An Ionospheric Anomaly Monitor Based on the One Class Support Vector Algorithm for the Ground-Based Augmentation System
Abstract
:1. Introduction
2. Ionospheric Anomalies Detection Based on the OCSVM
2.1. The OCSVM Algorithm
2.2. Ionospheric Anomaly Detection with the OCSVM-Based Monitor
3. Experiment Analysis
3.1. Ionospheric Anomaly Detection with Synthetic Data
3.2. Ionospheric Anomaly Detection with Semi-Simulation Data
3.3. Real Ionospheric Anomaly Event Experiment
4. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ARMA | Auto-regressive and moving average |
BDS | BeiDou Navigation Satellite System |
CCD | Code-carrier divergence |
CCD-1OF | CCD monitor with one first-order low-pass ARMA filter |
CCD-2OF | CCD monitor with two first-order cascade ARMA filters |
GBAS | Ground Based Augmentation System |
CMC | Code minus carrier |
ED | Embedding dimension |
GAST | GBAS Approach Service Type |
GNSS | Global Navigation Satellite System |
GPS | Global Positioning System |
KDE | Kernel density estimation |
KLD-1OF | Kullback–Leibler divergence metric using one first order ARMA filter |
OCSVM | One class support vector machine |
RBF | Radial basis function |
SVM | Support vector machine |
UT | Universal time |
References
- Rife, J.; Pullen, S.; Enge, P. Evaluating fault-mode protection levels at the aircraft in category III LAAS. In Proceedings of the ION AM 2007 of the Institute of Navigation, Cambridge, MA, USA, 23–25 April 2007; pp. 356–371. [Google Scholar]
- Cheng, J.; Li, J.; Li, L.; Jiang, C.; Qi, B. Carrier Phase-Based Ionospheric Gradient Monitor Under the Mixed Gaussian Distribution. Remote Sens. 2020, 12, 3915. [Google Scholar] [CrossRef]
- Zhao, L.; Yang, F.; Li, L.; Ding, J.; Zhao, Y. GBAS Ionospheric Anomaly Monitoring Based on a Two-Step Approach. Sensors 2016, 16, 763. [Google Scholar] [CrossRef] [Green Version]
- Giannattasio, F.; De Michelis, P.; Pignalberi, A.; Coco, I.; Consolini, G.; Pezzopane, M.; Tozzi, R. Parallel Electrical Conductivity in the Topside Ionosphere Derived from Swarm Measurements. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028452. [Google Scholar] [CrossRef]
- Lee, J.; Dattabarua, S.; Zhang, G.; Pullen, S.; Enge, P. Observations of low-elevation ionospheric anomalies for ground-based augmentation of GNSS. Radio Sci. 2011, 46, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Fujita, S.; Yoshihara, T.; Saito, S. Determination of Ionospheric Gradients in Short Baselines by Using Single Frequency Measurements. J. Aero. Astroon. Aviat. A. 2010, 42, 269–275. [Google Scholar] [CrossRef]
- Wang, Z.; Li, T.; Li, Q.; Fang, K. Impact of Anomalous Ionospheric Gradients on GBAS in the Low-Latitude Region of China. GPS Solut. 2021, 25, 2. [Google Scholar] [CrossRef]
- Lee, J.Y.; Yoon, M.S.; Sam, P.; Gillespie, J.; Mather, N.; Cole, R.; Souza, J.R.; Doherty, P.; Pradipta, R. Preliminary results from ionospheric threat model development to support GBAS operations in the Brazilian region. Proceedings of ION GNSS+ 2015, Tampa, FL, USA, 14–18 September 2015; pp. 1500–1506. [Google Scholar]
- Schlüter, S.; Hoque, M.M. An SBAS Integrity Model to Overbound Residuals of Higher-Order Ionospheric Effects in the Ionosphere-Free Linear Combination. Remote Sens. 2020, 12, 2467. [Google Scholar] [CrossRef]
- Jiang, Y.; Milner, C.; Macabiau, C. Code Carrier Divergence Monitoring for Dual-Frequency GBAS. GPS Solut. 2017, 21, 769–781. [Google Scholar] [CrossRef]
- Kawalec, A.; Mielnik, P. Code and carrier divergence technique to detect ionosphere anomalies. In Proceedings of the 2008 International Radar Symposium, Wrocław, Poland, 21–23 May 2008; pp. 1–4. [Google Scholar]
- Wang, Z.; Yin, Y.; Song, D.; Fang, K.; Li, Q.; Li, X. Dual Smoothing Ionospheric Gradient Monitoring Algorithm for Dual-Frequency BDS GBAS. Chin. J. Aeronaut. 2020, 33, 3395–3404. [Google Scholar] [CrossRef]
- Khanafseh, S.; Pullen, S.; Warburton, J. Carrier phase ionospheric gradient ground monitor for GBAS with experimental validation. Navigation 2012, 59, 51–60. [Google Scholar] [CrossRef]
- Xie, G. Optimal On-Airport Monitoring of the Integrity of GPS-Based Landing Systems. Ph.D. Thesis, Department of Aeronautical and Astronautical Engineering, Stanford University, Stanford, CA, USA, 2004. [Google Scholar]
- Simili, D.V.; Pervan, B. Code-carrier divergence monitoring for the GPS local area augmentation system. In Proceedings of the 2006 IEEE/ION Position, Location and Navigation Symposium, San Diego, CA, USA, 25–27 April 2006; pp. 483–493. [Google Scholar]
- Yun, Y.; Cho, J.; Heo, M. Sensitivity Analysis of Code Carrier Divergence Monitor Algorithms. In Proceedings of the ION GNSS 2012, Institute of Navigation, Nashville, TN, USA, 17–21 September 2012; pp. 3505–3511. [Google Scholar]
- Kim, E.; Walter, T.; Powell, J.D. Adaptive carrier smoothing using code and carrier divergence. In Proceedings of the ION NTM, Institute of Navigation, San Diego, CA, USA, 22–24 January 2007; pp. 141–152. [Google Scholar]
- Cho, J.; Yun, Y.; Heo, M. GBAS Ionospheric Anomaly Monitoring Strategy Using Kullback-Leibler Divergence Metric. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 565–574. [Google Scholar] [CrossRef]
- Savas, C.; Dovis, F. Comparative Performance Study of Linear and Gaussian Kernel SVM Implementations for Phase Scintillation Detection. In Proceedings of the 2019 International Conference on Localization and GNSS (ICL-GNSS), Nuremberg, Germany, 4–6 June 2019; pp. 1–6. [Google Scholar]
- Liu, Y.; Morton, Y. Automatic detection of ionospheric scintillation-like GNSS satellite oscillator anomaly using a machine-learning algorithm. Navigation 2020, 67, 651–662. [Google Scholar] [CrossRef]
- Wang, Z.; Du, J.; Zhi, W.; Zhu, Y.; Liu, Y.; Sun, Q. An Availability Prediction Method of Ground-Based Augmentation System Based on Support Vector Machine Algorithm. In Proceedings of the ION ITM 2018 of the Institute of Navigation, Reston, VA, USA, 29 January–1 February 2018; pp. 322–338. [Google Scholar]
- Lyu, Z.; Gao, Y. An SVM Based Weight Scheme for Improving Kinematic GNSS Positioning Accuracy with Low-Cost GNSS Receiver in Urban Environments. Sensors 2020, 20, 7265. [Google Scholar] [CrossRef]
- Ma, J.; Perkins, S. Time-Series Novelty Detection Using One-Class Support Vector Machines. In Proceedings of the International Joint Conference on Neural Networks, Portland, OR, USA, 20–24 July 2003; Volume 3, pp. 1741–1745. [Google Scholar]
- Goryaeva, A.M.; Lapointe, C.; Dai, C.; Dérès, J.; Maillet, J.; Marinica, M. Reinforcing Materials Modelling by Encoding the Structures of Defects in Crystalline Solids into Distortion Scores. Nat. Commun. 2020, 11, 4691. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, R.T.; Smeureanu, S.; Popescu, M.; Alexe, B. Detecting Abnormal Events in Video Using Narrowed Normality Clusters. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 7–11 January 2019; pp. 1951–1960. [Google Scholar]
- Wang, Z.; Fu, Y.; Song, C.; Zeng, P.; Qiao, L. Power System Anomaly Detection Based on OCSVM Optimized by Improved Particle Swarm Optimization. IEEE Access 2019, 7, 181580–181588. [Google Scholar] [CrossRef]
- Clauss, K.; Yan, H.; Kuenzer, C. Mapping Paddy Rice in China in 2002, 2005, 2010 and 2014 with MODIS Time Series. Remote Sens. 2016, 8, 434. [Google Scholar] [CrossRef] [Green Version]
- Robert, E.; Jonas, P.; Vuillaume, J.; Salos, D.; Hecker, L.; Yaya, P. Development of a European Ionosphere Threat Model in Support of GBAS Deployment. In Proceedings of the 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS), 23–26 April 2018; IEEE: Monterey, CA, USA, 2018; pp. 1181–1190. [Google Scholar]
- Sayim, I.; Lang, H.; Zhang, D. Ionospheric Delay Prediction and Code-Carrier Divergence Testing for GBAS Using Neural Network and GPS L1. Aerosp. Sci. Technol. 2017, 70, 66–75. [Google Scholar] [CrossRef]
- Ouzeau, C.; Frédéric, B.; Macabiau, C.; Roturier, B. Ionospheric Code Delay Estimation in a Single Frequency Case for Civil Aviation. In Proceedings of the ION GNSS 2006 of the Institute of Navigation, Fort Worth, TX, USA, 26–29 September 2006; pp. 3059–3069. [Google Scholar]
- Matilla-García, M.; Morales, I.; Rodríguez, J.M.; Marín, M.R. Selection of Embedding Dimension and Delay Time in Phase Space Reconstruction via Symbolic Dynamics. Entropy 2021, 23, 221. [Google Scholar] [CrossRef]
- Kim, D.; Cho, J. Improvement of Anomalous Behavior Detection of GNSS Signal Based on TDNN for Augmentation Systems. Sensors 2018, 18, 3800. [Google Scholar] [CrossRef] [Green Version]
- Xia, G.; Liu, Y.; Wei, T.; Wang, Z.; Huang, W.; Du, Z.; Zhang, Z.; Wang, X.; Zhou, C. Ionospheric TEC forecast model based on support vector machine with GPU acceleration in the China region. Adv. Space Res. 2021, 68, 1377–1389. [Google Scholar] [CrossRef]
- Botev, Z.I.; Kroese, J. Kernel density estimation via diffusion. Ann. Stat. 2010, 38, 2916–2957. [Google Scholar] [CrossRef] [Green Version]
- Yin, S.; Ding, S.X.; Abandan Sari, A.H.; Hao, H. Data-driven monitoring for stochastic systems and its application on batch process. Int. J. Syst. Sci. 2013, 44, 1366–1376. [Google Scholar] [CrossRef]
- Shively, C.A.; Braff, R. An Overbound Concept for Pseudorange Error from the LAAS Ground Facility. In Proceedings of the ION AM 2000 of the Institute of Navigation, San Diego, CA, USA, 26–28 June 2000; pp. 661–671. [Google Scholar]
- Larson, J.D.; Gebre-Egziabher, D.; Rife, J.H. Gaussian-Pareto Overbounding of DGNSS Pseudoranges from CORS. Navigation 2019, 66, 139–150. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Liu, Y.; Wang, Z.; Li, Q. Evaluation of GBAS Flight Trials Based on BDS and GPS. IET Radar Sonar Navig. 2020, 14, 233–241. [Google Scholar] [CrossRef]
- Wang, Z.; Li, T.; Li, Q.; Zhu, Y. Ionospheric Delay Gradient Threat Model for GBAS based on GPS Data in China. In Proceedings of the ION GNSS+ 2019 of the Institute of Navigation, Nashville, TN, USA, 16–20 September 2012; pp. 3505–3511. [Google Scholar]
- Song, X.; Yang, R.; Zhan, X. An analysis of global ionospheric disturbances and scintillations during the strong magnetic storm in September 2017. Aerosp. Syst. 2020, 3, 255–263. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Z.; Fang, K.; Zhu, Y.; Wang, Z.; Guo, K. An Ionospheric Anomaly Monitor Based on the One Class Support Vector Algorithm for the Ground-Based Augmentation System. Remote Sens. 2021, 13, 4327. https://doi.org/10.3390/rs13214327
Gao Z, Fang K, Zhu Y, Wang Z, Guo K. An Ionospheric Anomaly Monitor Based on the One Class Support Vector Algorithm for the Ground-Based Augmentation System. Remote Sensing. 2021; 13(21):4327. https://doi.org/10.3390/rs13214327
Chicago/Turabian StyleGao, Zhen, Kun Fang, Yanbo Zhu, Zhipeng Wang, and Kai Guo. 2021. "An Ionospheric Anomaly Monitor Based on the One Class Support Vector Algorithm for the Ground-Based Augmentation System" Remote Sensing 13, no. 21: 4327. https://doi.org/10.3390/rs13214327
APA StyleGao, Z., Fang, K., Zhu, Y., Wang, Z., & Guo, K. (2021). An Ionospheric Anomaly Monitor Based on the One Class Support Vector Algorithm for the Ground-Based Augmentation System. Remote Sensing, 13(21), 4327. https://doi.org/10.3390/rs13214327