Global Surface HCHO Distribution Derived from Satellite Observations with Neural Networks Technique
Abstract
:1. Introduction
2. Data and Methods
2.1. Datasets
2.1.1. Sentinel-5P VCD Data
2.1.2. In-Situ Data
2.1.3. Global DEM Data
2.2. Data Processing
2.2.1. Preprocessing
2.2.2. Neural Network Architecture
2.2.3. Loss Function
3. Results
3.1. Point Estimation
3.2. Interval Estimation
3.3. Seasonal Changes of HCHO in Some Key Regions
4. Discussion
4.1. Improvements and Innovativeness
4.2. Limitations and Potential Improvements
4.3. Health Risk of HCHO in Major Cities
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tesfaye, S.; Hamba, N.; Gerbi, A.; Neger, Z. Oxidative Stress and Carcinogenic Effect of Formaldehyde Exposure: Systematic Review & Analysis. Endocrinol. Metab. Syndr. 2020, 9, 319. [Google Scholar]
- Scheffe, R.D.; Strum, M.; Phillips, S.B.; Thurman, J.; Eyth, A.; Fudge, S.; Morris, M.; Palma, T.; Cook, R. Hybrid Modeling Approach to Estimate Exposures of Hazardous Air Pollutants (HAPs) for the National Air Toxics Assessment (NATA). Environ. Sci. Technol. 2016, 50, 12356–12364. [Google Scholar] [CrossRef] [PubMed]
- Blair, A.; Saracci, R.; Stewart, P.A.; Hayes, R.; Shy, C. Epidemiologic evidence on the relationship between formaldehyde exposure and cancer. Scand. J. Work. Environ. Health 1990, 16, 381–393. [Google Scholar] [CrossRef] [PubMed]
- Agency, E.P. Formaldehyde. Available online: https://www.epa.gov/sites/production/files/2016-09/documents/formaldehyde.pdf (accessed on 21 May 2021).
- Jin, X.; Fiore, A.; Boersma, K.F.; Smedt, I.D.; Valin, L. Inferring Changes in Summertime Surface Ozone–NO x–VOC Chemistry over US Urban Areas from Two Decades of Satellite and Ground-Based Observations. Environ. Sci. Technol. 2020, 54, 6518–6529. [Google Scholar] [CrossRef] [PubMed]
- Javed, Z.; Liu, C.; Khokhar, M.F.; Tan, W.; Liu, H.; Xing, C.; Ji, X.; Tanvir, A.; Hong, Q.; Sandhu, O.; et al. Ground-Based MAX-DOAS Observations of CHOCHO and HCHO in Beijing and Baoding, China. Remote Sens. 2019, 11, 1524. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Tang, Z.; Abera, T.; Zhang, X.; Hakola, H.; Pellikka, P.; Maeda, E. Spatio-temporal distribution and source partitioning of formaldehyde over Ethiopia and Kenya. Atmos. Environ. 2020, 237, 117706. [Google Scholar] [CrossRef]
- Kaiser, J.; Wolfe, G.M.; Bohn, B.; Broch, S.; Fuchs, H.; Ganzeveld, L.N.; Gomm, S.; Häseler, R.; Hofzumahaus, A.; Holland, F.; et al. Evidence for an unidentified non-photochemical ground-level source of formaldehyde in the Po Valley with potential implications for ozone production. Atmos. Chem. Phys. Discuss. 2015, 15, 1289–1298. [Google Scholar] [CrossRef] [Green Version]
- Green, J.R.; Fiddler, M.N.; Fibiger, D.L.; McDuffie, E.E.; Aquino, J.; Campos, T.; Shah, V.; Jaeglé, L.; Thornton, J.A.; DiGangi, J.P.; et al. Wintertime Formaldehyde: Airborne Observations and Source Apportionment Over the Eastern United States. J. Geophys. Res. Atmos. 2021, 126, e2020JD033518. [Google Scholar] [CrossRef]
- Geddes, J. Impacts of Interannual Variability in Biogenic VOC Emissions Near Transitional Ozone Production Regimes. In AGU Fall Meeting Abstracts; American Geophysical Union: Washington, DC, USA, 2017; p. A54B-06. [Google Scholar]
- Gratsea, M.; Vrekoussis, M.; Richter, A.; Wittrock, F.; Schönhardt, A.; Burrows, J.; Kazadzis, S.; Mihalopoulos, N.; Gerasopoulos, E. Slant column MAX-DOAS measurements of nitrogen dioxide, formaldehyde, glyoxal and oxygen dimer in the urban environment of Athens. Atmos. Environ. 2016, 135, 118–131. [Google Scholar] [CrossRef]
- EPA. Outdoor Air Quality Data. Available online: https://www.epa.gov/outdoor-air-quality-data (accessed on 21 March 2021).
- Product User Manual for GOME Total Columns of Ozone, NO2, Tropospheric NO2, BrO, SO2, H2O, HCHO, OClO, and Cloud Properties. Available online: https://atmos.eoc.dlr.de/app/docs/DLR_GOME_PUM.pdf (accessed on 1 October 2021).
- Algorithm Theoretical Basis Document for GOME-2 Total Column Products of Ozone, NO2, BrO, HCHO, SO2, H2O and Cloud Properties. Available online: https://atmos.eoc.dlr.de/app/docs/DLR_GOME-2_ATBD_GDP48.pdf (accessed on 1 October 2021).
- SCIAMACHY Offline Processor Level1b-2 ATBD Algorithm Theoretical Baseline Document. Available online: https://atmos.eoc.dlr.de/sciamachy/documents/level_1b_2/sciaol1b2_atbd_master.pdf (accessed on 15 September 2021).
- OMI Algorithm Theoretical Basis Document. Available online: https://ozoneaq.gsfc.nasa.gov/media/docs/ATBD-OMI-04.pdf (accessed on 15 September 2021).
- S5P/TROPOMI HCHO ATBD. Available online: https://sentinels.copernicus.eu/documents/247904/2476257/Sentinel-5P-ATBD-HCHO-TROPOMI (accessed on 15 September 2021).
- Veefkind, J.; Aben, I.; McMullan, K.; Förster, H.; de Vries, J.; Otter, G.; Claas, J.; Eskes, H.; de Haan, J.; Kleipool, Q.; et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- Millet, D.B.; Jacob, D.J.; Boersma, K.F.; Fu, T.; Kurosu, T.P.; Chance, K.; Heald, C.L.; Guenther, A. Spatial distribution of isoprene emissions from North America derived from formaldehyde column measurements by the OMI satellite sensor. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, R.; Min, Q.; Bo, H.; Fu, Y.; Wang, Y.; Gao, Z. The controlling factors of atmospheric formaldehyde (HCHO) in Amazon as seen from satellite. Earth Space Sci. 2019, 6, 959–971. [Google Scholar] [CrossRef] [Green Version]
- Curci, G.; Palmer, P.I.; Kurosu, T.P.; Chance, K.; Visconti, G. Estimating European volatile organic compound emissions using satellite observations of formaldehyde from the Ozone Monitoring Instrument. Atmos. Chem. Phys. Discuss. 2010, 10, 11501–11517. [Google Scholar] [CrossRef] [Green Version]
- Biswas, M.S.; Choudhury, A.D. Impact of COVID-19 Control Measures on Trace Gases (NO2, HCHO and SO2) and Aerosols over India during Pre-monsoon of 2020. Aerosol Air Qual. Res. 2021, 20, 200306. [Google Scholar] [CrossRef]
- Sun, W.; Zhu, L.; De Smedt, I.; Bai, B.; Pu, D.; Chen, Y.; Shu, L.; Wang, D.; Fu, T.; Wang, X.; et al. Global Significant Changes in Formaldehyde (HCHO) Columns Observed From Space at the Early Stage of the COVID-19 Pandemic. Geophys. Res. Lett. 2021, 48, 2e020GL091265. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Wang, W.; Ciren, P.; Zhu, Y. Assessment of human health impact from exposure to multiple air pollutants in China based on satellite observations. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 542–553. [Google Scholar] [CrossRef]
- Schroeder, J.R.; Crawford, J.H.; Fried, A.; Walega, J.; Weinheimer, A.; Wisthaler, A.; Müller, M.; Mikoviny, T.; Chen, G.; Shook, M.; et al. Formaldehyde column density measurements as a suitable pathway to estimate near-surface ozone tendencies from space. J. Geophys. Res. Atmos. 2016, 121, 13088–13112. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Jacob, D.J.; Keutsch, F.N.; Mickley, L.J.; Scheffe, R.; Strum, M.; Abad, G.G.; Chance, K.; Yang, K.; Rappenglück, B.; et al. Formaldehyde (HCHO) As a Hazardous Air Pollutant: Mapping Surface Air Concentrations from Satellite and Inferring Cancer Risks in the United States. Environ. Sci. Technol. 2017, 51, 5650–5657. [Google Scholar] [CrossRef] [PubMed]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Nets. Adv. Neural Inf. Process. Syst. 2014, 27, 1–9. [Google Scholar]
- Ye, M.; Shen, J.; Lin, G.; Xiang, T.; Shao, L.; Hoi, S.C. Deep Learning for Person Re-identification: A Survey and Outlook. IEEE Trans. Pattern Anal. Mach. Intell. 2021. [Google Scholar] [CrossRef]
- Mackay, D.J.C. A Practical Bayesian Framework for Backpropagation Networks. Neural Comput. 1992, 4, 448–472. [Google Scholar] [CrossRef]
- Tibshirani, R. A Comparison of Some Error Estimates for Neural Network Models. Neural Comput. 1996, 8, 152–163. [Google Scholar] [CrossRef]
- Heskes, T.M.; Wiegerinck, W.; Kappen, H.J. Practical confidence and prediction intervals. Prog. Neural Process. 1997, 128–135. [Google Scholar] [CrossRef]
- Gal, Y.; Ghahramani, Z. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. In Proceedings of the International Conference on Machine Learning, New York, NY, USA, 19 June 2016; pp. 1050–1059. [Google Scholar]
- Khosravi, A.; Nahavandi, S.; Creighton, D.; Atiya, A.F. Lower Upper Bound Estimation Method for Construction of Neural Network-Based Prediction Intervals. IEEE Trans. Neural Netw. 2010, 22, 337–346. [Google Scholar] [CrossRef]
- Pearce, T.; Zaki, M.; Brintrup, A.; Neely, A. High-Quality Prediction Intervals for Deep Learning: A Distribution-Free, Ensembled Approach. In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10 July 2018; pp. 4075–4084. [Google Scholar]
- Sentinel-5 Precursor/TROPOMI Level 2 Product User Manual Formaldehyde HCHO. Available online: https://sentinels.copernicus.eu/documents/247904/2474726/Sentinel-5P-Level-2-Product-User-Manual-Formaldehyde (accessed on 1 October 2021).
- Sentinel-5 Precursor/TROPOMI Level 2 Product User Manual Carbon Monoxide Document Number. Available online: http://www.tropomi.eu/sites/default/files/files/Sentinel-5P-Level-2-Product-User-Manual-Carbon-Monoxide_v1.00.02_20180613.pdf (accessed on 1 October 2021).
- S5P Mission Performance Centre Formaldehyde [L2_HCHO] Readme. Available online: https://sentinels.copernicus.eu/documents/247904/3541451/Sentinel-5P-Formaldehyde-Readme.pdf (accessed on 15 September 2021).
- Williamson, C.; Kupc, A.; Wilson, J.; Gesler, D.W.; Reeves, J.M.; Erdesz, F.; McLaughlin, R.; Brock, C.A. Fast time response measurements of particle size distributions in the 3–60 nm size range with the nucleation mode aerosol size spectrometer. Atmos. Meas. Tech. 2018, 11, 3491–3509. [Google Scholar] [CrossRef] [Green Version]
- Brock, C.A.; Williamson, C.; Kupc, A.; Froyd, K.D.; Erdesz, F.; Wagner, N.; Richardson, M.; Schwarz, J.P.; Gao, R.-S.; Katich, J.M.; et al. Aerosol size distributions during the Atmospheric Tomography Mission (ATom): Methods, uncertainties, and data products. Atmos. Meas. Tech. 2019, 12, 3081–3099. [Google Scholar] [CrossRef] [Green Version]
- ATom: L2 Measurements of In-Situ Airborne Formaldehyde (ISAF). Available online: https://daac.ornl.gov/ATOM/guides/ATom_ISAF_Instrument_Data.html (accessed on 1 October 2021). [CrossRef]
- Fischer, E.V.; Jacob, D.J.; Millet, D.B.; Yantosca, R.M.; Mao, J. The role of the ocean in the global atmospheric budget of acetone. Geophys. Res. Lett. 2012, 39, L01807. [Google Scholar] [CrossRef] [Green Version]
- Singh, H.B.; Tabazadeh, A.; Evans, M.J.; Field, B.D.; Jacob, D.J.; Sachse, G.; Crawford, J.H.; Shetter, R.; Brune, W.H. Oxygenated volatile organic chemicals in the oceans: Inferences and implications based on atmospheric observations and air-sea exchange models. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Palmer, P.I.; Jacob, D.J.; Fiore, A.M.; Martin, R.V.; Chance, K.; Kurosu, T.P. Mapping isoprene emissions over North America using formaldehyde column observations from space. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Dörner, S.; Donner, S.; Böhnke, S.; De Smedt, I.; Dickerson, R.R.; Dong, Z.; He, H.; Li, Z.; Li, Z.; et al. Vertical profiles of NO2, SO2, HONO, HCHO, CHOCHO and aerosols derived from MAX-DOAS measurements at a rural site in the central western North China Plain and their relation to emission sources and effects of regional transport. Atmos. Chem. Phys. Discuss. 2019, 19, 5417–5449. [Google Scholar] [CrossRef] [Green Version]
- Farr, T.G.; Edward, P.A.R.; Kobrick, M.; Rodriguez, M.P.E.; Shaffer, S.; Umland, J.S.J.; Burbank, D.; Alsdorf, A.D. The shuttle radar topography mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef] [Green Version]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the International Conference on Machine Learning, Lille, France, 6 June 2015; pp. 448–456. [Google Scholar]
- Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 11 April 2011; pp. 315–323. [Google Scholar]
- Barkley, M.P.; Kurosu, T.P.; Chance, K.; De Smedt, I.; Van Roozendael, M.; Arneth, A.; Hagberg, D.; Guenther, A. Assessing sources of uncertainty in formaldehyde air mass factors over tropical South America: Implications for top-down isoprene emission estimates. J. Geophys. Res. Space Phys. 2012, 117. [Google Scholar] [CrossRef]
- Meyer-Arnek, J.; Ladstätter-Weißenmayer, A.; Richter, A.; Wittrock, F.; Burrows, J.P. A study of the trace gas columns of O3, NO2 and HCHO over Africa in September 1997. Faraday Discuss. 2005, 130, 387–405. [Google Scholar] [CrossRef] [PubMed]
- Wittrock, F.; Richter, A.; Oetjen, H.; Burrows, J.P.; Kanakidou, M.; Myriokefalitakis, S.; Volkamer, R.; Beirle, S.; Platt, U.; Wagner, T. Simultaneous global observations of glyoxal and formaldehyde from space. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Fu, T.M.; Jacob, D.J.; Palmer, P.I.; Chance, K.; Wang, Y.X.; Barletta, B.; Blake, D.R.; Stanton, J.C.; Pilling, M.J. Space-based formaldehyde measurements as constraints on volatile organic compound emissions in east and south Asia and implications for ozone. J. Geophys. Res. Atmos. 2007, 112, D06312. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Ju, T.; Wang, Q.; Gao, H.; Huang, R.; Duan, J. Spatiotemporal variations and potential sources of tropospheric formaldehyde over eastern China based on OMI satellite data. Atmos. Pollut. Res. 2021, 12, 272–285. [Google Scholar] [CrossRef]
- Nett, H.; Ingmann, P.; McMullan, K. ESA’s Sentinel-5 Precursor Mission: A GMES Mission for Global Observations of Atmospheric Composition. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 22 April 2012; p. 1662. [Google Scholar]
- Starn, T.K.; Shepson, P.B.; Bertman, S.B.; Riemer, D.D.; Zika, R.G.; Olszyna, K. Nighttime isoprene chemistry at an urban-impacted forest site. J. Geophys. Res. Space Phys. 1998, 103, 22437–22447. [Google Scholar] [CrossRef]
- Guo, S.; Wen, S.; Wang, X.; Sheng, G.; Fu, J.; Hu, P.; Yu, Y. Carbon isotope analysis for source identification of atmospheric formaldehyde and acetaldehyde in Dinghushan Biosphere Reserve in South China. Atmos. Environ. 2009, 43, 3489–3495. [Google Scholar] [CrossRef]
- Kean, A.J.; Grosjean, E.; Grosjean, D.; Harley, R.A. On-Road Measurement of Carbonyls in California Light-Duty Vehicle Emissions. Environ. Sci. Technol. 2001, 35, 4198–4204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luecken, D.J.; Napelenok, S.L.; Strum, M.; Scheffe, R.; Phillips, S. Sensitivity of Ambient Atmospheric Formaldehyde and Ozone to Precursor Species and Source Types Across the United States. Environ. Sci. Technol. 2018, 52, 4668–4675. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Li, X.; Cheng, T.; Yu, C.; Wang, X.; Miao, J.; Hou, C. Comparative analysis of long-term (2005-2016) spatiotemporal variations in high-level tropospheric formaldehyde (HCHO) in Guangdong and Jiangsu Provinces in China. J. Remote Sens. 2019, 23, 137–154. [Google Scholar]
- Nourani, V.; Paknezhad, N.J.; Tanaka, H. Prediction Interval Estimation Methods for Artificial Neural Network (ANN)-Based Modeling of the Hydro-Climatic Processes, a Review. Sustainability 2021, 13, 1633. [Google Scholar] [CrossRef]
- Demographia. World Urban Areas. Available online: http://www.demographia.com/db-worldua.pdf (accessed on 21 May 2021).
Dataset. | MAE | RMSE |
---|---|---|
Training | 1.294 | 1.018 |
Validation | 1.295 | 1.075 |
Standard Dev. | Mean | Minimum | Maximum | |
---|---|---|---|---|
Sea | 0.414 | 2.12 | 1.49 | 6.22 |
Land | 0.859 | 2.77 | 0.006 | 6.53 |
Global | 0.644 | 2.30 | 0.006 | 6.53 |
City Name | Surface HCHO (μg/m3) | City Name | Surface HCHO (μg/m3) |
---|---|---|---|
Jakarta, Indonesia | 6.18 | Beijing, China | 5.23 |
Singapore | 5.83 | Patna, India | 5.07 |
Colon, Panama | 5.66 | Ha Noi, Vietnam | 5.06 |
Kuala Lumpur, Malaysia | 5.61 | Guangzhou, China | 5.00 |
Dhaka, Bangladesh | 5.51 | Tianjin, China | 4.89 |
Lagos, Nigeria | 5.49 | Manaus, Brazil | 4.50 |
Bangkok, Thailand | 5.42 | Montgomery, U.S. | 4.44 |
Shijiazhuang, China | 5.38 | Houston, U.S. | 4.22 |
Ho Chi Minh City, Vietnam | 5.27 | Freetown, Sierra Leone | 4.15 |
Kolkata, India | 5.26 | Kolwezi, R. D. Congo | 3.81 |
Covering Rate | Avg Length | Bound | Std | Mean | Min | Max | |
---|---|---|---|---|---|---|---|
0.9 | 94.41% | 4.530 | U | 3.528 | 7.112 | 0.00684 | 16.40 |
L | 0.354 | 0.670 | 0.00193 | 4.273 | |||
0.8 | 88.74% | 3.864 | U | 3.518 | 6.446 | 0.00972 | 12.35 |
L | 0.545 | 0.968 | 0.00128 | 1.898 |
City Name | Patients per Million | Population | Number of Cases |
---|---|---|---|
Jakarta, Indonesia | 80.34 | 32,275,000 | 2593 |
Singapore | 75.79 | 5,930,000 | 449 |
Kuala Lumpur, Malaysia | 72.93 | 7,820,000 | 570 |
Dhaka, Bangladesh | 71.63 | 17,425,000 | 1248 |
Lagos, Nigeria | 71.37 | 13,910,000 | 993 |
Bangkok, Thailand | 70.46 | 15,975,000 | 1126 |
Shijiazhuang, China | 69.94 | 3,765,000 | 263 |
Ho Chi Minh City, Vietnam | 68.51 | 10,690,000 | 732 |
Kolkata, India | 68.38 | 15,095,000 | 1032 |
Beijing, China | 67.99 | 21,250,000 | 1445 |
Patna, India | 65.91 | 2,320,000 | 153 |
Ha Noi, Vietnam | 65.78 | 8,140,000 | 535 |
Guangzhou, China | 65.00 | 19,965,000 | 1298 |
Tianjin, China | 63.57 | 13,655,000 | 868 |
Manaus, Brazil | 58.50 | 2,020,000 | 118 |
Houston, U.S. | 54.86 | 6,285,000 | 345 |
Freetown, Sierra Leone | 53.95 | 1,755,000 | 95 |
Kolwezi, R. D. Congo | 49.53 | 515,000 | 26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, J.; Jin, B.; Ding, Y.; Wang, W.; Li, G.; Ciren, P. Global Surface HCHO Distribution Derived from Satellite Observations with Neural Networks Technique. Remote Sens. 2021, 13, 4055. https://doi.org/10.3390/rs13204055
Guan J, Jin B, Ding Y, Wang W, Li G, Ciren P. Global Surface HCHO Distribution Derived from Satellite Observations with Neural Networks Technique. Remote Sensing. 2021; 13(20):4055. https://doi.org/10.3390/rs13204055
Chicago/Turabian StyleGuan, Jian, Bohan Jin, Yizhe Ding, Wen Wang, Guoxiang Li, and Pubu Ciren. 2021. "Global Surface HCHO Distribution Derived from Satellite Observations with Neural Networks Technique" Remote Sensing 13, no. 20: 4055. https://doi.org/10.3390/rs13204055
APA StyleGuan, J., Jin, B., Ding, Y., Wang, W., Li, G., & Ciren, P. (2021). Global Surface HCHO Distribution Derived from Satellite Observations with Neural Networks Technique. Remote Sensing, 13(20), 4055. https://doi.org/10.3390/rs13204055