Observations of Mesoscale Eddies in Satellite SSS and Inferred Eddy Salt Transport
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
3. Results
3.1. Regional Example
3.2. Eddy Salt Transport by Mean of Eddy Composite Analysis
3.3. Eddy Salt Transport by Mean of Eddy Covariance
3.4. Implications for the Subtropical SSS Maxima
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- U.S. CLIVAR Office. Report of the U.S. CLIVAR Salinity Science Working Group; U.S. CLIVAR Report; U.S. CLIVAR Office: Washington, DC, USA, 2007; p. 46. [Google Scholar]
- Schmitt, R.W. Salinity and the Global Water Cycle. Oceanography 2008, 21, 12–19. [Google Scholar] [CrossRef]
- Durack, P.J. Ocean Salinity and the Global Water Cycle. Oceanography 2015, 28, 20–31. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Dixon, T.; Myers, P.; Bonin, J.; Chambers, D.; Broeke, M.R.; Ribergaard, M.H.; Mortensen, J. Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation. Nat. Commun. 2016, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lukas, R.; Lindstrom, E. The mixed layer of the western equatorial Pacific Ocean. J. Geophys. Res. 1991, 96, 3343–3357. [Google Scholar] [CrossRef]
- Vinogradova, N.T.; Ponte, R.M. Clarifying the link between surface salinity and freshwater fluxes on monthly to interannual time scales. J. Geophys. Res. Oceans 2013, 118, 3190–3201. [Google Scholar] [CrossRef]
- Busecke, J.J.M.; Abernathey, R.P.; Gordon, A.L. Lateral Eddy Mixing in the Subtropical Salinity Maxima of the Global Ocean. J. Phys. Oceanogr. 2017, 47, 737–754. [Google Scholar] [CrossRef]
- Ferrari, R.; Wunsch, C. Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annu. Rev. Fluid Mech. 2009, 41, 253–282. [Google Scholar] [CrossRef] [Green Version]
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M. Global Observations of Nonlinear Mesoscale Eddies. Prog. Oceanogr. 2011, 91, 167–216. [Google Scholar] [CrossRef]
- Gordon, A.L.; Giulivi, C.F. Ocean eddy freshwater flux convergence into the North Atlantic Subtropics. J. Geophys. Res. Oceans 2014, 119, 3327–3335. [Google Scholar] [CrossRef]
- Delcroix, T.; Chaigneau, A.; Soviadan, D.; Boutin, J.; Pegliasco, C. Eddy-induced salinity changes in the tropical Pacific. J. Geophys. Res. Oceans 2019, 124, 374–389. [Google Scholar] [CrossRef]
- Busecke, J.; Gordon, A.L.; Li, Z.; Bingham, F.M.; Font, J. Subtropical surface layer salinity budget and the role of mesoscale turbulence. J. Geophys. Res. Oceans 2014, 119, 4124–4140. [Google Scholar] [CrossRef] [Green Version]
- Treguier, A.M.; Deshayes, J.; Lique, C.; Dussin, R.; Molines, J.M. Eddy contributions to the meridional transport of salt in the North Atlantic. J. Geophys. Res. Oceans 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Jayne, S.R.; Marotzke, J. The oceanic eddy heat transport. J. Phys. Oceanogr. 2002, 32, 3328–3345. [Google Scholar] [CrossRef]
- Bachman, S.; Fox-Kemper, B. Eddy parameterization challenge suite I: Eddy spindown. Ocean Model. 2013, 64, 12–28. [Google Scholar] [CrossRef]
- Reul, N.; Grodsky, S.A.; Arias, M.; Boutin, J.; Catany, R.; Chapron, B.; Amico, F.; Dinnat, E.; Donlon, C.; Fore, A.; et al. Sea surface salinity estimates from spaceborne L-band radiometers: An overview of the first decade of observation (2010–2019). Remote Sens. Environ. 2020, 242. [Google Scholar] [CrossRef]
- Vinogradova, N.; Lee, T.; Boutin, J.; Drushka, K.; Fournier, S.; Sabia, R.; Stammer, D.; Bayler, E.; Reul, N.; Gordon, A.; et al. Satellite Salinity Observing System: Recent Discoveries and the Way Forward. Front. Mar. Sci. 2019, 6. [Google Scholar] [CrossRef]
- Meissner, T.; Wentz, F.; Vine, D.; Lagerloef, G.; Lee, T. Estimate of uncertainties in the Aquarius salinity retrievals. In Proceedings of the Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 5324–5327. [Google Scholar] [CrossRef]
- Kao, H.Y.; Lagerloef, G.S.E.; Lee, T.; Melnichenko, O.; Meissner, T.; Hacker, P. Assessment of Aquarius Sea Surface Salinity. Remote Sens. 2018, 10, 1341. [Google Scholar] [CrossRef] [Green Version]
- Boutin, J.; Vergely, J.L.; Thouvenin, M.C.; Supply, A.; Khvorostyanov, D. SMOS SSS L3 maps generated by CATDS CEC LOCEAN debias V4.0. SEANOE 2019. [Google Scholar] [CrossRef]
- Lee, T.; Lagerloef, G.; Gierach, M.M.; Kao, H.Y.; Yueh, S.; Dohan, K. Aquarius reveals salinity structure of tropical instability waves. Geophys. Res. Lett. 2019, 39, L12610. [Google Scholar] [CrossRef]
- Maes, C.; Dewitte, B.; Sudre, J.; Garcon, V.; Varillon, D. Small-scale features of temperature and salinity surface fields in the Coral Sea. J. Geophys. Res. Oceans 2013, 118, 5426–5438. [Google Scholar] [CrossRef] [Green Version]
- Kolodziejczyk, N.; Hernandez, O.; Boutin, J.; Reverdin, G. SMOS salinity in the subtropical North Atlantic salinity maximum: 2. Two-dimensional horizontal thermohaline variability. J. Geophys. Res. Oceans 2015, 120, 972–987. [Google Scholar] [CrossRef] [Green Version]
- Melnichenko, O.; Amores, A.; Maximenko, N.; Hacker, P.; Potemra, J. Signature of mesoscale eddies in satellite sea surface salinity data. J. Geophys. Res. Oceans 2017, 122, 1416–1424. [Google Scholar] [CrossRef]
- Qu, T.; Lian, Z.; Nie, X.; Wei, Z. Eddy-induced meridional salt flux and its impacts on the sea surface salinity maxima in the southern subtropical oceans. Geophys. Res. Lett. 2019, 46, 11292–11300. [Google Scholar] [CrossRef]
- Meissner, T.; Wentz, F.J.; Manaster, A.; Lindsley, R. Remote Sensing Systems SMAP Ocean Surface Salinities [Level 2C, Level 3 Running 8-day, Level 3 Monthly], Version 4.0 Validated Release; Remote Sensing Systems: Santa Rosa, CA, USA, 2019. [Google Scholar] [CrossRef]
- Aviso+Altimetry. Mesoscale Eddy Trajectory Atlas Product Handbook; Aviso+Altimetry: Ramonville St Agne, France, 2019. [Google Scholar]
- Schlax, M.G.; Chelton, D.B. The “Growing Method” of Eddy Identification and Tracking in Two and Three Dimensions; Ocean and Atmospheric Sciences, College of Earth, Oregon State University: Corvallis, OR, USA, 2016. [Google Scholar]
- Huffman, G.J.; Bolvin, D.T.; Adler, R.F. GPCP version 1.2 One-Degree Daily Precipitation Data Set. In Research Data Archive at the National Center for Atmospheric Research; Computational and Information Systems Laboratory: Boulder, CO, USA, 2016. [Google Scholar] [CrossRef]
- Yu, L.; Weller, R.A. Objectively Analyzed air-sea heat Fluxes for the global ice-free oceans (1981-2005). Bull. Am. Meteorol. Soc. 2007, 88, 527–529. [Google Scholar] [CrossRef] [Green Version]
- Hausmann, U.; Czaja, A. The observed signature of mesoscale eddies in sea surface temperature and the associated heat transport. Deep-Sea Res. I 2012, 70, 60–72. [Google Scholar] [CrossRef]
- Roemmich, D.; Gilson, J. Eddy transport of heat and thermocline waters in the North Pacific: A key to interannual/decadal climate variability? J. Phys. Oceanogr. 2001, 31, 675–687. [Google Scholar] [CrossRef]
- Amores, A.; Melnichenko, O.; Maximenko, N. Coherent mesoscale eddies in the North Atlantic subtropical gyre: 3D structure and transport with application to the salinity maximum. J. Geophys. Res. 2017, 122, 23–41. [Google Scholar] [CrossRef]
- Thompson, A.F.; Young, Y.R. Scaling Baroclinic Eddy Fluxes: Vortices and Energy Balance. J. Phys. Oceanogr. 2006, 36, 720–738. [Google Scholar] [CrossRef]
- Sudre, J.; Maes, C.; Garçon, V. On the global estimates of geostrophic and Ekman surface currents. Limnol. Oceanogr. Fluids Environ. 2013, 3. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.; Lagerloef, G.; Kao, H.Y.; Phaden, M.J.; Willis, J.; Gierach, M.M. The influence of salinity on tropical Atlantic instability waves. J. Geophys. Res. Oceans 2014, 119, 8375–8394. [Google Scholar] [CrossRef]
- Treguier, A.M.; Deshayes, J.; Sommer, J.; Lique, C.; Madec, G.; Penduff, T.; Molines, J.M.; Barnier, B.; Bourdalle, B.R.; Talandier, C. Meridional transport of salt in the global ocean from an eddy resolving model. Ocean Sci. 2014, 10, 243–255. [Google Scholar] [CrossRef] [Green Version]
- Bryan, F.; Bachman, S. Isohaline Salinity Budget of the North Atlantic Salinity Maximum. J. Phys. Oceanogr. 2015, 45, 724–736. [Google Scholar] [CrossRef]
- Gordon, A.L.; Giulivi, A.L.; Busecke, J.; Bingham, F.M. Differences among subtropical surface salinity patterns. Oceanography 2015, 28, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Farrar, J.T.; Rainvill, L.; Plueddemann, A.J.; Kessler, W.S.; Lee, C.; Hodges, B.A.; Schmitt, R.W.; Edson, J.B.; Riser, S.C.; Erikse, C.C.; et al. Salinity and temperature balances at the SPURS Central mooring during fall and winter. Oceanography 2015, 28, 56–65. [Google Scholar] [CrossRef] [Green Version]
- Hasson, A.; Delcroix, T.; Boutin, J. Formation and variability of the South Pacific Sea Surface Salinity maximum in recent decades. J. Geophys. Res. Oceans 2013, 118, 5109–5116. [Google Scholar] [CrossRef] [Green Version]
- Katsura, S.; Oka, E.; Qiu, B.; Schneider, N. Formation and Subduction of North Pacific Tropical Water and Their Interannual Variability. J. Phys. Oceanogr. 2013, 43, 2400–2415. [Google Scholar] [CrossRef] [Green Version]
- Larichev, V.; Held, I.M. Eddy amplitudes and fluxes in a homogeneous model of fully developed baroclinic instability. J. Phys. Oceanogr. 1995, 25, 2285–2297. [Google Scholar] [CrossRef] [Green Version]
- Thompson, A.F.; Young, W.R. Two-layer baroclinic eddy heat fluxes: Zonal flows and energy balance. J. Atmos. Sci. 2007, 64, 3214–3231. [Google Scholar] [CrossRef] [Green Version]
- Aberhatney, R.; Wortham, C. Phase speed cross spectra of eddy heat fluxes in the eastern Pacific. J. Phys. Oceanogr. 2015, 45, 1285–1301. [Google Scholar] [CrossRef] [Green Version]
- Capet, X.; Williams, J.C.; Molemaker, M.J.; Shchepetkin, A.F. Mesoscale to submesoscale transition in the California Current System. Part 1: Flow structure and eddy flux. J. Phys. Oceanogr. 2008, 38, 29–43. [Google Scholar] [CrossRef] [Green Version]
- Müller, V.; Melnichenko, O. Decadal changes of meridional eddy heat transport in the subpolar North Atlantic derived from satellite and in situ observations. J. Geophys. Res. Oceans 2020, 125. [Google Scholar] [CrossRef]
SIO | NA | SA | NP | SP | |
---|---|---|---|---|---|
SMAP | 21 | 14 | 3 | 15 | 6 |
SMOS | 20 | 11 | 5 | 12 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melnichenko, O.; Hacker, P.; Müller, V. Observations of Mesoscale Eddies in Satellite SSS and Inferred Eddy Salt Transport. Remote Sens. 2021, 13, 315. https://doi.org/10.3390/rs13020315
Melnichenko O, Hacker P, Müller V. Observations of Mesoscale Eddies in Satellite SSS and Inferred Eddy Salt Transport. Remote Sensing. 2021; 13(2):315. https://doi.org/10.3390/rs13020315
Chicago/Turabian StyleMelnichenko, Oleg, Peter Hacker, and Vasco Müller. 2021. "Observations of Mesoscale Eddies in Satellite SSS and Inferred Eddy Salt Transport" Remote Sensing 13, no. 2: 315. https://doi.org/10.3390/rs13020315
APA StyleMelnichenko, O., Hacker, P., & Müller, V. (2021). Observations of Mesoscale Eddies in Satellite SSS and Inferred Eddy Salt Transport. Remote Sensing, 13(2), 315. https://doi.org/10.3390/rs13020315