Global Land High-Resolution Cloud Climatology Based on an Improved MOD09 Cloud Mask
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Preprocessing
2.1.1. MOD/MYD09GA
2.1.2. Ground Observational Data
2.1.3. PATMOS-X Cloud Climatology
2.2. Methods
2.2.1. Calculation of Cloud Frequencies
- SWIR Threshold Method
- Band 2/6 ratio threshold method
2.2.2. Removal of Orbital Artifacts
2.2.3. Removal of Abnormal Points
2.2.4. Quality Assessment Method
- Direct validation
- Consistency check
3. Results and Quality Assessment
3.1. Results
3.2. Quality Assessment
3.2.1. Direct Validation
3.2.2. Consistency Check
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ardanuy, P.E.; Stowe, L.L.; Gruber, A.; Weiss, M.; Long, C.S. Longwave cloud radiative forcing as determined from nimbus-7 observations. J. Clim. 1989, 2, 766–799. [Google Scholar] [CrossRef] [Green Version]
- Ramanathan, V.; Cess, R.D. Cloud-radiative forcing and climate: Results from the Earth radiation budget experiment. Science 1989, 243, 57–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephens, G.L.; Webster, P.J. Clouds and climate—Sensitivity of simple systems. J. Atmos. Sci. 1981, 38, 235–247. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Fasullo, J.T.; Kiehl, J. Earth’s global energy budget. Bull. Am. Meteorol. Soc. 2009, 90, 311–324. [Google Scholar] [CrossRef]
- Fischer, D.T.; Still, C.J.; Williams, A.P. Significance of summer fog and overcast for drought stress and ecological functioning of coastal California endemic plant species. J. Biogeogr. 2009, 36, 783–799. [Google Scholar] [CrossRef]
- Goldsmith, G.R.; Matzke, N.J.; Dawson, T.E. The incidence and implications of clouds for cloud forest plant water relations. Ecol. Lett. 2012, 16, 307–314. [Google Scholar] [CrossRef]
- Liou, K.N. Influence of cirrus clouds on weather and climate processes—A global perspective. Mon. Weather Rev. 1986, 114, 1167–1199. [Google Scholar] [CrossRef]
- Sklenar, P.; Bendix, J.; Balslev, H. Cloud frequency correlates to plant species composition in the high Andes of Ecuador. Basic Appl. Ecol. 2008, 9, 504–5133. [Google Scholar] [CrossRef]
- WMO. Guide to Meteorological Instruments and Methods of Observation; Secretariat of the World Meteorological Organization: Geneva, Switzerland, 1983. [Google Scholar]
- Hahn, C.J.; Warren, S.G.; London, J. The effect of moonlight on observation of cloud cover at night, and application to cloud climatology. J. Clim. 1995, 8, 1429–1446. [Google Scholar] [CrossRef] [Green Version]
- Stubenrauch, C.J.; Rossow, W.B.; Kinne, S.; Ackerman, S.; Cesana, G.; Chepfer, H. Assessment of global cloud datasets from satellites: Project and database initiated by the GEWEX radiation panel. Bull. Am. Meteorol. Soc. 2013, 94, 1031–1049. [Google Scholar] [CrossRef]
- Heidinger, A.K.; Foster, M.J.; Walther, A.; Zhao, X.T. The pathfinder atmospheres-extended AVHRR climate dataset. Bull. Am. Meteorol. Soc. 2014, 95, 909–922. [Google Scholar] [CrossRef]
- Foster, M.J.; Heidinger, A. PATMOS-x: Results from a diurnally corrected 30-yr satellite cloud climatology. J. Clim. 2013, 26, 414–425. [Google Scholar] [CrossRef]
- Foster, M.J.; Heidinger, A.; Hiley, M.; Wanzong, S.; Botambekov, D. PATMOS-x cloud climate record trend sensitivity to reanalysis products. Remote Sens. 2016, 8, 424. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, K.G.; Riihel, A.; Müller, R.; Meirink, J.F.; Sedlar, J.; Stengel, M. CLARA-A1: A cloud, albedo, and radiation dataset from 28 yr of global AVHRR data. Atmos. Chem Phys. 2013, 13, 5351–5367. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, K.G.; Anttila, K.; Trentmann, J.; Stengel, M.; Meirink, J.F.; Devasthale, A. CLARA-A2: The second edition of the CM SAF cloud and radiation data record from 34 years of global AVHRR data. Atmos. Chem. Phys. 2017, 17, 5809–5828. [Google Scholar] [CrossRef] [Green Version]
- Schiffer, R.A.; Rossow, W.B. The International-Satellite-Cloud-Climatology-Project (ISCCP)—The 1st project of the world-climate-research-programme. Bull. Am. Meteorol. Soc. 1983, 64, 779–784. [Google Scholar] [CrossRef] [Green Version]
- Schiffer, R.A.; Rossow, W.B. ISCCP global radiance data set—A new resource for climate research. Bull. Am. Meteorol. Soc. 1985, 66, 1498–1505. [Google Scholar] [CrossRef] [Green Version]
- Rossow, W.B.; Schiffer, R.A. ISCCP cloud data products. Bull. Am. Meteorol. Soc. 1991, 72, 2–20. [Google Scholar] [CrossRef]
- Barnes, W.L.; Pagano, T.S.; Salomonson, V.V. Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1. IEEE Trans. Geosci. Remote. Sens. 1998, 36, 1088–1100. [Google Scholar] [CrossRef] [Green Version]
- Diner, D.J.; Beckert, J.C.; Reilly, T.H.; Bruegge, C.J.; Conel, J.E.; Kahn, R.A.; Martonchik, J.V.; Ackerman, T.P.; Davies, R.; Gerstl, S.A.W. Multi-angle Imaging SpectroRadiometer (MISR)–Instrument description and experiment overview. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1072–1087. [Google Scholar] [CrossRef]
- Lee, R.B.; Barkstrom, B.R.; Smith, G.L.; Cooper, J.E.; Crommelynck, D.A.H. The Clouds and the Earth’s Radiant Energy System (CERES) sensors and preflight calibration plans. J. Atmos. Ocean. Technol. 1996, 13, 300–313. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Kahle, A.B.; Tsu, H.; Kawakami, T.; Pniel, M. Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). IEEE Trans. Geosci. Remote Sens. 1998, 36, 1062–1071. [Google Scholar] [CrossRef] [Green Version]
- Vane, D.; Stephens, G.L. The CloudSat mission and the A-Train: A revolutionary approach to observing Earth’s atmosphere. In Proceedings of the 2008 IEEE Aerospace Conference, Big Sky, MT, USA, 1–8 March 2008. [Google Scholar]
- Stephens, G.L.; Vane, D.G.; Boain, R.J.; Mace, G.G.; Austin, R.T. The cloudsat mission and the a-train—A new dimension of space-based observations of clouds and precipitation. Bull. Am. Meteorol. Soc. 2002, 83, 1771–1790. [Google Scholar] [CrossRef] [Green Version]
- Calbo, J.; Sanchez-Lorenzo, A. Cloudiness climatology in the Iberian Peninsula from three global gridded datasets (ISCCP, CRU TS 2.1, ERA-40). Theor. Appl. Clim. 2009, 96, 105–115. [Google Scholar] [CrossRef]
- Tzallas, V.; Hatzianastassiou, N.; Benas, N.; Meirink, J.; Matsoukas, C.; Stackhouse, P. Evaluation of CLARA-A2 and ISCCP-H cloud cover climate data records over Europe with ECA&D ground-based measurements. Remote Sens. 2019, 11, 212. [Google Scholar]
- Heidinger, A.K.; Evan, A.T.; Foster, M.J.; Walther, A. A Naive Bayesian Cloud-Detection Scheme Derived from CALIPSO and Applied within PATMOS-x. J. Appl. Meteorol. Clim. 2012, 51, 1129–1144. [Google Scholar] [CrossRef]
- Nielsen, J.K.; Foster, M.; Heidinger, A. Tropical stratospheric cloud climatology from the PATMOS-x dataset: An assessment of convective contributions to stratospheric water. Geophys. Res. Lett. 2011, 38, 38. [Google Scholar] [CrossRef] [Green Version]
- Levinson, D.H.; Lawrimore, J.H. State of the climate in 2007. Bull. Am. Meteorol. Soc. 2008, 89, S1–S179. [Google Scholar] [CrossRef]
- Tang, W.J.; Yang, K.; Qin, J.; Li, X.; Niu, X.L. A 16-year dataset (2000–2015) of high-resolution (3 h, 10 km) global surface solar radiation. Earth Syst. Sci. Data 2019, 11, 1905–1915. [Google Scholar] [CrossRef] [Green Version]
- Sassen, K.; Wang, Z. Classifying clouds around the globe with the CloudSat radar: 1-year of results. Geophys. Res. Lett. 2008, 35, 35. [Google Scholar] [CrossRef]
- Houze, R.A. Orographic effects on precipitating clouds. Rev. Geophys. 2012, 50, 50. [Google Scholar] [CrossRef]
- Wilson, A.M.; Silander, J.A. Estimating uncertainty in daily weather interpolations: A Bayesian framework for developing climate surfaces. Int. J. Climatol. 2014, 34, 2573–2584. [Google Scholar] [CrossRef]
- Stengel, M.; Stapelberg, S.; Sus, O.; Finkensieper, S.; Würzler, B.; Philipp, D.; Hollmann, R.; Poulsen, C.; Christensen, M.; McGarragh, G. Cloud_cci advanced very high resolution radiometer post meridiem (AVHRR-PM) dataset version 3: 35-year climatology of global cloud and radiation properties. Earth Syst. Sci. Data 2020, 12, 41–60. [Google Scholar] [CrossRef] [Green Version]
- Stengel, M.; Stapelberg, S.; Sus, O.; Schlundt, C.; Poulsen, C.; Thomas, G.; Christensen, M.; Henken, C.C.; Preusker, R.; Fischer, J.; et al. Cloud property datasets retrieved from AVHRR, MODIS, AATSR and MERIS in the framework of the Cloud_cci project. Earth Syst. Sci. Data 2017, 9, 881–904. [Google Scholar] [CrossRef] [Green Version]
- Douglas, M.; Beida, R.; Dominguez, A. Developing high spatial resolution daytime cloud climatologies for Africa. In Proceedings of the Preprints, 29th Conference on Hurricanes and Tropical Meteorology, Tucson, AZ, USA, 13 May 2010. [Google Scholar]
- Descloitres, J.; Sohlberg, R.; Owens, J.; Giglio, L.; Justice, C.; Carroll, M.; Seaton, J.; Crisologo, M.; Finco, M.; Lannom, K. The MODIS rapid response project. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; pp. 1191–1192. [Google Scholar]
- Wilson, A.M.; Jetz, W. Remotely sensed high-resolution global cloud dynamics for predicting ecosystem and biodiversity distributions. PLoS Biol. 2016, 14, e1002415. [Google Scholar] [CrossRef] [PubMed]
- Mulligan, M. MODIS MOD35 Pan-Tropical Cloud Climatology. Available online: http://www.ambiotek.com/clouds/ (accessed on 1 July 2021).
- Wilson, A.M.; Parmentier, B.; Jetz, W. Systematic land cover bias in Collection 5 MODIS cloud mask and derived products—A global overview. Remote Sens. Environ. 2014, 141, 149–154. [Google Scholar] [CrossRef]
- Frey, R.A.; Ackerman, S.A.; Liu, Y.; Strabala, K.I.; Zhang, H.; Key, J. Cloud detection with MODIS. Part I: Improvements in the MODIS cloud mask for collection 5. J. Atmos. Ocean. Technol. 2008, 25, 1057–1072. [Google Scholar] [CrossRef]
- Leinenkugel, P.; Kuenzer, C.; Dech, S. Comparison and enhancement of MODIS cloud mask products for Southeast Asia. Int. J. Remote Sens. 2013, 34, 2730–2748. [Google Scholar] [CrossRef]
- Petitcolin, F.; Vermote, E. Land surface reflectance, emissivity and temperature from MODIS middle and thermal infrared data. Remote Sens. Environ. 2002, 83, 112–134. [Google Scholar] [CrossRef]
- Roger, J.C.; Vermote, E.F. A method to retrieve the reflectivity signature at 3.75 μm from AVHRR data. Remote Sens. Environ. 1998, 64, 103–114. [Google Scholar] [CrossRef]
- Kalnay, E. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef] [Green Version]
- Irish, R.R. Landsat 7 automatic cloud cover assessment. In Proceedings of the SPIE: The International Society for Optical Engineering, Orlando, FL, USA, 24–26 April 2000; pp. 348–355. [Google Scholar]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Chen, N.; Li, W.; Tanikawa, T.; Hori, M.; Aoki, T.; Stamnes, K. Cloud mask over snow-/ice-covered areas for the GCOM-C1/SGLI cryosphere mission: Validations over Greenland. J. Geophys. Res. Atmos. 2014, 119, 12287–12300. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sens. Environ. 1995, 54, 127–140. [Google Scholar] [CrossRef]
- Hutchison, K.D.; Mahoney, R.L.; Iisager, B.D. Discriminating sea ice from low-level water clouds in split-window, mid-wavelength IR imagery. Int. J. Remote Sens. 2013, 34, 7131–7144. [Google Scholar] [CrossRef]
- Liu, Y.H.; Ackerman, S.A.; Maddux, B.C.; Key, J.R.; Frey, R.A. Errors in cloud detection over the arctic using a satellite imager and implications for observing feedback mechanisms. J. Clim. 2010, 23, 1894–1907. [Google Scholar] [CrossRef] [Green Version]
- Fehrenbach, J.; Weiss, P.; Lorenzo, C. Variational algorithms to remove stationary noise: Applications to microscopy imaging. IEEE Trans. Image Process. 2012, 21, 4420–4430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eastman, R.; Warren, S.G. Land Cloud Update, 1997–2009, Appended to Cloud Climatology for Land Stations Worldwide, 1971–1996. Available online: http://cdiac.ornl.gov/epubs/ndp/ndp026d/ndp026d.html (accessed on 15 July 2021).
- Dybbroe, A.; Karlsson, K.G.; Thoss, A. NWCSAF AVHRR cloud detection and analysis using dynamic thresholds and radiative transfer modeling. Part II: Tuning and validation. J. Appl. Meteorol. 2005, 44, 55–71. [Google Scholar] [CrossRef]
- Heidinger, A.; Foster, M.; Botambekov, D.; Hiley, M.; Walther, A.; Li, Y. Using the NASA EOS A-train to probe the performance of the NOAA PATMOS-x Cloud Fraction CDR. Remote Sens. 2016, 8, 511. [Google Scholar] [CrossRef] [Green Version]
- King, M.D.; Platnick, S.; Menzel, W.P.; Ackerman, S.A.; Hubanks, P.A. Spatial and temporal distribution of clouds observed by MODIS onboard the Terra and Aqua satellites. IEEE Trans. Geosci. Remote 2013, 51, 3826–3852. [Google Scholar] [CrossRef]
- Pincus, R.; Platnick, S.; Ackerman, S.A.; Hemler, R.S.; Hofmann, R.J.P. Reconciling simulated and observed views of clouds: MODIS, ISCCP, and the limits of instrument simulators. J. Clim. 2012, 25, 4699–4720. [Google Scholar] [CrossRef]
GLHCC | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 |
---|---|---|---|---|---|---|---|---|
R | 0.8771 | 0.8811 | 0.8697 | 0.8814 | 0.8722 | 0.8762 | 0.8648 | 0.8565 |
RMSE (%) | 9.5977 | 9.2948 | 9.5694 | 9.0550 | 8.9992 | 8.7466 | 8.5865 | 8.6200 |
GLHCC | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
R | 0.8385 | 0.8202 | 0.8101 | 0.8034 | 0.8148 | 0.8202 | 0.8250 | 0.8349 |
RMSE (%) | 8.5485 | 8.6088 | 8.6637 | 9.0683 | 9.2785 | 9.7354 | 10.0807 | 10.4807 |
GLHCC | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
R | 0.8627 | 0.8723 | 0.8716 | 0.8767 | 0.8856 | 0.8865 | 0.8966 | 0.8950 |
RMSE (%) | 10.5686 | 10.9566 | 11.0265 | 10.9935 | 10.6539 | 10.4479 | 10.1088 | 9.9417 |
GLHCC | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |
R | 0.8996 | 0.9014 | 0.9041 | 0.9067 | 0.9057 | 0.9105 | 0.9029 | 0.9005 |
RMSE (%) | 9.3886 | 8.7716 | 8.4138 | 8.2240 | 8.0853 | 7.9898 | 8.0932 | 8.3601 |
GLHCC | 33 | 34 | 35 | 36 | 37 | |||
R | 0.9008 | 0.8975 | 0.8815 | 0.8807 | 0.8777 | |||
RMSE (%) | 8.5607 | 8.5896 | 9.0734 | 9.4807 | 9.8407 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Ma, Y.; Chen, F.; Shang, E.; Yao, W.; Qiu, Y.; Liu, J. Global Land High-Resolution Cloud Climatology Based on an Improved MOD09 Cloud Mask. Remote Sens. 2021, 13, 3997. https://doi.org/10.3390/rs13193997
Zhang S, Ma Y, Chen F, Shang E, Yao W, Qiu Y, Liu J. Global Land High-Resolution Cloud Climatology Based on an Improved MOD09 Cloud Mask. Remote Sensing. 2021; 13(19):3997. https://doi.org/10.3390/rs13193997
Chicago/Turabian StyleZhang, Shuyan, Yong Ma, Fu Chen, Erping Shang, Wutao Yao, Yubao Qiu, and Jianbo Liu. 2021. "Global Land High-Resolution Cloud Climatology Based on an Improved MOD09 Cloud Mask" Remote Sensing 13, no. 19: 3997. https://doi.org/10.3390/rs13193997
APA StyleZhang, S., Ma, Y., Chen, F., Shang, E., Yao, W., Qiu, Y., & Liu, J. (2021). Global Land High-Resolution Cloud Climatology Based on an Improved MOD09 Cloud Mask. Remote Sensing, 13(19), 3997. https://doi.org/10.3390/rs13193997