.; Gao, M.; Zhu, F.; Chen, W.; Liang, Y. InSAR time-series analysis of land subsidence under different land use types in the Eastern Beijing Plain, China. Remote Sens. 2017, 9, 380. [Google Scholar] [CrossRef]
- Chen, B.; Gong, H.; Chen, Y.; Li, X.; Zhou, C.; Lei, K.; Zhu, L.; Duan, L.; Zhao, X. Land subsidence and its relation with groundwater aquifers in Beijing Plain of China. Sci. Total Environ. 2020, 735, 139111. [Google Scholar] [CrossRef] [PubMed]
- Dong, D.; Fang, P.; Bock, Y.; Cheng, M.; Miyazaki, S. Anatomy of apparent seasonal variations from GPS derived site position time series. J. Geophys. 2002, 107, 2075. [Google Scholar] [CrossRef]
- Yao, Y.B. Analysis of crustal movement characteristics in the China mainland by high precision repeated measurements of GPS network. Prog. Geophys. 2008, 23, 1030–1037. [Google Scholar]
- Feng, G.C.; Li, Z.W.; Shan, X.J.; Xu, B.; Du, Y. Source parameters of the 2014 Mw 6.1 South Napa earthquake estimated from the Sentinel 1A, COSMO-SkyMed and GPS data. Tectonophysics 2015, 655, 139–146. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, P.; Ding, K.; Jiang, Z.; Chen, X. Inversion of tectonic strain field in China continent using integrated data of GPS velocity field and seismic moment tensor. Sci. Surv. Mapp. 2016, 41, 60–64. [Google Scholar] [CrossRef]
- Zheng, G. The use of long-term GPS observation to analyze present-day slip rate and crustal activity characteristic of the Kunlun fault. J. Geod. Geodyn. 2019, 39, 557–561. [Google Scholar]
- Wei, W.S.; Lv, X.J.; Cai, X.M. Beijing Urban Geology; China Land Press: Beijing, China, 2008. [Google Scholar]
- Cai, X.; Luan, Y.; Guo, G.; Liang, Y. 3D Quaternary geological structure of Beijing plain. Geol. China 2009, 36, 1021–1029. [Google Scholar] [CrossRef]
- Jia, S.; Wang, H.; Zhao, S.; Luo, Y. A tentative study of the mechanism of land subsidence in Beijing. City Geol. 2007, 2, 20–26. [Google Scholar] [CrossRef]
- Malinowska, A.A.; Witkowski, W.T.; Hejmanowski, R.; Chang, L.; van Leijen, F.J.; Hanssen, R.F. Sinkhole occurrence monitoring over shallow abandoned coal mines with satellite-based persistent scatterer interferometry. Eng. Geol. 2019, 262, 105336. [Google Scholar] [CrossRef]
- Strozzi, T.; Carreon-Freyre, D.; Wegmüller, U. Land subsidence and associated ground fracturing: Study cases in central Mexico with ALOS-2 PALSAR-2 ScanSAR Interferometry. Proc. IAHS 2020, 382, 179–182. [Google Scholar] [CrossRef]
- Teatini, P.; Strozzi, T.; Tosi, L.; Wegmüller, U.; Werner, C.; Carbognin, L. Assessing short- and long-time displacements in the Venice coastland by synthetic aperture radar interferometric point target analysis. J. Geophys. Res. Earth Surf. 2007, 112, F01012. [Google Scholar] [CrossRef]
SAR Sensor | Radarsat-2 |
---|---|
Orbit direction | Descending |
Orbit altitude | 798 km |
Band (wavelength) | C-band (5.6 cm) |
Revisit cycle | 24 days |
Spatial resolution | 30 m |
Incidence angle (°) | 27.8 |
Polarization | VV |
Center location | 40.20 116.40 |
Number of images | 54 |
Temporal coverage | 2013/01/16–2018/12/22 |
Benchmark Number | Annual Land Subsidence(mm) | Benchmark Number | Annual Land Subsidence(mm) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PSI | GPS | Leveling | PSI- Leveling | GPS- Leveling | PSI | GPS | Leveling | PSI- Leveling | GPS- Leveling | ||
BJ001 | −42.5 | −46.2 | −38.4 | −4.1 | −7.8 | BJ021 | −25.6 | −33.6 | −18.3 | −7.3 | −15.3 |
BJ002 | −38.0 | −40.0 | −32.0 | −6.0 | −8.0 | BJ022 | −18.3 | −22.9 | −15.2 | −3.1 | −7.7 |
BJ003 | −39.2 | −43.4 | −42.9 | 3.7 | −0.5 | BJ023 | 2.20 | −10.8 | −1.1 | 3.3 | −9.7 |
BJ004 | −18.0 | −30.0 | −21.0 | 3.0 | −9.0 | BJ024 | −45.0 | −40.2 | −52.2 | 7.2 | 12.0 |
BJ005 | −19.8 | −30.2 | −25.2 | 5.4 | −5.0 | BJ025 | 2.10 | −6.6 | −1.6 | 3.7 | −5.0 |
BJ006 | −32.2 | −25.1 | −37.8 | 5.6 | 12.7 | BJ026 | −32.5 | −40.3 | −25.1 | −7.4 | −15.2 |
BJ007 | −40.1 | −54.2 | −46.7 | 6.6 | −7.5 | BJ027 | −5.4 | −19.3 | −9.7 | 4.3 | −9.6 |
BJ008 | −15.3 | −19.1 | −18.3 | 3.0 | −0.8 | BJ028 | −24.0 | −32.4 | −20.0 | −4.0 | −12.4 |
BJ009 | −10.2 | −15.9 | −6.0 | −4.2 | −9.9 | BJ029 | −29.0 | −20.1 | −31.4 | 2.4 | 11.3 |
BJ010 | 3.5 | −1.7 | −4.8 | 8.3 | 3.1 | BJ030 | −135.3 | −124.2 | −129.2 | −6.1 | 5.0 |
BJ011 | −134.0 | −115.8 | −126.9 | −7.1 | 11.1 | BJ031 | −6.0 | −4.0 | −3.9 | −2.1 | −0.1 |
BJ012 | −26.0 | −37.3 | −34.0 | 8.0 | −3.3 | BJ032 | −16.9 | −5.8 | −11.5 | −5.4 | 5.7 |
BJ013 | −5.8 | −4.9 | −11.6 | 5.8 | 6.7 | BJ033 | 2.1 | −1.9 | −2.9 | 5.0 | 1.0 |
BJ014 | −19.8 | −32.1 | −16.3 | −3.5 | −15.8 | BJ034 | −36.2 | −28.2 | −33.9 | −2.3 | 5.7 |
BJ015 | −28.9 | −35.2 | −33.2 | 4.3 | −2.0 | BJ035 | −33.0 | −35.1 | −33.1 | 0.1 | −2.0 |
BJ016 | −6.9 | −19.2 | −10.2 | 3.3 | −9.0 | BJ036 | −30.0 | −33.3 | −32.9 | 2.9 | −0.4 |
BJ017 | −26.0 | −35.7 | −27.5 | 1.5 | −8.2 | BJ037 | −12.5 | −11.5 | −15.1 | 2.6 | 3.6 |
BJ018 | −6.2 | −9.3 | −3.5 | −2.7 | −5.8 | BJ038 | −119.4 | −118.1 | −118.4 | −1.0 | 0.3 |
BJ019 | −18.5 | −12.0 | −16.2 | −2.3 | 4.2 | BJ039 | −57.6 | −64.7 | −60.5 | 2.9 | −4.2 |
BJ020 | −36.4 | −23.6 | −31.0 | −5.4 | 7.4 | BJ040 | −8.3 | −5.2 | −9.5 | 1.2 | 4.3 |
Benchmark Number | Horizontal Velocity (mm/y) | Accuracy (mm/y) | Benchmark Number | Horizontal Velocity (mm/y) | Accuracy (mm/y) | ||||
---|---|---|---|---|---|---|---|---|---|
VE | VN | ΔE | ΔN | VE | VN | ΔE | ΔN | ||
BJ001 | 28.82 | −14.67 | 3.70 | 4.30 | BJ024 | 30.36 | −18.86 | 4.00 | 3.50 |
BJ002 | 32.62 | −16.74 | 4.30 | 3.90 | BJ025 | 29.10 | −15.33 | 4.30 | 2.10 |
BJ003 | 28.29 | −10.72 | 2.80 | 3.80 | BJ026 | 31.51 | −12.90 | 4.30 | 2.80 |
BJ004 | 28.69 | −15.06 | 3.90 | 4.30 | BJ027 | 34.60 | −16.94 | 2.90 | 3.70 |
BJ005 | 27.59 | −11.27 | 2.40 | 4.70 | BJ028 | 27.69 | −15.77 | 3.70 | 5.00 |
BJ006 | 27.29 | −11.89 | 2.40 | 4.20 | BJ029 | 32.73 | −18.99 | 1.60 | 3.60 |
BJ007 | 29.48 | −12.29 | 4.00 | 3.10 | BJ030 | 30.76 | −13.90 | 4.70 | 3.20 |
BJ008 | 28.40 | −16.16 | 3.20 | 4.70 | BJ031 | 34.41 | −19.22 | 3.80 | 2.50 |
BJ009 | 30.92 | −11.44 | 4.80 | 3.40 | BJ032 | 32.53 | −16.18 | 4.90 | 3.70 |
BJ010 | 31.08 | −17.75 | 2.20 | 2.90 | BJ033 | 31.57 | −12.80 | 3.80 | 4.50 |
BJ011 | 31.76 | −11.58 | 2.30 | 3.80 | BJ034 | 34.99 | −16.64 | 4.30 | 3.60 |
BJ012 | 33.22 | −10.90 | 4.60 | 2.30 | BJ035 | 33.87 | −12.51 | 4.90 | 3.80 |
BJ013 | 32.65 | −13.54 | 3.90 | 4.20 | BJ036 | 31.53 | −11.90 | 4.40 | 2.80 |
BJ014 | 28.19 | −15.46 | 3.90 | 2.20 | BJ037 | 31.12 | −16.98 | 4.40 | 3.90 |
BJ015 | 28.14 | −18.91 | 4.70 | 2.30 | BJ038 | 33.85 | −12.27 | 4.80 | 2.40 |
BJ016 | 32.39 | −16.05 | 4.40 | 3.20 | BJ039 | 28.82 | −15.34 | 3.20 | 4.40 |
BJ017 | 29.20 | −11.65 | 4.90 | 4.30 | BJ040 | 32.83 | −16.66 | 2.70 | 3.60 |
BJ018 | 28.36 | −15.52 | 4.80 | 4.60 | ZJWZ | 28.58 | −16.19 | 0.07 | 0.09 |
BJ019 | 28.94 | −12.81 | 2.90 | 4.60 | NLSH | 27.80 | −12.78 | 0.06 | 0.08 |
BJ020 | 32.36 | −14.65 | 4.60 | 2.60 | CHAO | 28.92 | −18.57 | 0.08 | 0.10 |
BJ021 | 32.63 | −15.41 | 3.90 | 4.30 | DSQI | 34.12 | −17.77 | 0.07 | 0.09 |
BJ022 | 31.40 | −13.40 | 3.70 | 4.00 | YUFA | 27.32 | −12.05 | 0.07 | 0.09 |
BJ023 | 29.59 | −18.49 | 2.80 | 4.90 | CHPN | 30.10 | −11.25 | 0.07 | 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, K.; Ma, F.; Chen, B.; Luo, Y.; Cui, W.; Zhou, Y.; Liu, H.; Sha, T. Three-Dimensional Surface Deformation Characteristics Based on Time Series InSAR and GPS Technologies in Beijing, China. Remote Sens. 2021, 13, 3964. https://doi.org/10.3390/rs13193964
Lei K, Ma F, Chen B, Luo Y, Cui W, Zhou Y, Liu H, Sha T. Three-Dimensional Surface Deformation Characteristics Based on Time Series InSAR and GPS Technologies in Beijing, China. Remote Sensing. 2021; 13(19):3964. https://doi.org/10.3390/rs13193964
Chicago/Turabian StyleLei, Kunchao, Fengshan Ma, Beibei Chen, Yong Luo, Wenjun Cui, Yi Zhou, He Liu, and Te Sha. 2021. "Three-Dimensional Surface Deformation Characteristics Based on Time Series InSAR and GPS Technologies in Beijing, China" Remote Sensing 13, no. 19: 3964. https://doi.org/10.3390/rs13193964
APA StyleLei, K., Ma, F., Chen, B., Luo, Y., Cui, W., Zhou, Y., Liu, H., & Sha, T. (2021). Three-Dimensional Surface Deformation Characteristics Based on Time Series InSAR and GPS Technologies in Beijing, China. Remote Sensing, 13(19), 3964. https://doi.org/10.3390/rs13193964