Determining Actual Evapotranspiration Based on Machine Learning and Sinusoidal Approaches Applied to Thermal High-Resolution Remote Sensing Imagery in a Semi-Arid Ecosystem
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Local Data
2.3. Remote Sensing Data
2.4. Methodology
2.4.1. Surface Reflectance Retrieval
2.4.2. Land Surface Temperature Retrieval
2.4.3. Predictors
2.4.4. Spatial Relationship between Landsat-8 LST and Sentinel-2
2.4.5. Estimation of Actual Evapotranspiration
2.4.6. Validation In Situ
3. Results
3.1. Atmospheric Inputs and Topographic Variation
3.2. Cubist
3.3. Random Forest
3.4. Sinusoidal
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fuster, R.; Moletto-Lobos, Í.G.; Mattar, C. Evapotranspiration monitoring. In Encyclopedia of Water: Science, Technology, and Society; Maurice, P., Ed.; Wiley: Hoboken, NJ, USA, 2020; Volume 3, pp. 1327–1358. ISBN 978-1-119-30075-5. [Google Scholar]
- Fisher, J.B.; Melton, F.; Middleton, E.; Hain, C.; Anderson, M.; Allen, R.; McCabe, M.F.; Hook, S.; Baldocchi, D.; Townsend, P.A.; et al. The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources: The future of evapotranspiration. Water Resour. Res. 2017, 53, 2618–2626. [Google Scholar] [CrossRef]
- Kustas, W.P.; Norman, J.M. Use of remote sensing for evapotranspiration monitoring over land surfaces. Hydrol. Sci. 1996, 41, 495–516. [Google Scholar] [CrossRef]
- Anderson, M.C.; Allen, R.G.; Morse, A.; Kustas, W.P. Use of Landsat Thermal Imagery in Monitoring Evapotranspiration and Managing Water Resources. Remote Sens. Environ. 2012, 122, 50–65. [Google Scholar] [CrossRef]
- Biggs, T.; Petropoulos, G.; Velpuri, N.M.; Marshall, M.; Glenn, E.; Nagler, P.; Messina, A. Remote Sensing of Evapotranspiration from Croplands. In Remote Sensing of Water Resources, Disasters, and Urban Studies; Remote Sensing Handbook; CRC Press: Boca Raton, FL, USA, 2015; Volume III, p. 707. ISBN 978-1-4822-1791-9. [Google Scholar]
- Zhang, K.; Kimball, J.S.; Running, S.W. A review of remote sensing based actual evapotranspiration estimation. WIREs Water 2016, 3, 834–853. [Google Scholar] [CrossRef]
- Senay, G.B.; Kagone, S.; Velpuri, N.M. Operational global actual evapotranspiration: Development, evaluation, and dissemination. Sensors 2020, 20, 1915. [Google Scholar] [CrossRef] [PubMed]
- Senay, G.B.; Friedrichs, M.; Singh, R.K.; Velpuri, N.M. Evaluating Landsat 8 evapotranspiration for water use mapping in the colorado river basin. Remote Sens. Environ. 2016, 185, 171–185. [Google Scholar] [CrossRef] [Green Version]
- Senay, G.B.; Bohms, S.; Singh, R.K.; Gowda, P.H.; Velpuri, N.M.; Alemu, H.; Verdin, J.P. Operational evapotranspiration mapping using remote sensing and weather datasets: A new parameterization for the SSEB approach. J. Am. Water Resour. Assoc. 2013, 49, 577–591. [Google Scholar] [CrossRef] [Green Version]
- Zhan, W.; Huang, F.; Quan, J.; Zhu, X.; Gao, L.; Zhou, J.; Ju, W. Disaggregation of remotely sensed land surface temperature: A new dynamic methodology: Dynamic disaggregation of LST. J. Geophys. Res. Atmos. 2016, 121, 10538–10554. [Google Scholar] [CrossRef]
- Bilal, M.; Nazeer, M.; Nichol, J.E.; Bleiweiss, M.P.; Qiu, Z.; Jäkel, E.; Campbell, J.R.; Atique, L.; Huang, X.; Lolli, S. A simplified and robust surface reflectance estimation method (SREM) for use over diverse land surfaces using multi-sensor data. Remote Sens. 2019, 11, 1344. [Google Scholar] [CrossRef] [Green Version]
- Zhan, W.; Chen, Y.; Zhou, J.; Wang, J.; Liu, W.; Voogt, J.; Zhu, X.; Quan, J.; Li, J. Disaggregation of remotely sensed land surface temperature: Literature survey, taxonomy, issues, and caveats. Remote Sens. Environ. 2013, 131, 119–139. [Google Scholar] [CrossRef]
- Quinlan, J.R. C4.5: Programs for Machine Learning; The Morgan Kaufmann series in machine learning; Morgan Kaufmann Publishers: San Mateo, CA, USA, 1993; ISBN 978-1-55860-238-0. [Google Scholar]
- Quinlan, J.R. Learning with continuous classes. In Proceedings of the 5th Australian Joint Conference on Artificial Intelligence, Singapore, 16–18 November 1992; Volume 92, pp. 343–348. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Bechtel, B.; Zakšek, K.; Hoshyaripour, G. Downscaling land surface temperature in an urban area: A case study for Hamburg, Germany. Remote Sens. 2012, 4, 3184–3200. [Google Scholar] [CrossRef] [Green Version]
- Bisquert, M.; Sanchez, J.M.; Caselles, V. Evaluation of disaggregation methods for downscaling MODIS land surface temperature to landsat spatial resolution in Barrax test site. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1430–1438. [Google Scholar] [CrossRef]
- Bartkowiak, P.; Castelli, M.; Notarnicola, C. Downscaling land surface temperature from MODIS dataset with random forest approach over alpine vegetated areas. Remote Sens. 2019, 11, 1319. [Google Scholar] [CrossRef] [Green Version]
- Filgueiras, R.; Mantovani, E.C.; Dias, S.H.B.; Fernandes Filho, E.I.; da Cunha, F.F.; Neale, C.M.U. New approach to determining the surface temperature without thermal band of satellites. Eur. J. Agron. 2019, 106, 12–22. [Google Scholar] [CrossRef]
- Ke, Y.; Im, J.; Park, S.; Gong, H. Downscaling of MODIS one kilometer evapotranspiration using landsat-8 data and machine learning approaches. Remote Sens. 2016, 8, 215. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.; Zhu, X.; Yang, Y.; Cao, C.; Zhang, X.; Shan, L. Applicability of downscaling land surface temperature by using normalized difference sand index. Sci. Rep. 2018, 8, 9530. [Google Scholar] [CrossRef] [Green Version]
- Agam, N.; Kustas, W.P.; Anderson, M.C.; Li, F.; Neale, C.M.U. A vegetation index based technique for spatial sharpening of thermal imagery. Remote Sens. Environ. 2007, 107, 545–558. [Google Scholar] [CrossRef]
- Weng, Q.; Fu, P.; Gao, F. Generating daily land surface temperature at landsat resolution by fusing Landsat and MODIS data. Remote Sens. Environ. 2014, 145, 55–67. [Google Scholar] [CrossRef]
- Valdés-Pineda, R.; Valdés, J.B.; Diaz, H.F.; Pizarro-Tapia, R. Analysis of spatio-temporal changes in annual and seasonal precipitation variability in South America-Chile and related ocean-atmosphere circulation patterns: Precipitation and ocean-atmosphere circulation patterns in Chile. Int. J. Climatol. 2016, 36, 2979–3001. [Google Scholar] [CrossRef]
- Garreaud, R.D.; Wallace, J.M. The diurnal march of convective cloudiness over the Americas. Mon. Weather Rev. 1997, 125, 15. [Google Scholar] [CrossRef]
- Houston, J. Variability of precipitation in the atacama desert: Its causes and hydrological impact. Int. J. Climatol. 2006, 26, 2181–2198. [Google Scholar] [CrossRef]
- Olivera-Guerra, L.; Mattar, C.; Merlin, O.; Durán-Alarcón, C.; Santamaría-Artigas, A.; Fuster, R. An operational method for the disaggregation of land surface temperature to estimate actual evapotranspiration in the arid region of Chile. ISPRS J. Photogramm. Remote Sens. 2017, 128, 170–181. [Google Scholar] [CrossRef] [Green Version]
- Sheffield, J.; Wood, E.F.; Pan, M.; Beck, H.; Coccia, G.; Serrat-Capdevila, A.; Verbist, K. satellite remote sensing for water resources management: Potential for supporting sustainable development in data-poor regions. Water Resour. Res. 2018, 54, 9724–9758. [Google Scholar] [CrossRef] [Green Version]
- Galvez, V.; Rojas, R.; Bennison, G.; Prats, C.; Claro, E. Collaborate or Perish: Water resources management under contentious water use in a semiarid basin. Int. J. River Basin Manag. 2020, 18, 421–437. [Google Scholar] [CrossRef]
- Suárez, F.; Muñoz, J.; Fernández, B.; Dorsaz, J.-M.; Hunter, C.; Karavitis, C.; Gironás, J. integrated water resource management and energy requirements for water supply in the Copiapó river basin, Chile. Water 2014, 6, 2590–2613. [Google Scholar] [CrossRef] [Green Version]
- Mattar, C.; Santamaría-Artigas, A.; Durán-Alarcón, C.; Olivera-Guerra, L.; Fuster, R.; Borvarán, D. The LAB-net soil moisture network: Application to thermal remote sensing and surface energy balance. Data 2016, 1, 6. [Google Scholar] [CrossRef]
- Franck, N. ABC del Cultivo del Granado. Aconex 2010, 103, 12–19. Available online: http://www.gira.uchile.cl/descargas/Franck_Aconex.pdf (accessed on 1 July 2021).
- Otárola Aliaga, J. Efecto de Distintos Regímenes Hídircos y de La Aplicación de Calcio y Caolinita Sobre La Incidencia de Partidura En Frutos de Granado ‘Wonderful’. Master’s Thesis, Universidad de Chile, Santiago, Chile, 2015. [Google Scholar]
- Qiu, S.; Zhu, Z.; He, B. Fmask 4.0: Improved cloud and cloud shadow detection in Landsats 4–8 and Sentinel-2 imagery. Remote Sens. Environ. 2019, 231, 111205. [Google Scholar] [CrossRef]
- Main-Knorn, M.; Pflug, B.; Louis, J.; Debaecker, V.; Müller-Wilm, U.; Gascon, F. Sen2Cor for Sentinel-2. In Proceedings of the Image and Signal Processing for Remote Sensing XXIII, Warsaw, Poland, 4 October 2017; Bruzzone, L., Bovolo, F., Benediktsson, J.A., Eds.; SPIE: Bellingham, WA, USA, 2017; p. 3. [Google Scholar]
- Mayer, B.; Kylling, A. Technical note: The LibRadtran software package for radiative transfer calculations—description and examples of use. Atmos. Chem. Phys. 2005, 5, 1855–1877. [Google Scholar] [CrossRef] [Green Version]
- Schläpfer, D.; Borel, C.C.; Keller, J.; Itten, K.I. Atmospheric precorrected differential absorption technique to retrieve columnar water vapor. Remote Sens. Environ. 1998, 65, 353–366. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Sendra, C. Algorithm for automatic atmospheric corrections to visible and near-IR Satellite Imagery. Int. J. Remote Sens. 1988, 9, 1357–1381. [Google Scholar] [CrossRef]
- Jimenez-Munoz, J.C.; Sobrino, J.A.; Skokovic, D.; Mattar, C.; Cristobal, J. Land surface temperature retrieval methods from Landsat-8 Thermal infrared sensor data. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1840–1843. [Google Scholar] [CrossRef]
- Cristóbal, J.; Jiménez-Muñoz, J.; Prakash, A.; Mattar, C.; Skoković, D.; Sobrino, J. An improved single-channel method to retrieve land surface temperature from the Landsat-8 Thermal Band. Remote Sens. 2018, 10, 431. [Google Scholar] [CrossRef] [Green Version]
- Mattar, C.; Durán-Alarcón, C.; Jiménez-Muñoz, J.C.; Santamaría-Artigas, A.; Olivera-Guerra, L.; Sobrino, J.A. Global atmospheric profiles from reanalysis information (GAPRI): A new database for earth surface temperature retrieval. Int. J. Remote Sens. 2015, 36, 5045–5060. [Google Scholar] [CrossRef]
- Hulley, G.C.; Hook, S.J.; Abbott, E.; Malakar, N.; Islam, T.; Abrams, M. The ASTER global emissivity dataset (ASTER GED): Mapping Earth’s emissivity at 100 meter spatial scale. Geophys. Res. Lett. 2015, 42, 7966–7976. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring the vernal advancement and retrogradation (Green Wave Effect) of natural vegetation. Prog. Rep. RSC 1978, 1, 93. [Google Scholar]
- Huete, A.R. A Soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Huete, A.R.; Justice, C.; Van Leeuwen, W. Modis Vegetation Index (MOD 13). Algorithm Theoretical Basis Document Version 3. 1999. Available online: https://modis.gsfc.nasa.gov/data/atbd/atbd_mod13.pdf (accessed on 8 August 2021).
- Buschmann, C.; Nagel, E. In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation. Int. J. Remote Sens. 1993, 14, 711–722. [Google Scholar] [CrossRef]
- Gao, B. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A Modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Bonafoni, S.; Sekertekin, A. Albedo retrieval from Sentinel-2 by new narrow-to-broadband conversion coefficients. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1618–1622. [Google Scholar] [CrossRef]
- Pasqualotto, N.; Delegido, J.; Van Wittenberghe, S.; Rinaldi, M.; Moreno, J. Multi-crop green LAI estimation with a new simple Sentinel-2 LAI Index (SeLI). Sensors 2019, 19, 904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Motohka, T.; Nasahara, K.N.; Oguma, H.; Tsuchida, S. Applicability of green-red vegetation index for remote sensing of vegetation phenology. Remote Sens. 2010, 2, 2369–2387. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.A. wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. J. Plant Physiol. 2004, 161, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Hancock, D.W.; Dougherty, C.T. Relationships between blue- and red-based vegetation indices and leaf area and yield of alfalfa. Crop Sci. 2007, 47, 2547–2556. [Google Scholar] [CrossRef]
- Huete, A.; Justice, C.; Liu, H. Development of vegetation and soil indices for MODIS-EOS. Remote Sens. Environ. 1994, 49, 224–234. [Google Scholar] [CrossRef]
- Peñuelas, J.; Frederic, B.; Filella, I. Semi-empirical indices to assess carotenoids/chlorophyll-a ratio from leaf spectral reflectance. Photosynthetica 1995, 31, 221–230. [Google Scholar]
- Diek, S.; Fornallaz, F.; Schaepman, M.E. Rogier de jong barest pixel composite for agricultural areas using landsat time series. Remote Sens. 2017, 9, 1245. [Google Scholar] [CrossRef] [Green Version]
- Huntjr, E.; Rock, B. Detection of changes in leaf water content using near- and middle-infrared reflectances. Remote Sens. Environ. 1989, 30, 43–54. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.; Leavitt, B. Remote estimation of leaf area index and green leaf biomass in Maize Canopies. Geophys. Res. Lett. 2003, 30, 1248. [Google Scholar] [CrossRef] [Green Version]
- Hardisky, M.; Klemas, V. Smart, and the influence of soil salinity, growth form, and leaf moisture on the spectral radiance of spartina alterniflora canopies. Photogramm. Eng. Remote Sens. 1983, 48, 77–84. [Google Scholar]
- Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; CRC Press: Boca Raton, FL, USA, 1984; ISBN 0-412-04841-8. [Google Scholar]
- Bechtel, B. The climate of the canary islands by annual cycle parameters. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B8, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Bechtel, B. A new global climatology of annual land surface temperature. Remote Sens. 2015, 7, 2850–2870. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, M.; Weston, S.; Keefer, C.; Coulter, N. Cubist Models for Regression. In R Package Vignette R Package Version 0.0; R Foundation for Statistical Computing: Vienna, Austria, 2012; Volume 18. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Liaw, A.; Wiener, M. Package ‘RandomForest’; R Foundation for Statistical Computing: Vienna, Austria, 2015; Available online: https://cran.r-project.org/package=randomForest (accessed on 8 August 2021).
- Liaw, A.; Wiener, M. Classification and Regression by RandomForest. R News 2002, 2, 18–22. [Google Scholar]
- Genuer, R.; Poggi, J.-M.; Tuleau-Malot, C.; Genuer, M.R. Package ‘VSURF’. Pattern Recognit. Lett. 2015, 31, 2225–2236. [Google Scholar] [CrossRef] [Green Version]
- Genuer, R.; Poggi, J.-M.; Tuleau-Malot, C. Variable selection using random forests. Pattern Recognit. Lett. 2010, 31, 2225–2236. [Google Scholar] [CrossRef] [Green Version]
- Kustas, W.P.; Norman, J.M.; Anderson, M.C.; French, A.N. Estimating subpixel surface temperatures and energy fluxes from the vegetation index–radiometric temperature relationship. Remote Sens. Environ. 2003, 85, 429–440. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Pelgrum, H.; Wang, J.; Ma, Y.; Moreno, J.F.; Roerink, G.J.; van der Wal, T. A Remote sensing surface energy balance algorithm for land (SEBAL). J. Hydrol. 1998, 212–213, 213–229. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; ISBN 978-92-5-104219-9. [Google Scholar]
- Sobrino, J.A.; Gómez, M.; Jiménez-Muñoz, J.C.; Olioso, A. Application of a simple algorithm to estimate daily evapotranspiration from NOAA–AVHRR images for the Iberian Peninsula. Remote Sens. Environ. 2007, 110, 139–148. [Google Scholar] [CrossRef]
- Moletto-Lobos, Í.G. Evaluation of Actual ET Models over Grasslands for Los Rios and Los Lagos Region Using Remote Sensing and In Situ Data; Universidad de Chile: Santiago, Chile, 2017. [Google Scholar]
- Olivera-Guerra, L.; Mattar, C.; Galleguillos, M. Estimation of real evapotranspiration and its variation in mediterranean landscapes of central-southern Chile. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 160–169. [Google Scholar] [CrossRef]
- Technical Committee on Standardization of Reference Evapotranspiration. The ASCE Standardized Reference Evapotranspiration Equation; Allen, R.G., Walter, I.A., Elliott, R.L., Howell, T.A., Itenfisu, D., Jensen, M.E., Snyder, R.L., Eds.; American Society of Civil Engineers: Reston, VA, USA, 2005; ISBN 978-0-7844-0805-6. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Schauer, M.; Senay, G.B. Characterizing crop water use dynamics in the central valley of California using landsat-derived evapotranspiration. Remote Sens. 2019, 11, 1782. [Google Scholar] [CrossRef] [Green Version]
- Wichelns, D.; Qadir, M. Achieving sustainable irrigation requires effective management of salts, soil salinity, and shallow groundwater. Agric. Water Manag. 2015, 157, 31–38. [Google Scholar] [CrossRef]
- Letey, J.; Hoffman, G.J.; Hopmans, J.W.; Grattan, S.R.; Suarez, D.; Corwin, D.L.; Oster, J.D.; Wu, L.; Amrhein, C. Evaluation of soil salinity leaching requirement guidelines. Agric. Water Manag. 2011, 98, 502–506. [Google Scholar] [CrossRef] [Green Version]
- Kumari, N.; Srivastava, A.; Dumka, U.C. A long-term spatiotemporal analysis of vegetation greenness over the Himalayan region using google earth engine. Climate 2021, 9, 109. [Google Scholar] [CrossRef]
- Martín-Ortega, P.; García-Montero, L.G.; Sibelet, N. Temporal patterns in illumination conditions and its effect on vegetation indices using landsat on google earth engine. Remote Sens. 2020, 12, 211. [Google Scholar] [CrossRef] [Green Version]
Crop | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | References |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Olives | 0.65 | 0.65 | 0.65 | 0.65 | 0.6 | 0.5 | 0.5 | 0.5 | 0.6 | 0.6 | 0.65 | 0.65 | [27] |
Vineyards | 0.7 | 0.65 | 0.6 | 0.5 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.6 | 0.65 | 0.7 | [27] |
Pomegranates | 0.6 | 0.68 | 0.8 | 0.45 | 0.4 | 0.115 | 0.115 | 0.3 | 0.3 | 0.4 | 0.4 | 0.45 | [32,33] |
Name Variables | Sentinel-2 Variables | Expression | References |
---|---|---|---|
B1 | Band 1 | ||
B2 | Band 2 | ||
B3 | Band 3 | ||
B4 | Band 4 | ||
B5 | Band 5 | ||
B6 | Band 6 | ||
B7 | Band 7 | ||
B8 | Band 8 | ||
B8A | Band 8A | ||
B9 | Band 9 | ||
B11 | Band 11 | ||
B12 | Band 12 | ||
NDVI | Normalized difference vegetation index | [43] | |
SAVI | Soil adjusted vegetation index | [44] | |
EVI | Enhanced vegetation index | [45] | |
GNDVI | Green normalized difference vegetation index | [46] | |
NDWI | Normalized difference water index | [47] | |
MSAVI2 | Modified soil vegetation index 2 | [48] | |
ALBEDO | Albedo | [49] | |
SELI | Sentinel-2 LAIgreen index | [50] | |
TCARI | Transformed chlorophyll absorption ratio index | [51] | |
OSAVI | Optimized soil adjusted vegetation index | [52] | |
TCARI/OSAVI | [51,52] | ||
GRVI | Green-Red vegetation index | [53] | |
WDRVI | Wide dynamic range vegetation index | [54] | |
BWDRVI | Blue-wide dynamic range vegetation index | [55] | |
TVI | Transformed vegetation index | [43] | |
ARVI | Atmospherically resistant vegetation index | [56] | |
SIPI | Structure insensitive pigment index | [57] | |
BSI | Bare soil index | [58] | |
MSI | Sentinel-2 Moisture stress index | [59] | |
GCI | Green chlorophyll index | [60] | |
NDMI | Normalized difference moisture index | [61] | |
CLRE | Red-edge-band Chlorophyll Index | [60] |
ETa | Cubist | Random Forest | Sinusoidal | |
---|---|---|---|---|
Olives | RMSE | 0.75 | 0.56 | 0.39 |
Bias | −0.35 | −0.25 | −0.12 | |
Sigma | 0.56 | 0.42 | 0.29 | |
R2 | 0.673 | 0.750 | 0.798 | |
RRMSE | 29.21 | 16.52 | 7.85 | |
MAE | 0.62 | 0.46 | 0.26 | |
Vineyards | RMSE | 0.72 | 0.62 | 0.49 |
Bias | −0.15 | −0.12 | 0.00 | |
Sigma | 0.42 | 0.36 | 0.29 | |
R2 | 0.651 | 0.675 | 0.692 | |
RRMSE | 26.01 | 19.66 | 12.26 | |
MAE | 0.59 | 0.50 | 0.33 | |
Pomegranates | RMSE | 0.48 | 0.44 | 0.50 |
Bias | −0.03 | −0.02 | 0.07 | |
Sigma | 0.25 | 0.23 | 0.26 | |
R2 | 0.764 | 0.802 | 0.837 | |
RRMSE | 12.96 | 10.96 | 14.30 | |
MAE | 0.39 | 0.35 | 0.44 | |
Overall | RMSE | 0.69 | 0.56 | 0.45 |
Bias | −0.18 | −0.13 | −0.02 | |
Sigma | 0.43 | 0.35 | 0.28 | |
R2 | 0.641 | 0.710 | 0.707 | |
RRMSE | 24.85 | 16.29 | 10.51 | |
MAE | 0.56 | 0.45 | 0.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reyes Rojas, L.A.; Moletto-Lobos, I.; Corradini, F.; Mattar, C.; Fuster, R.; Escobar-Avaria, C. Determining Actual Evapotranspiration Based on Machine Learning and Sinusoidal Approaches Applied to Thermal High-Resolution Remote Sensing Imagery in a Semi-Arid Ecosystem. Remote Sens. 2021, 13, 4105. https://doi.org/10.3390/rs13204105
Reyes Rojas LA, Moletto-Lobos I, Corradini F, Mattar C, Fuster R, Escobar-Avaria C. Determining Actual Evapotranspiration Based on Machine Learning and Sinusoidal Approaches Applied to Thermal High-Resolution Remote Sensing Imagery in a Semi-Arid Ecosystem. Remote Sensing. 2021; 13(20):4105. https://doi.org/10.3390/rs13204105
Chicago/Turabian StyleReyes Rojas, Luis A., Italo Moletto-Lobos, Fabio Corradini, Cristian Mattar, Rodrigo Fuster, and Cristián Escobar-Avaria. 2021. "Determining Actual Evapotranspiration Based on Machine Learning and Sinusoidal Approaches Applied to Thermal High-Resolution Remote Sensing Imagery in a Semi-Arid Ecosystem" Remote Sensing 13, no. 20: 4105. https://doi.org/10.3390/rs13204105
APA StyleReyes Rojas, L. A., Moletto-Lobos, I., Corradini, F., Mattar, C., Fuster, R., & Escobar-Avaria, C. (2021). Determining Actual Evapotranspiration Based on Machine Learning and Sinusoidal Approaches Applied to Thermal High-Resolution Remote Sensing Imagery in a Semi-Arid Ecosystem. Remote Sensing, 13(20), 4105. https://doi.org/10.3390/rs13204105