The 2019 Eruptive Activity at Stromboli Volcano: A Multidisciplinary Approach to Reveal Hidden Features of the “Unexpected” 3 July Paroxysm
Abstract
:1. Introduction
The 3 July and 28 August 2019 Paroxystic Explosions
2. Materials and Methods
2.1. Thermal Observations from Fixed Camera and Satellite
2.2. Ground Deformation and Seismic Data
2.3. Seismic and Strain Data Comparison
3. Modelling the Volcanic Source
4. Discussion
4.1. The Precursory Phase
4.2. The Paroxysmal Phase
5. Conclusions
- Continuous and automatic evaluation of the cumulative dispersion (Figure 8) from video recordings of the summit explosive activity in Stromboli, because the mere observation of the number of explosions occurring from the Stromboli craters is not sufficient and a proxy of the energy involved in the explosive activity is necessary. This value should be coupled with the satellite-derived radiant heat flux to measure the thermal energy due to the extension and persistence of both the vent area and hot deposits as viewed from space.
- Classification of strain and seismic VLP waveforms in different “families”. The transition from one VLP family to another, or the superposition of several seismic VLP families, can be an indicator of changes in the fluid properties, such as the change in permeability of the higher portion of the magma in the main conduit and this can be considered an alteration of the normal condition leading to the mild ordinary explosive activity.
- Small variations in long/medium term of tilt and GNSS time series, coupled with thermal observations from satellite, must be considered the complementary data whose co-variation can confirm the occurrence of a medium term (one–two weeks) alert of potentially impending large explosive activity.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Details of Data, Methods and Analysis Techniques
Appendix A.1. Quantitative Observation of Camera Recordings
- Trigger Time [hh:mm:ss.zzz]
- Source of emission (vent)
- Duration of the event [sec]
- Dispersion, the maximum area involved in a thermal anomaly due to the event [pixel]
- Height max of the anomaly [m]
- Width max of the anomaly [m]
- Frame at maximum expansion
Appendix A.2. Satellite Thermal Data
Appendix A.3. Ground Deformation Data
Appendix A.3.1. Tilt Data
Appendix A.3.2. Dilatometric Data
Appendix A.3.3. GNSS Data
Appendix A.4. Modelling of Volcanic Sources
References
- Pichavant, M.; Pompilio, M.; D’Oriano, C.; Di Carlo, I. The deep feeding system of Stromboli, Italy: Insights from a primitive golden pumice. Eur. J. Mineral. 2011, 23, 499–517. [Google Scholar] [CrossRef]
- Bevilacqua, A.; Bertagnini, A.; Pompilio, M.; Landi, P.; Del Carlo, P.; Di Roberto, A.; Aspinall, W.; Neri, A. Major explosions and paroxysms at Stromboli (Italy): A new historical catalog and temporal models of occurrence with uncertainty quantification. Sci. Rep. 2020, 10, 17357. [Google Scholar] [CrossRef]
- Viccaro, M.; Cannata, A.; Cannavò, F.; De Rosa, R.; Giuffrida, M.; Nicotra, E.; Petrelli, M.; Sacco, G. Shallow conduit dynamics fuel the unexpected paroxysms of Stromboli volcano during the summer 2019. Sci. Rep. 2021, 11, 266. [Google Scholar] [CrossRef]
- Giordano, G.; De Astis, G. The summer 2019 basaltic Vulcanian eruptions (paroxysms) of Stromboli. Bull. Volcanol. 2021, 83, 1–27. [Google Scholar] [CrossRef]
- Giudicepietro, F.; López, C.; Macedonio, G.; Alparone, S.; Bianco, F.; Calvari, S.; De Cesare, W.; Donne, D.D.; Di Lieto, B.; Esposito, A.M.; et al. Geophysical precursors of the July–August 2019 paroxysmal eruptive phase and their implications for Stromboli volcano (Italy) monitoring. Sci. Rep. 2020, 10, 10296. [Google Scholar] [CrossRef]
- Di Lieto, B.; Romano, P.; Scarpa, R.; Linde, A.T. Strain Signals Before and During Paroxysmal Activity at Stromboli Volcano, Italy. Geophys Res. Lett. 2020, 47. [Google Scholar] [CrossRef]
- Andronico, D.; Del Bello, E.; D’Oriano, C.; Landi, P.; Pardini, F.; Scarlato, P.; Vitturi, M.D.M.; Taddeucci, J.; Cristaldi, A.; Ciancitto, F.; et al. Uncovering the eruptive patterns of the 2019 double paroxysm eruption crisis of Stromboli volcano. Nat. Commun. 2021, 12, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Ganci, G.; Vicari, A.; Fortuna, L.; Del Negro, C. The HOTSAT volcano monitoring system based on combined use of SEVIRI and MODIS multispectral data. Ann. Geophys. 2011, 54, 5. [Google Scholar] [CrossRef]
- Ganci, G.; Bilotta, G.; Cappello, A.; Herault, A.; Del Negro, C. HOTSAT: A multiplatform system for the thermal monitoring of volcanic activity using satellite data. Geol. Soc. Lond. Spéc. Publ. 2016, 426, 207–221. [Google Scholar] [CrossRef]
- Bos, M.S.; Fernandes, R.M.S.; Williams, S.D.P.; Bastos, L. Fast error analysis of continuous GNSS observations with missing data. J. Geod. 2013, 87, 351–360. [Google Scholar] [CrossRef] [Green Version]
- Chouet, B.; Dawson, P.; Ohminato, T.; Martini, M.; Saccorotti, G.; Giudicepietro, F.; De Luca, G.; Milana, G.; Scarpa, R. Source mechanisms of explosions at Stromboli Volcano, Italy, determined from moment-tensor inversions of very-long-period data. J. Geophys. Res. Space Phys. 2003, 108, B1. [Google Scholar] [CrossRef]
- Gambino, S.; Falzone, G.; Ferro, A.; Laudani, G. Volcanic processes detected by tiltmeters: A review of experience on Sicilian volcanoes. J. Volcanol. Geotherm. Res. 2014, 271, 43–54. [Google Scholar] [CrossRef]
- Mogi, K. Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them. Bull. Earthquake Res. Inst. 1958, 36, 99–134. [Google Scholar]
- Cannavò, F. A new user-friendly tool for rapid modelling of ground deformation. Comput. Geosci. 2019, 128, 60–69. [Google Scholar] [CrossRef]
- Williams, C.; Wadge, G. An accurate and efficient method for including the effects of topography in three-dimensional elastic models of ground deformation with applications to radar interferometry. J. Geophys. Res. Space Phys. 2000, 105, 8103–8120. [Google Scholar] [CrossRef]
- Segall, P. Magma chambers: What we can, and cannot, learn from volcano geodesy. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2019, 377, 20180158. [Google Scholar] [CrossRef] [Green Version]
- Jaupart, C.; Vergniolle, S. Laboratory models of Hawaiian and Strombolian eruptions. Nat. Cell Biol. 1988, 331, 58–60. [Google Scholar] [CrossRef]
- Jaupart, C.; Vergniolle, S. The generation and collapse of a foam layer at the roof of a basaltic magma chamber. J. Fluid Mech. 1989, 203, 347–380. [Google Scholar] [CrossRef]
- Lane, S.J.; Chouet, B.A.; Phillips, J.C.; Dawson, P.; Ryan, G.A.; Hurst, E. Experimental observations of pressure oscillations and flow regimes in an analogue volcanic system. J. Geophys. Res. Space Phys. 2001, 106, 6461–6476. [Google Scholar] [CrossRef] [Green Version]
- Oppenheimer, J.; Capponi, A.; Cashman, K.; Lane, S.; Rust, A.; James, M. Analogue experiments on the rise of large bubbles through a solids-rich suspension: A “weak plug” model for Strombolian eruptions. Earth Planet. Sci. Lett. 2020, 531, 115931. [Google Scholar] [CrossRef]
- Caracciolo, A.; Gurioli, L.; Marianelli, P.; Bernard, J.; Harris, A. Textural and chemical features of a “soft” plug emitted during Strombolian explosions: A case study from Stromboli volcano. Earth Planet. Sci. Lett. 2021, 559, 116761. [Google Scholar] [CrossRef]
- Ferlito, C. Mount Etna volcano (Italy). Just a giant hot spring! Earth-Sci. Rev. 2018, 177, 14–23. [Google Scholar] [CrossRef]
- Ferlito, C.; Bruno, V.; Salerno, G.G.; Caltabiano, T.; Scandura, D.; Mattia, M.; Coltorti, M. Dome-like behaviour at Mt. Etna: The case of the 28 December 2014 South East Crater paroxysm. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef]
- Inguaggiato, S.; Vita, F.; Cangemi, M.; Calderone, L. Changes in CO2 Soil Degassing Style as a Possible Precursor to Volcanic Activity: The 2019 Case of Stromboli Paroxysmal Eruptions. Appl. Sci. 2020, 10, 4757. [Google Scholar] [CrossRef]
- Inguaggiato, S.; Vita, F.; Cangemi, M.; Inguaggiato, C.; Calderone, L. The Monitoring of CO2 Soil Degassing as Indicator of Increasing Volcanic Activity: The Paroxysmal Activity at Stromboli Volcano in 2019–2021. Geoscience 2021, 11, 169. [Google Scholar] [CrossRef]
- Ripepe, M.; Ciliberto, S.; Della Schiava, M. Time constraints for modeling source dynamics of volcanic explosions at Stromboli. J. Geophys. Res. Space Phys. 2001, 106, 8713–8727. [Google Scholar] [CrossRef]
- Esposito, A.M.; Giudicepietro, F.; D’Auria, L.; Scarpetta, S.; Martini, M.G.; Coltelli, M.; Marinaro, M. Unsupervised Neural Analysis of Very-Long-Period Events at Stromboli Volcano Using the Self-Organizing Maps. Bull. Seism. Soc. Am. 2008, 98, 2449–2459. [Google Scholar] [CrossRef]
- Dawson, P.; Chouet, B. Characterization of very-long-period seismicity accompanying summit activity at Kīlauea Volcano, Hawai’i: 2007–2013. J. Volcanol. Geotherm. Res. 2014, 278–279, 59–85. [Google Scholar] [CrossRef] [Green Version]
- Ripepe, M.; Pistolesi, M.; Coppola, D.; Donne, D.D.; Genco, R.; Lacanna, G.; Laiolo, M.; Marchetti, E.; Ulivieri, G.; Valade, S. Forecasting Effusive Dynamics and Decompression Rates by Magmastatic Model at Open-vent Volcanoes. Sci. Rep. 2017, 7, 3885. [Google Scholar] [CrossRef]
- Chouet, B. Dynamics of a fluid-driven crack in three dimensions by the finite difference method. J. Geophys. Res. Space Phys. 1986, 91, 13967–13992. [Google Scholar] [CrossRef]
- Chouet, B. Resonance of a fluid-driven crack: Radiation properties and implications for the source of long-period events and harmonic tremor. J. Geophys. Res. Space Phys. 1988, 93, 4375–4400. [Google Scholar] [CrossRef]
- Chouet, B. A Seismic Model for the Source of Long-Period Events and Harmonic Tremor. In IAVCEI Proceedings in Volcanology; Springer Gabler: Wiesbaden, Germany, 1992; pp. 133–156. [Google Scholar]
- Ohminato, T.; Chouet, B.; Dawson, P.; Kedar, S. Waveform inversion of very long period impulsive signals associated with magmatic injection beneath Kilauea volcano, Hawaii. J. Geophys. Res. Space Phys. 1998, 103, 23839–23862. [Google Scholar] [CrossRef]
- Chouet, B.; Dawson, P.; Arciniega-Ceballos, A. Source mechanism of Vulcanian degassing at Popocatépetl Volcano, Mexico, determined from waveform inversions of very long period signals. J. Geophys. Res. Space Phys. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Ramsey, M.S.; Harris, A.J. Volcanology 2020: How will thermal remote sensing of volcanic surface activity evolve over the next decade? J. Volcanol. Geotherm. Res. 2013, 249, 217–233. [Google Scholar] [CrossRef]
- Ganci, G.; Vicari, A.; Bonfiglio, S.; Gallo, G.; Del Negro, C. A texton-based cloud detection algorithm for MSG-SEVIRI multispectral images. Geomatics Nat. Hazards Risk 2011, 2, 279–290. [Google Scholar] [CrossRef]
- Ganci, G.; Cappello, A.; Bilotta, G.; Del Negro, C. How the variety of satellite remote sensing data over volcanoes can assist hazard monitoring efforts: The 2011 eruption of Nabro volcano. Remote Sens. Environ. 2020, 236, 111426. [Google Scholar] [CrossRef]
- Calvari, S.; Ganci, G.; Victoria, S.; Hernández, G.D.P.; Perez, N.M.; Barrancos, J.; Alfama, V.; Dionis, S.; Cabral, J.; Cardoso, N.; et al. Satellite and Ground Remote Sensing Techniques to Trace the Hidden Growth of a Lava Flow Field: The 2014–2015 Effusive Eruption at Fogo Volcano (Cape Verde). Remote Sens. 2018, 10, 1115. [Google Scholar] [CrossRef] [Green Version]
- Cappello, A.; Ganci, G.; Calvari, S.; Pérez, N.M.; Hernández, P.A.; Silva, S.V.; Cabral, J.; Del Negro, C. Lava flow hazard modeling during the 2014-2015 Fogo eruption, Cape Verde. J. Geophys. Res. Solid Earth 2016, 121, 2290–2303. [Google Scholar] [CrossRef] [Green Version]
- Spampinato, L.; Ganci, G.; Hernández, P.A.; Calvo, D.; Tedesco, D.; Pérez, N.M.; Calvari, S.; Del Negro, C.; Yalire, M.M. Thermal insights into the dynamics of Nyiragongo lava lake from ground and satellite measurements. J. Geophys. Res. Solid Earth 2013, 118, 5771–5784. [Google Scholar] [CrossRef]
- Mattia, M.; Aloisi, M.; Di Grazia, G.; Gambino, S.; Palano, M.; Bruno, V. Geophysical investigations of the plumbing system of Stromboli volcano (Aeolian Islands, Italy). J. Volcanol. Geotherm. Res. 2008, 176, 529–540. [Google Scholar] [CrossRef]
- Gambino, S.; Cammarata, L. Tilt measurements on volcanoes: More than a hundred years of recordings. Ital. J. Geosci. 2017, 136, 275–295. [Google Scholar] [CrossRef]
- Borcherdt, R.D.; Johnston, M.J.S.; Glassmoyer, G. On the use of volumetric strain meters to infer additional characteristics of short-period seismic radiation. Bull. Seism. Soc. Am. 1989, 79, 1006–1023. [Google Scholar]
- Barbour, A.; Agnew, D.C. Detection of Seismic Signals Using Seismometers and Strainmeters. Bull. Seism. Soc. Am. 2012, 102, 2484–2490. [Google Scholar] [CrossRef]
- Mattia, M.; Rossi, M.; Guglielmino, F.; Aloisi, M.; Bock, Y. The shallow plumbing system of Stromboli Island as imaged from 1 Hz instantaneous GPS positions. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Dach, R.; Hugentobler, U.; Fridez, P.; Meindl, M. Bernese GPS Software, Version 5.0; Astronomical Institute, University of Bern: Bern, Switzerland, 2007. [Google Scholar]
- Altamimi, Z.; Rebischung, P.; Métivier, L.; Collilieux, X. ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J. Geophys. Res. Solid Earth 2016, 121, 6109–6131. [Google Scholar] [CrossRef] [Green Version]
- Altamimi, Z.; Métivier, L.; Rebischung, P.; Rouby, H.; Collilieux, X. ITRF2014 plate motion model. Geophys. J. Int. 2017, 209, 1906–1912. [Google Scholar] [CrossRef]
- Mattia, M.; Bruno, V.; Montgomery-Brown, E.; Patanè, D.; Barberi, G.; Coltelli, M. Combined seismic and geodetic analysis before, during and after the 2018 Mt. Etna eruption. Geochem. Geophys. Geosystems 2020, 21. [Google Scholar] [CrossRef]
- Mattia, M.; Palano, M.; Aloisi, M.; Bruno, V.; Bock, Y. High rate GPS data on active volcanoes: An application to the 2005–2006 Mt. Augustine (Alaska, USA) eruption. Terra Nova 2008, 20, 134–140. [Google Scholar] [CrossRef]
- Teunissen, P.J.G. The least-squares ambiguity decorrelation adjustment: A method for fast GPS integer ambiguity estimation. J. Geod. 1995, 70, 65–82. [Google Scholar] [CrossRef]
- Takasu, T. RTKLIB: Open Source Program Package for RTK-GPS. In Proceedings of the FOSS4G, Tokyo, Japan, 2 November 2009. [Google Scholar]
- Takasu, T.; Yasuda, A. Development of the low-cost RTK-GPS receiver with an open source program package RTKLIB. Proceedings of International Symposium on GPS/GNSS, International Convention Center Jeju, Seogwipo, Korea, 4–6 November 2009. [Google Scholar]
- Lyons, J.J.; Waite, G.; Ichihara, M.; Lees, J. Tilt prior to explosions and the effect of topography on ultra-long-period seismic records at Fuego volcano, Guatemala. Geophys. Res. Lett. 2012, 39, 08305. [Google Scholar] [CrossRef]
- Lewis, R.M.; Torczon, V. Pattern Search Algorithms for Bound Constrained Minimization. SIAM J. Optim. 1999, 9, 1082–1099. [Google Scholar] [CrossRef]
- Goldberg, D.E. Genetic Algorithms in Search Optimization and Machine Learning; Addison-Wesley: Boston, MA, USA, 1989; 432p. [Google Scholar]
- Efron, B. The Jackknife, the Bootstrap and Other Resampling Plans; Stanford University Press: Stanford, CA, USA, 1982. [Google Scholar]
- Aloisi, M.; Mattia, M.; Monaco, C.; Pulvirenti, F. Magma, faults, and gravitational loading at Mount Etna: The 2002–2003 eruptive period. J. Geophys. Res. Space Phys. 2011, 116. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mattia, M.; Di Lieto, B.; Ganci, G.; Bruno, V.; Romano, P.; Ciancitto, F.; De Martino, P.; Gambino, S.; Aloisi, M.; Sciotto, M.; et al. The 2019 Eruptive Activity at Stromboli Volcano: A Multidisciplinary Approach to Reveal Hidden Features of the “Unexpected” 3 July Paroxysm. Remote Sens. 2021, 13, 4064. https://doi.org/10.3390/rs13204064
Mattia M, Di Lieto B, Ganci G, Bruno V, Romano P, Ciancitto F, De Martino P, Gambino S, Aloisi M, Sciotto M, et al. The 2019 Eruptive Activity at Stromboli Volcano: A Multidisciplinary Approach to Reveal Hidden Features of the “Unexpected” 3 July Paroxysm. Remote Sensing. 2021; 13(20):4064. https://doi.org/10.3390/rs13204064
Chicago/Turabian StyleMattia, Mario, Bellina Di Lieto, Gaetana Ganci, Valentina Bruno, Pierdomenico Romano, Francesco Ciancitto, Prospero De Martino, Salvatore Gambino, Marco Aloisi, Mariangela Sciotto, and et al. 2021. "The 2019 Eruptive Activity at Stromboli Volcano: A Multidisciplinary Approach to Reveal Hidden Features of the “Unexpected” 3 July Paroxysm" Remote Sensing 13, no. 20: 4064. https://doi.org/10.3390/rs13204064
APA StyleMattia, M., Di Lieto, B., Ganci, G., Bruno, V., Romano, P., Ciancitto, F., De Martino, P., Gambino, S., Aloisi, M., Sciotto, M., Scarpa, R., & Ferlito, C. (2021). The 2019 Eruptive Activity at Stromboli Volcano: A Multidisciplinary Approach to Reveal Hidden Features of the “Unexpected” 3 July Paroxysm. Remote Sensing, 13(20), 4064. https://doi.org/10.3390/rs13204064