Identification of Amaranthus Species Using Visible-Near-Infrared (Vis-NIR) Spectroscopy and Machine Learning Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Spectral Measurement in the Field
2.3. Preprocessing of Spectral Data
2.4. Modeling and Statistical Analysis
- (i)
- The application of a scatter correction method;
- (ii)
- The four classification algorithms and,
- (iii)
- The interaction of the two precious factors.
3. Results
3.1. VNIR Spectra and Data Preprocessing
3.2. Chemometric Analysis-Based Species Discrimination
3.3. Significance of Preprocessing and Selection of Optimal Classification Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Park, Y.-H.; Park, S.-H.; Yoo, K.-O. A newly naturalized species in Korea: Amaranthus powellii S. Watson (Amaranthaceae). Korean J. Plant Taxon. 2014, 44, 132–135. [Google Scholar] [CrossRef]
- Judd, W.S.; Campbell, C.S.; Kellog, E.A.; Stevens, P.F.; Dongoghus, M.J. Plant Systematics: A Phylogenetic Approach, 3rd ed.; Sinauer Associates: Sunderland, MA, USA, 2008; p. 620. [Google Scholar]
- Park, S.H. New Illustrations and Photographs of Naturalized Plants of Korea; Ilchokak Inc.: Seoul, Korea, 2009; p. 575. [Google Scholar]
- Xu, H.; Pan, X.; Wang, C.; Chen, Y.; Chen, K.; Zhu, S.; van Klinken, R.D. Species identification, phylogenetic analysis and detection of herbicide-resistant biotypes of Amaranthus based on ALS and ITS. Sci. Rep. 2020, 10, 11735. [Google Scholar] [CrossRef]
- Beech, E.; Rivers, M.; Oldfield, S.; Smith, P.P. GlobalTreeSearch: The first complete global database of tree species and country distributions. J. Sustain. For. 2017, 36, 454–489. [Google Scholar] [CrossRef]
- Hearn, D.J. Shape analysis for the automated identification of plants from images of leaves. Taxon 2009, 58, 934–954. [Google Scholar] [CrossRef]
- Achigan-Dako, E.G.; Sogbohossou, E.O.D.; Maundu, P. Current knowledge on Amaranthus spp.: Research avenues for improved nutritional value and yield in leafy amaranths in sub-Saharan Africa. Euphytica 2014, 197, 303–317. [Google Scholar] [CrossRef]
- Hennessy, A.; Clarke, K.; Lewis, M. Hyperspectral classification of plants: A review of waveband selection generalisability. Remote Sens. 2020, 12, 113. [Google Scholar] [CrossRef] [Green Version]
- Sohn, S.-I.; Pandian, S.; Oh, Y.-J.; Zaukuu, J.-L.Z.; Kang, H.-J.; Ryu, T.-H.; Cho, W.-S.; Cho, Y.-S.; Shin, E.-K.; Cho, B.-K. An overview of near infrared spectroscopy and its applications in the detection of genetically modified organisms. Int. J. Mol. Sci. 2021, 22, 9940. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Liu, J.; Zhang, C.; Cai, M.; Wang, H.; Xiong, W. An overview of infrared spectroscopy based on continuous wavelet transform combined with machine learning algorithms: Application to Chinese medicines, plant classification, and cancer diagnosis. Appl. Spectrosc. Rev. 2010, 45, 148–164. [Google Scholar] [CrossRef]
- Roth, K.L.; Roberts, D.A.; Dennison, P.; Alonzo, M.; Peterson, S.H.; Beland, M. Differentiating plant species within and across diverse ecosystems with imaging spectroscopy. Remote Sens. Environ. 2015, 167, 135–151. [Google Scholar] [CrossRef]
- Cozzolino, D.; Smyth, H.E.; Gishen, M. Feasibility study on the use of visible and near-infrared spectroscopy together with chemometrics to discriminate between commercial white wines of different varietal origins. J. Agric. Food Chem. 2003, 51, 7703–7708. [Google Scholar] [CrossRef]
- Ferrari, M.; Mottola, L.; Quaresima, V. Principles, techniques, and limitations of near infrared spectroscopy. Can. J. Appl. Physiol. 2004, 29, 463–487. [Google Scholar] [CrossRef] [Green Version]
- Durgante, F.M.; Higuchi, N.; Almeida, A.; Vicentini, A. Species spectral signature: Discriminating closely related plant species in the Amazon with near-infrared leaf-spectroscopy. For. Ecol. Manag. 2013, 291, 240–248. [Google Scholar] [CrossRef]
- Lang, C.; Costa, F.R.C.; Camargo, J.L.C.; Durgante, F.; Vicentini, A. Near infrared spectroscopy facilitates rapid identification of both young and mature Amazonian tree species. PLoS ONE 2015, 10, e0134521. [Google Scholar] [CrossRef]
- Hadlich, H.L.; Durgante, F.M.; dos Santos, J.; Higuchi, N.; Chambers, J.Q.; Vicentini, A. Recognizing Amazonian tree species in the field using bark tissues spectra. For. Ecol. Manag. 2018, 427, 296–304. [Google Scholar] [CrossRef] [Green Version]
- Alishahi, A.; Farahmand, H.; Prieto, N.; Cozzolino, D. Identification of transgenic foods using NIR spectroscopy: A review. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2010, 75, 1–7. [Google Scholar] [CrossRef]
- Porker, K.; Zerner, M.; Cozzolino, D. Classification and authentication of barley (Hordeum vulgare) malt varieties: Combining attenuated total reflectance mid-infrared spectroscopy with chemometrics. Food Anal. Methods 2017, 10, 675–682. [Google Scholar] [CrossRef]
- Luz, B.R.; Crowley, J.K. Spectral reflectance and emissivity features of broad leaves plants: Prospects for remote sensing in the thermal infrared (8.0–14.0 μm). Remote Sens. Environ. 2007, 109, 393–405. [Google Scholar]
- Ullah, A.K.; Skidmore, A.; Ramoelo, T.A.; Groen, M.; Naeem, A. Retrieval of leaf water content spanning the visible to thermal infrared spectra. ISPRS J. Photogramm. Remote Sens. 2014, 93, 56–64. [Google Scholar] [CrossRef]
- Meerdink, S.; Roberts, D.A.; King, J.Y.; Roth, K.L.; Dennison, P.E.; Amaral, C.H.; Hook, S.J. Linking seasonal foliar traits to VSWIR-TIR spectroscopy across California ecosystems. Remote Sens. Environ. 2016, 186, 322–338. [Google Scholar] [CrossRef]
- Zaukuu, J.-L.Z.; Aouadi, B.; Lukács, M.; Bodor, Z.; Vitális, F.; Gillay, B.; Gillay, Z.; Friedrich, L.; Kovacs, Z. Detecting low concentrations of nitrogen-based adulterants in whey protein powder using benchtop and handheld NIR spectrometers and the feasibility of scanning through plastic bag. Molecules 2020, 25, 2522. [Google Scholar] [CrossRef]
- Harrison, D.; Rivard, B.; Sánchez-Azofeifa, A. Classification of tree species based on longwave hyperspectral data from leaves, a case study for a tropical dry forest. Int. J. Appl. Earth Obs. Geoinf. 2018, 66, 93–105. [Google Scholar] [CrossRef]
- Workman, J.J. Review of process and non-invasive near-infrared and infrared spectroscopy: 1993–1999. Appl. Spectrosc. Rev. 1999, 34, 1–89. [Google Scholar] [CrossRef]
- Rinnan, Å.; van den Berg, F.; Engelsen, S.B. Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- Jiao, Y.; Li, Z.; Chen, X.; Fei, S. Preprocessing methods for near-infrared spectrum calibration. J. Chemom. 2020, 34, 3306. [Google Scholar] [CrossRef]
- Sandak, A.; Sandak, J.; Negri, M. Relationship between near-infrared (NIR) spectra and the geographical provenance of timber. Wood Sci. Technol. 2011, 45, 35–48. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Nelder, J.A.; Wedderburn, R.W.M. Generalized linear models. J. R. Stat. Soc. Ser. A Gen. 1972, 135, 370. [Google Scholar] [CrossRef]
- Steele, B. Maximum posterior probability estimators of map accuracy. Remote Sens. Environ. 2005, 99, 254–270. [Google Scholar] [CrossRef]
- Psomas, A.; Zimmermann, N.E.; Kneubühler, M.; Kellenberger, T.; Itten, K. Seasonal variability in spectral reflectance for discriminating grasslands along a dry-mesic gradient in Switzerland. In Proceedings of the 4th EARSEL Workshop on Imaging Spectroscopy, Warsaw, Poland, 27–29 April 2005; pp. 709–722. [Google Scholar]
- Manevski, K.; Manakos, I.; Petropoulos, G.P.; Kalaitzidis, C. Discrimination of common Mediterranean plant species using field spectroradiometry. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 922–933. [Google Scholar] [CrossRef]
- Chen, Y.; Bin, J.; Zou, C.; Ding, M. Discrimination of fresh tobacco leaves with different maturity levels by near-infrared (NIR) spectroscopy and deep learning. J. Anal. Methods Chem. 2021, 2021, 9912589. [Google Scholar] [CrossRef]
- Fernández-Cabanás, V.M.; Garrido-Varo, A.; Pérez-Marín, D.; Dardenne, P. Evaluation of pretreatment strategies for near-infrared spectroscopy calibration development of unground and ground compound feedingstuffs. Appl. Spectrosc. 2006, 60, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Delwiche, S.R.; Reeves, J.B.; Reeves, I.J. The effect of spectral pre-treatments on the partial least squares modelling of agricultural products. J. Near Infrared Spectrosc. 2004, 12, 177–182. [Google Scholar] [CrossRef]
- Borraz-Martínez, S.; Simó, J.; Gras, A.; Mestre, M.; Boqué, R. Multivariate classification of prunus dulcis varieties using leaves of nursery plants and near-infrared spectroscopy. Sci. Rep. 2019, 9, 19810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaye, B.; Zhang, D.; Wulamu, A. Improvement of support vector machine algorithm in big data background. Math. Probl. Eng. 2021, 2021, 1–9. [Google Scholar] [CrossRef]
- Patil, S.P.; Zambre, R.S. Classification of cotton leaf spot disease using support vector machine. J. Eng. Res. Appl. 2014, 4, 92–97. [Google Scholar]
- Jayanthi, M.G.; Shashikumar, D.R. Automatic tomato plant leaf disease classification using multi-kernel support vector machine. Int. J. Eng. Adv. Technol. 2020, 9, 560–565. [Google Scholar] [CrossRef]
- Perumal, P. Guava leaf disease classification using support vector machine. Turk. J. Comput. Math. Educ. 2021, 12, 1177–1183. [Google Scholar]
- Bergo, M.C.; Pastore, T.C.; Coradin, V.T.; Wiedenhoeft, A.C.; Braga, J.W. NIRS identification of Swietenia macrophylla is robust across specimens from 27 countries. IAWA J. 2016, 37, 420–430. [Google Scholar] [CrossRef] [Green Version]
- Soares-Filho, B.S.; Oliveira, A.S.; Rajão, R.G.; Oliveira, U.; Santos, L.R.S.; Assunção, A.C. Economic Valuation of Changes in the Amazon Forest Area: Economic Losses by Fires to Sustainable Timber Production; Center for Remote Sensing: Bello Horizonte, Brazil, 2017. [Google Scholar]
- Acevedo, M.F.B.; Groen, T.A.; Hecker, C.A.; Skidmore, A.K. Identifying leaf traits that signal stress in TIR spectra. ISPRS J. Photogramm. Remote Sens. 2017, 125, 132–145. [Google Scholar] [CrossRef]
- Wetzel, D.K.; Horak, M.J.; Skinner, D.Z. Use of PCR-based molecular markers to identify weedy Amaranthus species. Weed Sci. 1999, 47, 518–523. [Google Scholar] [CrossRef]
- Viljoen, E.; Odeny, D.A.; Coetzee, M.P.A.; Berger, D.K.; Rees, J. Application of chloroplast Phylogenomics to resolve species relationships within the plant genus Amaranthus. J. Mol. Evol. 2018, 86, 216–239. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, R. Nutritional quality of some cultivated and wild species of Amaranthus, L. Int. J. Pharm. Sci. Res. 2011, 2, 3152. [Google Scholar]
- Bang, J.-H.; Lee, K.; Jeong, W.; Han, S.; Jo, I.-H.; Choi, S.; Cho, H.; Hyun, T.; Sung, J.; Lee, J.; et al. Antioxidant activity and phytochemical content of nine Amaranthus species. Agronomy 2021, 11, 1032. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Ustin, S.L. Leaf optical properties: A state of the art. In Proceedings of the 8th International Symposium of Physical Measurements & Signatures in Remote Sensing, Aussois, France, 8–12 January 2001; pp. 223–332. [Google Scholar]
- Raven, P.H.; Evert, R.F.; Eichhorn, S.E. Biologia Vegetal, 6th ed.; Editora Guanabara Koogan: Rio de Janeiro, Brazil, 2001. [Google Scholar]
- Dhugga, K.S. Building the wall: Genes and enzyme complexes for polysaccharide synthases. Curr. Opin. Plant Biol. 2001, 4, 488–493. [Google Scholar] [CrossRef]
- Wong, C.; Blevin, W. Infrared reflectances of plant leaves. Aust. J. Biol. Sci. 1967, 20, 501–508. [Google Scholar] [CrossRef] [Green Version]
- Castro-Esau, K.L.; Sánchez-Azofeifa, G.A.; Caelli, T. Discrimination of lianas and trees with leaf-level hyperspectral data. Remote Sens. Environ. 2004, 90, 353–372. [Google Scholar] [CrossRef]
Classes | Scientific Name | Vernacular Name | Distribution in Korea | Sampling Location (Latitude, Longitude) | No. of Spectra |
---|---|---|---|---|---|
Class A | Amaranthus patulus Bertol. | Speen amaranth | National distribution | 36.23438, 128.7617 | 1000 |
Class B | Amaranthus spinosus L. | Spiny amaranth | Southern distribution | 33.32751, 126.2594 | 1001 |
Class C | Amaranthus lividus L. | Wild amaranth | National distribution | 36.54434, 127.1181 | 970 |
Class D | Amaranthus viridis L. | Green amaranth | Southwest distribution | 35.23967, 126.4599 | 1370 |
Class E | Amaranthus retroflexus L. | Red-root amaranth | Northeastern distribution | 37.61179, 128.7746 | 1001 |
Class F | Amaranthus powellii S. Watson | Powell’s amaranth | Northeastern distribution | 37.56574, 128.4476 | 900 |
Model | Preprocessing | Average Accuracy (%±SD) | Run Time (ms) |
---|---|---|---|
Support Vector Machine | Raw spectra | 98.0 ± 0.008 * | 11,535 |
Normalization (Area) | 91.3 ± 0.014 | 19,456 | |
Standard Normal Variate | 98.8 ± 0.006 | 13,116 | |
Derivative (Savitzky-Golay) | 99.7 ± 0.006 ** | 11,535 | |
Generalized Linear Model | Raw spectra | 74.5 ± 0.013 * | 15,239 |
Normalization (Area) | 93.0 ± 0.012 | 2568 | |
Standard Normal Variate | 92.5 ± 0.012 | 1727 | |
Derivative (Savitzky-Golay) | 98.0 ± 0.008 ** | 1541 | |
Decision Tree | Raw spectra | 85.5 ± 0.010 * | 6878 |
Normalization (Area) | 72.8 ± 0.012 | 5334 | |
Standard Normal Variate | 89.6 ± 0.012 ** | 6714 | |
Derivative (Savitzky-Golay) | 89.0 ± 0.030 | 3469 | |
Naive Bayes | Raw spectra | 71.0 ± 0.023 * | 756 |
Normalization (Area) | 78.3 ± 0.010 | 465 | |
Standard Normal Variate | 89.0 ± 0.013 ** | 452 | |
Derivative (Savitzky-Golay) | 87.5 ± 0.026 | 444 |
Model | Species Accuracy (% ± SE) | ||||
---|---|---|---|---|---|
Raw Spectra | Normalization (Area) | Derivative (Savitzky-Golay) | SNV | Significance | |
Naive Bayes | 66.8 ± 9.7 ab | 77.1 ± 7.1 | 85.0 ± 6.8 c | 86.5 ± 8.5 | ns |
Generalized Linear Model | 54.2 ± 18.1 B b | 90.2 ± 5.0 A | 98.3 ± 0.8 A ab | 94.2 ± 3.0 A | * |
Decision Tree | 85.5 ± 3.0 ab | 69.7 ± 15.1 | 86.8 ± 4.3 bc | 93.7 ± 3.5 | ns |
Support Vector Machine | 98.5 ± 0.8 a | 95.0 ± 3.5 | 99.7 ± 0.6 a | 99.4 ± 0.6 | ns |
significance | * | ns | * | ns |
Source | df | SS | MS | F-Value | p-Value |
---|---|---|---|---|---|
Preprocessing (P) | 3 | 0.480118 | 0.160039 | 4.7 | 0.0045 |
Model (M) | 3 | 0.491706 | 0.163902 | 4.82 | 0.0039 |
P × M | 9 | 0.600699 | 0.066744 | 1.96 | 0.0549 |
Error | 80 | 2.722771 | 0.034035 | ||
Total | 95 | 4.295294 |
RAW/SVM | A. patulus | A. spinosus | A. lividus | A. viridis | A. retroflexus | A. powellii | Average Accuracy (%) |
A. patulus | 86.21 | 0.00 | 6.90 | 0.00 | 0.00 | 6.90 | 86 |
A. spinosus | 0.00 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 100 |
A. lividus | 0.00 | 0.00 | 100.00 | 0.00 | 0.00 | 0.00 | 100 |
A. viridis | 0.00 | 0.00 | 0.00 | 100.00 | 0.00 | 0.00 | 100 |
A. retroflexus | 0.00 | 0.00 | 0.00 | 0.00 | 98.78 | 1.22 | 99 |
A. powellii | 0.95 | 0.00 | 0.00 | 0.95 | 0.00 | 98.10 | 98 |
SG/SVM | A. patulus | A. spinosus | A. lividus | A. viridis | A. retroflexus | A. powellii | Average Accuracy (%) |
A. patulus | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 100 |
A. spinosus | 0.00 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 100 |
A. lividus | 0.00 | 0.00 | 96.55 | 0.00 | 3.45 | 0.00 | 97 |
A. viridis | 0.00 | 0.00 | 0.00 | 100.00 | 0.00 | 0.00 | 100 |
A. retroflexus | 0.00 | 0.00 | 0.00 | 0.00 | 100.00 | 0.00 | 100 |
A. powellii | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 100.00 | 100 |
Normalization/SVM | A. patulus | A. spinosus | A. lividus | A. viridis | A. retroflexus | A. powellii | Average Accuracy (%) |
A. patulus | 55.56 | 2.78 | 0.00 | 13.89 | 0.00 | 27.78 | 56 |
A. spinosus | 3.13 | 95.31 | 0.00 | 0.00 | 0.00 | 1.56 | 95 |
A. lividus | 0.00 | 0.00 | 87.88 | 0.00 | 3.03 | 9.09 | 88 |
A. viridis | 0.00 | 0.00 | 0.00 | 100.00 | 0.00 | 0.00 | 100 |
A. retroflexus | 0.00 | 0.00 | 0.00 | 0.00 | 100.00 | 0.00 | 100 |
A. powellii | 3.74 | 0.00 | 0.00 | 0.00 | 4.67 | 91.59 | 92 |
SNV/SVM | A. patulus | A. spinosus | A. lividus | A. viridis | A. retroflexus | A. powellii | Average Accuracy (%) |
A. patulus | 92.86 | 0.00 | 0.00 | 7.14 | 0.00 | 0.00 | 93 |
A. spinosus | 0.00 | 76.83 | 17.07 | 2.44 | 3.66 | 0.00 | 77 |
A. lividus | 0.00 | 0.00 | 100.00 | 0.00 | 0.00 | 0.00 | 100 |
A. viridis | 0.00 | 0.00 | 0.00 | 100.00 | 0.00 | 0.00 | 100 |
A. retroflexus | 0.00 | 0.00 | 0.00 | 0.00 | 100.00 | 0.00 | 100 |
A. powellii | 0.00 | 0.00 | 1.72 | 0.00 | 0.86 | 97.41 | 97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sohn, S.-I.; Oh, Y.-J.; Pandian, S.; Lee, Y.-H.; Zaukuu, J.-L.Z.; Kang, H.-J.; Ryu, T.-H.; Cho, W.-S.; Cho, Y.-S.; Shin, E.-K. Identification of Amaranthus Species Using Visible-Near-Infrared (Vis-NIR) Spectroscopy and Machine Learning Methods. Remote Sens. 2021, 13, 4149. https://doi.org/10.3390/rs13204149
Sohn S-I, Oh Y-J, Pandian S, Lee Y-H, Zaukuu J-LZ, Kang H-J, Ryu T-H, Cho W-S, Cho Y-S, Shin E-K. Identification of Amaranthus Species Using Visible-Near-Infrared (Vis-NIR) Spectroscopy and Machine Learning Methods. Remote Sensing. 2021; 13(20):4149. https://doi.org/10.3390/rs13204149
Chicago/Turabian StyleSohn, Soo-In, Young-Ju Oh, Subramani Pandian, Yong-Ho Lee, John-Lewis Zinia Zaukuu, Hyeon-Jung Kang, Tae-Hun Ryu, Woo-Suk Cho, Youn-Sung Cho, and Eun-Kyoung Shin. 2021. "Identification of Amaranthus Species Using Visible-Near-Infrared (Vis-NIR) Spectroscopy and Machine Learning Methods" Remote Sensing 13, no. 20: 4149. https://doi.org/10.3390/rs13204149
APA StyleSohn, S. -I., Oh, Y. -J., Pandian, S., Lee, Y. -H., Zaukuu, J. -L. Z., Kang, H. -J., Ryu, T. -H., Cho, W. -S., Cho, Y. -S., & Shin, E. -K. (2021). Identification of Amaranthus Species Using Visible-Near-Infrared (Vis-NIR) Spectroscopy and Machine Learning Methods. Remote Sensing, 13(20), 4149. https://doi.org/10.3390/rs13204149