Soil Salinity Mapping Using Machine Learning Algorithms with the Sentinel-2 MSI in Arid Areas, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Sample Collection and Analysis
2.3. Source of the Remote Sensing Data and Their Preprocessing
2.4. Data Processing Method
2.4.1. Modeling Factors
2.4.2. Modeling Methods and Accuracy Verification
3. Results
3.1. Statistics of the Soil Sample EC Values and Sentinel-2B Reflectance Data
3.1.1. Descriptive Statistics of the Soil Samples Electrical Conductivity (EC) Values
3.1.2. Descriptive Statistics of the Soil Sample Sentinel-2B Reflectance Data
3.2. Construction of the Optimal Soil EC Estimation Models
3.3. Soil EC Mapping Based on the Optimal Estimation Models
4. Discussion
4.1. Soil Salinity Detection Based on the Sentinel-2 MSI Data
4.2. Accuracy of the Soil Salt Estimation Model Based on the Spectral Variables
4.3. Uncertainty Analysis of Soil Salinity Mapping Based on the Sentinel-2 MSI Data
5. Conclusions
- The average reflectance of each band of the MSI data ranges from 0.21–0.28. According to the spectral characteristics corresponding to the different soil EC levels, the spectral reflectance of salinized soil in the MSI data ranges from 0.09–0.35.
- In general, the correlation coefficient between the MSI data and MSI-derived covariates and soil EC was moderate, and the correlation between certain MSI data sets and soil EC was not significant.
- The SVM soil EC estimation model established with the MSI data set attained a better performance and accuracy than those attained with the soil EC estimation models established with the RF and ANN models.
- We applied the SVM soil EC estimation model to map the soil salinity in the study area, which provides a scientific basis for the simulation of soil salinization scenarios in arid areas in the future.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiao, Y.; Zhao, G.; Li, T.; Zhou, X.; Li, J. Soil salinization of cultivated land in Shandong Province, China—Dynamics during the past 40years. Land Degrad. Dev. 2019, 30, 426–436. [Google Scholar] [CrossRef]
- Litalien, A.; Zeeb, B. Curing the earth: A review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation. Sci. Total Environ. 2020, 698, 134235. [Google Scholar] [CrossRef] [PubMed]
- Hafez, E.M.; Omara, A.E.D.; Alhumaydhi, F.A.; El-Esawi, M.A. Minimizing hazard impacts of soil salinity and water stress on wheat plants by soil application of vermicompost and biochar. Physiol. Plant. 2020. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhao, J.; Zhu, G.; Wang, Y.; Ma, X.; Wang, J.; Guo, H.; Zhang, Y. Soil salinization in the oasis areas of downstream inland rivers—Case Study: Minqin oasis. Quat. Int. 2020, 537, 69–78. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, F.; Ding, J.; Kung, H.T.; Latif, A.; Johnson, V.C. Estimation of soil salt content (SSC) in the Ebinur Lake Wetland National Nature Reserve (ELWNNR), Northwest China, based on a Bootstrap-Bp neural network model and optimal spectral indices. Sci. Total Environ. 2018, 615, 918–930. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Yang, F.; Han, B.; Fan, Y.; Jiang, L. A model for the rapid monitoring of soil salinization in the yellow river delta using landsat 8 OLI imagery based on VI-SI feature space. Remote Sens. Lett. 2019, 10, 796–805. [Google Scholar] [CrossRef]
- Gašparović, M.; Jogun, T. The effect of fusing sentinel-2 bands on land-cover classification. Int. J. Remote Sens. 2018, 39, 822–841. [Google Scholar] [CrossRef]
- Wang, J.; Ding, J.; Yu, D.; Ma, X.; Zhang, Z.P.; Ge, X.Y.; Teng, D.X.; Li, X.H.; Liang, J.; Lizaga, I.; et al. Capability of sentinel-2 msi data for monitoring and mapping of soil salinity in dry and wet seasons in the Ebinur Lake region, Xinjiang, China. Geoderma 2019, 353, 172–187. [Google Scholar] [CrossRef]
- Filho, M.G.; Kuplich, T.M.; Quadros, F.L.F.D. Estimating natural grassland biomass by vegetation indices using sentinel 2 remote sensing data. Int. J. Remote Sens. 2020, 41, 2861–2876. [Google Scholar] [CrossRef]
- Davis, E.; Wang, C.; Dow, K. Comparing Sentinel-2 MSI and Landsat 8 OLI in soil salinity detection: A case study of agricultural lands in coastal North Carolina. Int. J. Remote Sens. 2019, 40, 6134–6153. [Google Scholar] [CrossRef]
- Gorji, T.; Yildirim, A.; Hamzehpour, N.; Tanik, A.; Sertel, E. Soil salinity analysis of Urmia Lake basin using Landsat-8 OLI and Sentinel- 2A based spectral indices and electrical conductivity measurements. Ecol. Indic. 2020, 112, 106173. [Google Scholar] [CrossRef]
- Farahmand, N.; Sadeghi, V.; Farahmand, S. Estimating soil salinity in the dried lake bed of Urmia Lake using optical Sentinel-2b images and multivariate linear regression models. J. Indian Soc. Remote Sens. 2020, 48, 675–687. [Google Scholar] [CrossRef]
- Mulder, V.L.; Bruin, S.D.; Schaepman, M.E.; Mayr, T.R. The use of remote sensing in soil and terrain mapping—A review. Geoderma 2011, 162, 1–19. [Google Scholar] [CrossRef]
- Van Zijl, G.; Van Tol, J.; Bouwer, D.; Lorentz, S.; Roux, P.L. Combining historical remote sensing, digital soil mapping and hydrological modelling to produce solutions for infrastructure damage in Cosmo City, South Africa. Remote Sens. 2020, 12, 433. [Google Scholar] [CrossRef] [Green Version]
- Taghizadeh-Mehrjardi, R.; Toomanian, N.; Khavaninzadeh, A.R.; Jafari, A.; Triantafilis, J. Predicting and mapping of soil particle-size fractions with adaptive neuro-fuzzy inference and ant colony optimization in central Iran. Eur. J. Soil Sci. 2016, 67, 707–725. [Google Scholar] [CrossRef]
- Sahour, H.; Gholami, V.; Vazifedan, M. A comparative analysis of statistical and machine learning techniques for mapping the spatial distribution of groundwater salinity in a coastal aquifer. J. Hydrol. 2020, 591, 125321. [Google Scholar] [CrossRef]
- Zeng, W.; Zhang, D.; Fang, Y.; Wu, J.; Huang, J. Comparison of partial least square regression, support vector machine, and deep-learning techniques for estimating soil salinity from hyperspectral data. J. Appl. Remote Sens. 2018, 12, 022204. [Google Scholar] [CrossRef]
- Cao, X.; Ding, J.; Ge, X.; Wang, J. Estimation of soil electrical conductivity based on spectral index and machine learning algorithm. Acta Pedol. Sin. 2020, 57, 867–877. (In Chinese) [Google Scholar] [CrossRef]
- Xu, H.; Chen, C.; Zheng, H.; Luo, G.; Yang, L.; Wang, W.; Wu, S.; Ding, J. AGA-SVR-based selection of feature subsets and optimization of parameter in regional soil salinization monitoring. Int. J. Remote Sens. 2020, 41, 4470–4495. [Google Scholar] [CrossRef]
- Jiang, H.; Rusuli, Y.; Amuti, T.; He, Q. Quantitative assessment of soil salinity using multi-source remote sensing data based on the support vector machine and artificial neural network. Int. J. Remote Sens. 2019, 40, 284–306. [Google Scholar] [CrossRef]
- Setia, R.; Lewis, M.; Marschner, P.; Segaran, R.R.; Chittleborough, D. Severity of salinity accurately detected and classified on a paddock scale with high resolution multispectral satellite imagery. Land Degrad. Dev. 2013, 24, 375–384. [Google Scholar] [CrossRef]
- Ramos, T.B.; Castanheira, N.; Oliveira, A.R.; Paz, A.M.; Darouich, H.; Simionesei, L.; Farzamian, M.; Gonçalves, M.C. Soil salinity assessment using vegetation indices derived from sentinel-2 multispectral data. Application to Lezíria Grande, Portugal. Agric. Water Manag. 2020, 241, 106387. [Google Scholar] [CrossRef]
- Abderrazak, B.; Ali, E.B.; Rachid, B.; Hassan, R. Sentinel-MSI VNIR and SWIR bands sensitivity analysis for soil salinity discrimination in an arid landscape. Remote Sens. 2018, 10, 855. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.Z.; Ding, J.L.; Yu, D.L.; Teng, D.X.; He, B.; Chen, X.Y.; Ge, X.Y.; Zhang, Z.P.; Wang, Y.; Yang, X.D.; et al. Machine learning-based detection of soil salinity in an arid desert region, Northwest China: A comparison between landsat-8 OLI and sentinel-2 MSI. Sci. Total Environ. 2020, 707, 136092. [Google Scholar] [CrossRef] [PubMed]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Peng, J.; Biswas, A.; Jiang, Q.S.; Zhao, R.Y.; Hu, J.; Hu, B.F.; Shi, Z. Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China. Geoderma 2018, 337, 1309–1319. [Google Scholar] [CrossRef]
- Verstraete, M.M.; Pinty, B. Designing optimal spectral indexes for remote sensing applications. IEEE Trans. Geosci. Remote Sens. 1996, 34, 1254–1265. [Google Scholar] [CrossRef]
- Han, L.; Liu, D.; Cheng, G.; Zhang, G.; Wang, L. Spatial distribution and genesis of salt on the saline playa at Qehan Lake, Inner Mongolia, China. Catena 2019, 177, 22–30. [Google Scholar] [CrossRef]
- Khan, N.M.; Rastoskuev, V.V.; Sato, Y.; Shiozawa, S. Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators. Agric. Water Manag. 2005, 77, 96–109. [Google Scholar] [CrossRef]
- Douaoui, A.E.K.; Nicolas, H.; Walter, C. Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data. Geoderma 2006, 134, 217–230. [Google Scholar] [CrossRef]
- Triki Fourati, H.; Bouaziz, M.; Benzina, M.; Bouaziz, S. Modeling of soil salinity within a semi-arid region using spectral analysis. Arab. J. Geosci 2015, 8, 11175–11182. [Google Scholar] [CrossRef]
- Baig, M.H.A.; Zhang, L.; Shuai, T.; Tong, Q. Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance. Remote Sens. Lett. 2014, 5, 423–431. [Google Scholar] [CrossRef]
- Peng, J.; Liu, H.; Shi, Z.; Xiang, H.; Chi, C. Regional heterogeneity of hyperspectral characteristics of salt-affected soil and salinity inversion. Trans. Chin. Soc. Agric. Eng. 2014, 30, 167–174. [Google Scholar]
- Xu, C.; Zeng, W.; Huang, J.; Wu, J.; Van Leeuwen, W. Prediction of soil moisture content and soil salt concentration from hyperspectral laboratory and field data. Remote Sens. 2016, 8, 42. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.; Shen, R.; Cheng, H.; Chen, Y.; Zhang, Y.; Liu, Y.; Zhou, M.; Yu, L.; Liu, Y.; Liu, Y. Estimating lead and zinc concentrations in peri-urban agricultural soils through reflectance spectroscopy: Effects of fractional-order derivative and random forest. Sci. Total Environ. 2018, 651, 1969–1982. [Google Scholar] [CrossRef]
- Wang, J.Q.; Wu, W.M.; Wang, T.W.; Cai, C.F. Estimation of leaf chlorophyll content and density in Populus euphratica based on hyperspectral characteristic variables. Spectrosc. Lett. 2018, 51, 485–495. [Google Scholar] [CrossRef]
- Zeraatpisheh, M.; Ayoubi, S.; Jafari, A.; Tajik, S.; Finke, P. Digital mapping of soil properties using multiple machine learning in a semi-arid region, central Iran. Geoderma 2019, 338, 445–452. [Google Scholar] [CrossRef]
- Allbed, A.; Kumar, L. Soil salinity mapping and monitoring in arid and semi-arid regions using remote sensing technology: A review. Adv. Remote Sens. 2013, 2, 373–385. [Google Scholar] [CrossRef] [Green Version]
- Celleri, C.; Zapperi, G.; Trilla, G.G.; Pratolongo, P. Assessing the capability of broadband indices derived from landsat 8 operational land imager to monitor above ground biomass and salinity in semiarid saline environments of the bahía blanca estuary, argentina. Int. J. Remote Sens. 2019, 40, 4817–4838. [Google Scholar] [CrossRef]
- Metternicht, G.I.; Zinck, J.A. Remote sensing of soil salinity: Potentials and constraints. Remote Sens. Environ. 2003, 85, 1–20. [Google Scholar] [CrossRef]
- Bui, E.N. Soil salinity: A neglected factor in plant ecology and biogeography. J. Arid Environ. 2013, 92, 14–25. [Google Scholar] [CrossRef]
- Pakparvar, M.; Gabriels, D.; Aarabi, K.; Edraki, M.; Raes, D.; Cornelis, W. Incorporating legacy soil data to minimize errors in salinity change detection: A case study of Darab Plain, Iran. Int. J. Remote Sens. 2012, 33, 6215–6238. [Google Scholar] [CrossRef]
- Ding, J.; Yu, D. Monitoring and evaluating spatial variability of soil salinity in dry and wet seasons in the Werigan-Kuqa Oasis, China, using remote sensing and electromagnetic induction instruments. Geoderma 2014, 235, 316–322. [Google Scholar] [CrossRef]
- Yang, J.; Wang, X.; Wang, R.; Wang, H. Combination of convolutional neural networks and recurrent neural networks for predicting soil properties using Vis-Nir spectroscopy. Geoderma 2020, 380, 114616. [Google Scholar] [CrossRef]
- Gholami, V.; Sahour, H.; Hadian, M.A. Soil erosion modeling using erosion pins and artificial neural networks. Catena 2021, 196, 104902. [Google Scholar] [CrossRef]
- Xing, L.; Li, L.; Gong, J.; Ren, C.; Liu, J.; Chen, H. Daily soil temperatures predictions for various climates in united states using data-driven model. Energy 2018, 160, 430–440. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, Y.M.; Sun, Y.N.; Liu, J.H. Hyperspectral prediction model of soil nutrient content in the loess hilly-gully region, China. J. Appl. Ecol. 2018, 29, 2835–2842. [Google Scholar]
- Banerjee, K.; Krishnan, P.; Mridha, N. Application of thermal imaging of wheat crop canopy to estimate leaf area index under different moisture stress conditions. Biosyst. Eng. 2017, 166, 13–27. [Google Scholar] [CrossRef]
- Deiss, L.; Margenot, A.J.; Culman, S.W.; Demyan, M.S. Tuning support vector machines regression models improves prediction accuracy of soil properties in mir spectroscopy. Geoderma 2020, 365, 114227. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.L.; Zhang, F.; Chan, N.; Kung, H.; Liu, S.H.; Deng, L.F. Estimation of soil salt content using machine learning techniques based on remote-sensing fractional derivatives, a case study in the Ebinur Lake Wetland National Nature Reserve, Northwest China. Ecol. Indic. 2020, 119, 106869. [Google Scholar] [CrossRef]
- Zhang, K.; Chao, L.J.; Wang, Q.Q.; Huang, Y.C.; Liu, R.H.; Hong, Y. Using multi-satellite microwave remote sensing observations for retrieval of daily surface soil moisture across china. Water Sci. Eng. 2019, 12, 85–97. [Google Scholar] [CrossRef]
Modeling Indices | Acronym | Equation | Reference |
---|---|---|---|
Resampled original band reflectance images | B2-Blue, B3-Green, B4-Red, B5-Rededge1, B6-Rededge2, B7-Rededge3, B8-NIR, B8a-Rededge4, B11-SWIR1, B12-SWIR2 | The central wavelengths are 492.1 nm, 559 nm, 665 nm, 703.8 nm, 739.1 nm, 779.7 nm, 833 nm, 864 nm, 1610.4 nm, and 2185.7 nm, respectively. | |
First three bands of principal component (PC) transformation | PC1, PC2, PC3 | Sentinel-2B 10-m resolution and 20-m resolution images are resampled to a 20-m resolution and then subjected to principal component transformation. | |
Normalized difference salinity index | NDSI | (R − NIR)/(NIR + R) | [29] |
Salinity index | S1 | B/R | |
S2 | (B − R)/(B + R) | ||
S3 | (G × R)/B | ||
S5 | (B × R)/G | ||
S6 | (R × NIR)/G | ||
SI | (B + R)0.5 | [30] | |
SI1 | (G × R)0.5 | ||
SI2 | [(G)2 + (R)2 + (NIR)2]0.5 | ||
SI3 | [(R)2 + (G)2]0.5 | ||
SI4 | (B × R)0.5 | ||
Intensity index 1 | Int1 | (G + R)/2 | [31] |
Intensity index 2 | Int2 | (G + R + NIR)/2 | |
Vegetation Index | NDVI | (NIR − R)/(NIR + R) | |
EVI | 2.5 × [(NIR − R)/(NIR + 6 × R − 7.5 × B + 1)] | ||
CRSI | [(R × NIR) − (B × G)]/[(R × NIR) + (B × G)] | ||
RVI | NIR/R | ||
SAVI | (1 + L)[(NIR − R)/(NIR + R + L)] | ||
GDVI | (NIRn − Rn)/(NIRn + Rn), n = 2 | ||
Tasseled cap wetness | TCW | 0.1509 × B + 0.1973 × G + 0.3272 × R + 0.3406 × NIR − 0.7112 × SWIR1 − 0.4573 × SWIR2 | [32] |
Data Set | n | Mean | Min. | Max. | S.D. | C.V. |
---|---|---|---|---|---|---|
Total data set | 160 | 24.03 | 1.07 | 79.6 | 10.70 | 44.53 |
Modeling data set | 112 | 23.86 | 1.07 | 79.6 | 10.65 | 44.64 |
Verification data set | 48 | 24.72 | 6.32 | 64.65 | 10.64 | 43.04 |
Modeling Method | Rm2 | Modeling | Rv2 | Verification | ||||
---|---|---|---|---|---|---|---|---|
RMSE | RPIQ | SEL/SEP | RMSE | RPIQ | SEL/SEP | |||
SVM | 0.71 | 5.78 | 1.75 | 1.26 | 0.88 | 4.89 | 1.96 | 1.11 |
RF | 0.81 | 4.67 | 1.85 | 1.42 | 0.27 | 10.61 | 0.65 | 1.79 |
ANN | 0.80 | 4.53 | 2.06 | 1.27 | 0.57 | 8.15 | 1.26 | 1.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Peng, J.; Li, H.; Yin, C.; Liu, W.; Wang, T.; Zhang, H. Soil Salinity Mapping Using Machine Learning Algorithms with the Sentinel-2 MSI in Arid Areas, China. Remote Sens. 2021, 13, 305. https://doi.org/10.3390/rs13020305
Wang J, Peng J, Li H, Yin C, Liu W, Wang T, Zhang H. Soil Salinity Mapping Using Machine Learning Algorithms with the Sentinel-2 MSI in Arid Areas, China. Remote Sensing. 2021; 13(2):305. https://doi.org/10.3390/rs13020305
Chicago/Turabian StyleWang, Jiaqiang, Jie Peng, Hongyi Li, Caiyun Yin, Weiyang Liu, Tianwei Wang, and Huaping Zhang. 2021. "Soil Salinity Mapping Using Machine Learning Algorithms with the Sentinel-2 MSI in Arid Areas, China" Remote Sensing 13, no. 2: 305. https://doi.org/10.3390/rs13020305
APA StyleWang, J., Peng, J., Li, H., Yin, C., Liu, W., Wang, T., & Zhang, H. (2021). Soil Salinity Mapping Using Machine Learning Algorithms with the Sentinel-2 MSI in Arid Areas, China. Remote Sensing, 13(2), 305. https://doi.org/10.3390/rs13020305