Sentinel-1 and RADARSAT Constellation Mission InSAR Assessment of Slope Movements in the Southern Interior of British Columbia, Canada
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Sentinel-1 and RCM Data
3.2. InSAR Processing
4. Results
4.1. Sentinel-1 2D MSBAS Time-Series Analysis
4.2. Comparison between Sentinel-1 and RCM
5. Discussion
Implications for Landslide Hazards and Risks
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blais-Stevens, A. Historical landslides that have resulted in fatalities in Canada (1771–2019); Geological Survey of Canada, Open File 8392; Natural Resources Canada: Ottawa, ON, Canada, 2020. [Google Scholar]
- Hungr, O. Landslide Hazards in BC-Achieving Balance in Risk Assessment. Innovation 2004, 2004, 12–15. [Google Scholar]
- Guthrie, R. Socio-economic Significance-Canadian Technical Guidelines and Best Practices related to Landslides: A national initiative for loss reduction. Geol. Surv. Can. 2013, 7311, 315–322. [Google Scholar]
- Porter, M.; Van Hove, J.; Barlow, P.; Froese, C.; Bunce, C. The estimated economic impacts of prairie landslides in western Canada. In Proceedings of the 72nd Canadian Geotechnical Conference, St. John’s, NL, Canada, 29 September–2 October 2019. [Google Scholar]
- Blais-Stevens, A.; Septer, D. Historical Accounts of Landslides and Flooding Events along the Sea to Sky Corridor, British Columbia, from 1855–2007; Geological Survey of Canada, Open File 5741; Natural Resources Canada: Ottawa, ON, Canada, 2008. [Google Scholar]
- Strouth, A.; McDougall, S. Historical Landslide Fatalities in British Columbia, Canada: Trends and Implications for Risk Management. Front. Earth Sci. 2021, 9, 1–8. [Google Scholar] [CrossRef]
- Geertsema, M.; Menounos, B.; Shugar, D.; Millard, T.; Ward, B.; Ekstrom, G.; Clague, J.; Lynett, P.; Friele, P.; Schaeffer, A.; et al. A landslide-generated tsunami and outburst flood at Elliot Creek, coastal British Columbia. In Proceedings of the EGU General Assembly 2021, Vienna, Austria, 19–30 April 2021. [Google Scholar]
- Hughes, K.E.; Geertsema, M.; Kwoll, E.; Koppes, M.N.; Roberts, N.J.; Clague, J.J.; Rohland, S. Previously undiscovered landslide deposits in Harrison Lake, British Columbia, Canada. Landslides 2021, 18, 529–538. [Google Scholar] [CrossRef]
- Liu, J.; Wu, Y.; Gao, X. Increase in occurrence of large glacier-related landslides in the high mountains of Asia. Sci. Rep. 2021, 11, 1–12. [Google Scholar]
- Fruneau, B.; Achache, J.; Delacourt, C. Observation and modelling of the Saint-Étienne-de-Tinée landslide using SAR interferometry. Tectonophysics 1996, 265, 181–190. [Google Scholar] [CrossRef]
- Rott, H.; Scheuchl, B.; Siegel, A.; Grasemann, B. Monitoring very slow slope movements by means of SAR interferometry: A case study from a mass waste above a reservoir in the Ötztal Alps, Austria. Geophys. Res. Lett. 1999, 26, 1629–1632. [Google Scholar] [CrossRef]
- Singhroy, V.; Molch, K. Characterizing and monitoring rockslides from SAR techniques. Adv. Sp. Res. 2004, 33, 290–295. [Google Scholar] [CrossRef]
- Strozzi, T.; Farina, P.; Corsini, A.; Ambrosi, C.; Thüring, M.; Zilger, J.; Wiesmann, A.; Wegmüller, U.; Werner, C. Survey and monitoring of landslide displacements by means of L-band satellite SAR interferometry. Landslides 2005, 2, 193–201. [Google Scholar] [CrossRef]
- Handwerger, A.L.; Roering, J.J.; Schmidt, D.A. Controls on the seasonal deformation of slow-moving landslides. Earth Planet. Sci. Lett. 2013, 377–378, 239–247. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Colesanti, C.; Ferretti, A.; Prati, C.; Rocca, F. Monitoring landslides and tectonic motions with the Permanent Scatterers Technique. Eng. Geol. 2003, 68, 3–14. [Google Scholar] [CrossRef]
- Hilley, G.E.; Bürgmann, R.; Ferretti, A.; Novali, F.; Rocca, F. Dynamics of Slow-Moving Landslides from Permanent Scatterer Analysis. Science 2004, 304, 1952–1955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Journault, J.; Macciotta, R.; Hendry, M.T.; Charbonneau, F.; Huntley, D.; Bobrowsky, P.T. Measuring displacements of the Thompson River valley landslides, south of Ashcroft, BC, Canada, using satellite InSAR. Landslides 2018, 15, 621–636. [Google Scholar] [CrossRef]
- Jennifer, J.J.; Saravanan, S.; Pradhan, B. Persistent Scatterer Interferometry in the post-event monitoring of the Idukki Landslides. Geocarto Int. 2020, 20, 1–15. [Google Scholar] [CrossRef]
- Aslan, G.; Foumelis, M.; Raucoules, D.; De Michele, M.; Bernardie, S.; Cakir, Z. Landslide Mapping and Monitoring Using Persistent Scatterer Interferometry (PSI) Technique in the French Alps. Remote Sens. 2020, 12, 1305. [Google Scholar] [CrossRef] [Green Version]
- Bianchini, S.; Solari, L.; Bertolo, D.; Thuegaz, P.; Catani, F. Integration of Satellite Interferometric Data in Civil Protection Strategies for Landslide Studies at a Regional Scale. Remote Sens. 2021, 13, 1881. [Google Scholar] [CrossRef]
- Jia, H.; Zhang, H.; Liu, L.; Liu, G. Landslide deformation monitoring by adaptive distributed scatterer interferometric synthetic aperture radar. Remote Sens. 2019, 11, 2273. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.; Yun, S.H. Evaluation of coherent and incoherent landslide detection methods based on synthetic aperture radar for rapid response: A case study for the 2018 Hokkaido landslides. Remote Sens. 2020, 12, 265. [Google Scholar] [CrossRef] [Green Version]
- Singleton, A.; Li, Z.; Hoey, T.; Muller, J.P. Evaluating sub-pixel offset techniques as an alternative to D-InSAR for monitoring episodic landslide movements in vegetated terrain. Remote Sens. Environ. 2014, 147, 133–144. [Google Scholar] [CrossRef] [Green Version]
- Bekaert, D.P.S.; Handwerger, A.L.; Agram, P.; Kirschbaum, D.B. InSAR-based detection method for mapping and monitoring slow-moving landslides in remote regions with steep and mountainous terrain: An application to Nepal. Remote Sens. Environ. 2020, 249, 111983. [Google Scholar] [CrossRef]
- Dai, K.; Li, Z.; Tomás, R.; Liu, G.; Yu, B.; Wang, X.; Cheng, H.; Chen, J.; Stockamp, J. Monitoring activity at the Daguangbao mega-landslide (China) using Sentinel-1 TOPS time series interferometry. Remote Sens. Environ. 2016, 186, 501–513. [Google Scholar] [CrossRef] [Green Version]
- Béjar-Pizarro, M.; Notti, D.; Mateos, R.M.; Ezquerro, P.; Centolanza, G.; Herrera, G.; Bru, G.; Sanabria, M.; Solari, L.; Duro, J.; et al. Mapping vulnerable urban areas affected by slow-moving landslides using Sentinel-1InSAR data. Remote Sens. 2017, 9, 876. [Google Scholar] [CrossRef] [Green Version]
- Huntley, D.; Rotheram-Clarke, D.; Pon, A.; Tomaszewicz, A.; Leighton, J.; Cocking, R.; Joseph, J. Benchmarked RADARSAT-2, SENTINEL-1 and RADARSAT Constellation Mission Change-Detection Monitoring at North Slide, Thompson River Valley, British Columbia: Ensuring a Landslide-Resilient National Railway Network. Can. J. Remote Sens. 2021, 47, 1–22. [Google Scholar] [CrossRef]
- Monger, J.; Price, R. The Canadian Cordillera: Geology and tectonic evolution. CSEG Rec. 2002, 27, 17–36. [Google Scholar]
- Ryder, J.M.; Fulton, R.J.; Clague, J.J. The Cordilleran Ice Sheet and the Glacial Geomorphology of Southern and Central British Colombia. Géographie Phys. Quat. 1991, 45, 365–377. [Google Scholar] [CrossRef] [Green Version]
- Meidinger, D.; Pojar, J. Ecosystems of British Columbia; Special Report Series 6; British Columbia Ministry of Forests: Victoria, BC, Canada, 1991. [Google Scholar]
- Bovis, M.J.; Jones, P. Holocene history of earthflow mass movements in south-central British Columbia: The influence of hydroclimatic changes. Can. J. Earth Sci. 1992, 29, 1746–1755. [Google Scholar] [CrossRef]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.Ö.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Werner, C.; Wegmüller, U.; Strozzi, T.; Wiesmann, A. GAMMA SAR and interferometric processing software. In Proceedings of the 3rd ERS-ENVISAT Symposium, Gothenburg, Sweden, 3 September 2000. [Google Scholar]
- Dudley, J.P.; Samsonov, S.V. The Government of Canada Automated Processing System for Change Detection and Ground Deformation Analysis from RADARSAT-2 and RADARSAT Constellation Mission Synthetic Aperture Radar Data: Description and User Guide; Geomatics Canada, Open File 63; Natural Resources Canada: Ottawa, ON, Canada, 2020. [Google Scholar]
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef] [Green Version]
- Mario Costantini, T. A novel phase unwrapping method based on network programming. IEEE Trans. Geosci. Remote Sens. 1998, 36, 813–821. [Google Scholar] [CrossRef]
- Samsonov, S.; d’Oreye, N. Multidimensional time-series analysis of ground deformation from multiple InSAR data sets applied to Virunga Volcanic Province. Geophys. J. Int. 2012, 191, 1095–1108. [Google Scholar]
- Samsonov, S.; d’Oreye, N. Multidimensional Small Baseline Subset (MSBAS) for Two-Dimensional Deformation Analysis: Case Study Mexico City. Can. J. Remote Sens. 2017, 43, 318–329. [Google Scholar] [CrossRef]
- Samsonov, S.; Dille, A.; Dewitte, O.; Kervyn, F.; d’Oreye, N. Satellite interferometry for mapping surface deformation time series in one, two and three dimensions: A new method illustrated on a slow-moving landslide. Eng. Geol. 2020, 266, 105471. [Google Scholar] [CrossRef]
- Tsang, S. Yalakom River Area Detailed Terrain Mapping with Evaluations of Slope Stability and Erosion Potential; Report for B. C. Ministry of Forests; Terrain Analysis Inc.: Vancouver, BC, Canada, 1995. [Google Scholar]
- Jiang, M.; Li, Z.W.; Ding, X.L.; Zhu, J.J.; Feng, G.C. Modeling minimum and maximum detectable deformation gradients of interferometric SAR measurements. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 766–777. [Google Scholar] [CrossRef]
- Schiarizza, P.; Gaba, R.G.; Coleman, M.; Garver, J.I. Geology and mineral occurrences of the Yalakom River area. In Geological Fieldwork 1989; British Columbia Geological Survey: Victoria, BC, Canada, 1990; pp. 53–72. [Google Scholar]
Sensor | Mode | Time Span (yyyymmdd) | θ | φ | N |
---|---|---|---|---|---|
Sentinel-1 | asc (path: 64, frame: 163) | 20170403–20210617 | 39° | −15° | 102 |
dsc (path: 13, frame: 421) | 20171008–20210613 | 39° | 195° | 91 | |
RCM | dsc (5M18) | 20200626–20200910 | 47° | 194° | 8 |
dsc (5M23) | 20200613–20200913 | 53° | 194° | 14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choe, B.-H.; Blais-Stevens, A.; Samsonov, S.; Dudley, J. Sentinel-1 and RADARSAT Constellation Mission InSAR Assessment of Slope Movements in the Southern Interior of British Columbia, Canada. Remote Sens. 2021, 13, 3999. https://doi.org/10.3390/rs13193999
Choe B-H, Blais-Stevens A, Samsonov S, Dudley J. Sentinel-1 and RADARSAT Constellation Mission InSAR Assessment of Slope Movements in the Southern Interior of British Columbia, Canada. Remote Sensing. 2021; 13(19):3999. https://doi.org/10.3390/rs13193999
Chicago/Turabian StyleChoe, Byung-Hun, Andrée Blais-Stevens, Sergey Samsonov, and Jonathan Dudley. 2021. "Sentinel-1 and RADARSAT Constellation Mission InSAR Assessment of Slope Movements in the Southern Interior of British Columbia, Canada" Remote Sensing 13, no. 19: 3999. https://doi.org/10.3390/rs13193999
APA StyleChoe, B. -H., Blais-Stevens, A., Samsonov, S., & Dudley, J. (2021). Sentinel-1 and RADARSAT Constellation Mission InSAR Assessment of Slope Movements in the Southern Interior of British Columbia, Canada. Remote Sensing, 13(19), 3999. https://doi.org/10.3390/rs13193999