Assessing Changes in Terrestrial Water Storage Components over the Great Artesian Basin Using Satellite Observations
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area and Aquifer Dynamics
2.2. Datasets Used
2.3. Gravity Recovery and Climate Experiment (GRACE) Data
2.4. Global Land Data Assimilation System (GLDAS) Data
2.5. Rainfall
2.6. Evapotranspiration (ET)
3. Methodology
3.1. Groundwater Storage Variation Estimate from GRACE and GLDAS Satellite Data
3.2. Spatial-Temporal Patterns of Water Storage Components Using Principal Component Analysis
3.3. Time Series Analyses of Water Storage Components
3.4. Average Annual Cycle and Deseasonalization of GWS and Rainfall
3.5. Relationship between Water Storage Components (TWS, GWS, ET) and Rainfall Using Cross-Correlation Analyses
3.6. Understanding GWS Changes-Rainfall Relationship Using Multi-Linear Regression Analysis
4. Results
4.1. Spatial and Temporal Changes in Rainfall across the GAB
4.2. Spatio-Temporal Patterns of Water Storage Components in GAB
4.2.1. GRACE-Derived Terrestrial Water Storage
4.2.2. Changes in Groundwater Storage
4.3. Temporal Variations of Water Storage Components in GAB
4.4. Average Annual Cycles and Deseasonalization of GWS and Rainfall
4.5. Trends in Ground Water Storage Variations
4.6. Response of Land Water Storage to Climate Variability
4.7. Understanding Drivers of Groundwater Variability
5. Discussion
5.1. Changes in Terrestrial Water Storage
5.2. Understanding Changes in Groundwater Storage over the GAB
6. Conclusions
- a.
- GWS varied most in Carpentaria sub-basin and some parts of the Surat sub-basin. The relatively high amount of rainfall within the Carpentaria and south-east region of the Surat sub-basin is the main factor driving the observed variability in GWS in these regions. Multi-annual variations in GWS are prominent in the Surat sub-basin and coincide with variation in rainfall. This amplification of GWS variation is observed as a result of changing climate conditions and potentially human water extraction in the Surat sub-basin.
- b.
- GWS variation over the GAB between January 2009 and March 2012 period shows the Surat sub-basin had positive and strongest rise (40 mm/year) in GWS coinciding with a wet period following the Millennium drought. However, the Surat sub-basin showed negative trends before and after the 2009–2012 period. Overall, rainfall and GWS variation trends are consistent for the Carpentaria sub-basin and inconsistent for south regions of GAB, which indicates that other important drivers of variation in GWS exist apart from rainfall.
- c.
- In general, the rainfall-GWS variation relationship indicates a time lag of two to three months for more than half of the GAB. The GWS-rainfall relationship is strong for more than half of the GAB; however, it is low for some parts of GAB (e.g., Western Eromanga and some parts of Surat sub-basin). Such regions show a phase lag of approximately 12 months and highlight the probable effects of non-climate factors on GWS variation in addition to climatic variation.
- d.
- The ET correlates more with GWS variation than the rainfall in the Surat sub-basin (Figure 9a,e). This observation indicates that ET is an important factor in the recharge processes in this low rainfall region (Figure 1b). If rainfall declines in this region, then it could be a problem for recharge in the Surat sub-basin.
- e.
- GWS variation in the southern regions of GAB (i.e., in Surat, Western Eromanga and Central Eromanga sub-basins) showed a weaker relationship with climate (i.e., rainfall). This relationship could potentially be due to the combined effects of human water extraction and complex hydro-geological processes.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hillier, J.R.; Foster, L. The Great Artesian Basin—Is There a Sustainable Yield. In Proceedings of the International Association of Hydrologists Conference, Darwin, Australia, 12–17 May 2002. [Google Scholar]
- Fensham, R.; Ponder, W.; Fairfax, R. Recovery Plan for the Community of Native Species Dependent on Natural Discharge of Groundwater from the Great Artesian Basin; Report to Department of the Environment, Water, Heritage and the Arts; Department of Envrionment and Resource Management: Canberra, Australia, 2010. [Google Scholar]
- Habermehl, M.A. The Great Artesian Basin, Australia. In Non-Renewable Groundwater Resources: A Guidebook on Socially-Sustainable Management for Water-Policy Makers; Foster, S., Loucks, D.P., Eds.; UNESCO: Paris, France, 2006; pp. 82–88. [Google Scholar]
- Welsh, W.; Moore, C.; Turnadge, C.; Smith, A.; Barr, A. Modelling of Climate and Groundwater Development a Technical Report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment; CSIRO Water for a Healthy Country Flagship: Canberra, Australia, 2012. [Google Scholar]
- Fu, G.; Zou, Y.; Crosbie, R.S.; Barron, O. Climate changes and variability in the Great Artesian Basin (Australia), future projections, and implications for groundwater management. Hydrogeol. J. 2020, 28, 375–391. [Google Scholar] [CrossRef]
- Habermehl, M.A. The evolving understanding of the Great Artesian Basin (Australia), from discovery to current hydrogeological interpretations. Hydrogeol. J. 2019, 28, 13–36. [Google Scholar] [CrossRef]
- Powell, O.; Silcock, J.; Fensham, R. Oases to Oblivion: The Rapid Demise of Springs in the South-Eastern Great Artesian Basin, Australia. Ground Water 2013, 53, 171–178. [Google Scholar] [CrossRef]
- Smerdon, B.D.; Marston, F.M.; Ransley, T.R. Water Resource Assessment for the Great Artesian Basin Synthesis of a Report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment; CSIRO Water for a Healthy Country Flagship: Canberra, Australia, 2012. [Google Scholar]
- Zhou, Y.; Li, W. A review of regional groundwater flow modeling. Geosci. Front. 2011, 2, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Jia, S.; Lv, A.; Mahmood, R.; Zhu, W. locysis of the spatio-temporal variability of terrestrial water storage in the Great Artesian Basin, Australia. Water Sci. Technol. Water Supply 2016, 17, 324–341. [Google Scholar] [CrossRef]
- Wu, W.-Y.; Lo, M.-H.; Wada, Y.; Famiglietti, J.S.; Reager, J.T.; Yeh, P.J.-F.; Ducharne, A.; Yang, Z.-L. Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers. Nat. Commun. 2020, 11, 1–9. [Google Scholar] [CrossRef]
- Xie, Z.; Huete, A.; Restrepo-Coupe, N.; Ma, X.; Devadas, R.; Caprarelli, G. Spatial partitioning and temporal evolution of Australia’s total water storage under extreme hydroclimatic impacts. Remote Sens. Environ. 2016, 183, 43–52. [Google Scholar] [CrossRef]
- Tangdamrongsub, N.; Ditmar, P.G.; Steele-Dunne, S.C.; Gunter, B.C.; Sutanudjaja, E.H. Assessing total water storage and identifying flood events over Tonlé Sap basin in Cambodia using GRACE and MODIS satellite observations combined with hydrological models. Remote Sens. Environ. 2016, 181, 162–173. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Chao, B.F.; Chen, J.; Wilson, C.R. Terrestrial water storage anomalies of Yangtze River Basin droughts observed by GRACE and connections with ENSO. Glob. Planet. Chang. 2015, 126, 35–45. [Google Scholar] [CrossRef]
- Thomas, A.C.; Reager, J.T.; Famiglietti, J.S.; Rodell, M. A GRACE-based water storage deficit approach for hydrological drought characterization. Geophys. Res. Lett. 2014, 41, 1537–1545. [Google Scholar] [CrossRef] [Green Version]
- Van Dijk, A.I.J.M.; Renzullo, L.J.; Rodell, M. Use of Gravity Recovery and Climate Experiment terrestrial water storage retrievals to evaluate model estimates by the Australian water resources assessment system. Water Resour. Res. 2011, 47, W11524. [Google Scholar] [CrossRef]
- Brunner, P.; Franssen, H.-J.H.; Kgotlhang, L.; Bauer-Gottwein, P.; Kinzelbach, W. How can remote sensing contribute in groundwater modeling? Hydrogeol. J. 2007, 15, 5–18. [Google Scholar] [CrossRef] [Green Version]
- Thomas, B.F.; Famiglietti, J.S. Identifying Climate-Induced Groundwater Depletion in GRACE Observations. Sci. Rep. 2019, 9, 4124. [Google Scholar] [CrossRef] [Green Version]
- Watkins, M.M.; Wiese, D.N.; Yuan, D.-N.; Boening, C.; Landerer, F.W. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth 2015, 120, 2648–2671. [Google Scholar] [CrossRef]
- Tapley, B.D.; Bettadpur, S.; Ries, J.C.; Thompson, P.F.; Watkins, M.M. GRACE Measurements of Mass Variability in the Earth System. Science 2004, 305, 503–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frappart, F.; Ramillien, G. Monitoring Groundwater Storage Changes Using the Gravity Recovery and Climate Experiment (GRACE) Satellite Mission: A Review. Remote Sens. 2018, 10, 829. [Google Scholar] [CrossRef] [Green Version]
- Bhanja, S.N.; Mukherjee, A.; Rodell, M.; Wada, Y.; Chattopadhyay, S.; Velicogna, I.; Pangaluru, K.; Famiglietti, J.S. Groundwater rejuvenation in parts of India influenced by water-policy change implementation. Sci. Rep. 2017, 7, 7453. [Google Scholar] [CrossRef] [Green Version]
- Richey, A.S.; Thomas, B.F.; Lo, M.; Reager, J.T.; Famiglietti, J.S.; Voss, K.; Swenson, S.; Rodell, M. Quantifying renewable groundwater stress with GRACE. Water Resour. Res. 2015, 51, 5217–5238. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Zhang, Z.; Reedy, R.C.; Pool, D.R.; Save, H.; Long, D.; Chen, J.; Wolock, D.M.; Conway, B.D.; Winester, D. Hydrologic implications of GRACE satellite data in the Colorado River Basin. Water Resour. Res. 2015, 51, 9891–9903. [Google Scholar] [CrossRef]
- Voss, K.A.; Famiglietti, J.S.; Lo, M.-H.; De Linage, C.; Rodell, M.; Swenson, S.C. Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region. Water Resour. Res. 2013, 49, 904–914. [Google Scholar] [CrossRef] [Green Version]
- Moiwo, J.P.; Yang, Y.; Tao, F.; Lu, W.; Han, S. Water storage change in the Himalayas from the Gravity Recovery and Climate Experiment (GRACE) and an empirical climate model. Water Resour. Res. 2011, 47, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Ndehedehe, C.E.; Ferreira, V.G.; Agutu, N.O.; Onojeghuo, A.O.; Okwuashi, O.; Kassahun, H.T.; Dewan, A. What if the rains do not come? J. Hydrol. 2021, 595, 126040. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, W.; Nie, N.; Guo, Y. Long-term groundwater storage variations estimated in the Songhua River Basin by using GRACE products, land surface models, and in-situ observations. Sci. Total Environ. 2019, 649, 372–387. [Google Scholar] [CrossRef] [PubMed]
- Rodell, M.; Famiglietti, J.S.; Wiese, D.N.; Reager, J.T.; Beaudoing, H.K.; Landerer, F.W.; Lo, M.-H. Emerging trends in global freshwater availability. Nature 2018, 557, 651–659. [Google Scholar] [CrossRef]
- Ojha, C.; Shirzaei, M.; Werth, S.; Argus, D.F.; Farr, T.G. Sustained Groundwater Loss in California’s Central Valley Exacerbated by Intense Drought Periods. Water Resour. Res. 2018, 54, 4449–4460. [Google Scholar] [CrossRef]
- Nigatu, Z.M.; Fan, D.; You, W. GRACE products and land surface models for estimating the changes in key water storage components in the Nile River Basin. Adv. Space Res. 2021, 67, 1896–1913. [Google Scholar] [CrossRef]
- Shamsudduha, M.; Taylor, R.G. Groundwater storage dynamics in the world’s large aquifer systems from GRACE: Uncertainty and role of extreme precipitation. Earth Syst. Dyn. 2020, 11, 755–774. [Google Scholar] [CrossRef]
- Opie, S.; Taylor, R.G.; Brierley, C.M.; Shamsudduha, M.; Cuthbert, M.O. Climate–groundwater dynamics inferred from GRACE and the role of hydraulic memory. Earth Syst. Dyn. 2020, 11, 775–791. [Google Scholar] [CrossRef]
- Ndehedehe, C.E.; Agutu, N.O.; Okwuashi, O.; Ferreira, V. Spatio-temporal variability of droughts and terrestrial water storage over Lake Chad Basin using independent component analysis. J. Hydrol. 2016, 540, 106–128. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.; Flook, S.; Pandey, S.; Erasmus, D.; Foster, L.; Phillipson, K.; Lowry, S. Improved characterisation of unmetered stock and domestic groundwater use in the Surat and Southern Bowen basins of the Great Artesian Basin (Australia). Hydrogeol. J. 2020, 28, 413–426. [Google Scholar] [CrossRef]
- Radke, B.M.; Ferguson, J.; Cresswell, R.G.; Ransley, T.R.; Habermehl, M.A. Hydrochemistry and Implied Hydrodynamics of the Cadna-Owie—Hooray Aquifer, Great Artesian Basin; Radke, B.M., Ferguson, J., Cresswell, R.G., Ransley, T.R., Habermehl, M.A., Eds.; Bureau of Rural Sciences: Canberra, Australia, 2000; Available online: http://hdl.handle.net/102.100.100/210084?index=1 (accessed on 15 January 2020).
- Robertson, J. Challenges in sustainably managing groundwater in the Australian Great Artesian Basin: Lessons from current and historic legislative regimes. Hydrogeol. J. 2019, 28, 343–360. [Google Scholar] [CrossRef] [Green Version]
- Kent, C.R.; Pandey, S.; Turner, N.; Dickinson, C.G.; Jamieson, M. Estimating current and historical groundwater abstraction from the Great Artesian Basin and other regional-scale aquifers in Queensland, Australia. Hydrogeol. J. 2019, 28, 393–412. [Google Scholar] [CrossRef] [Green Version]
- Jamieson, M.; Elson, M.; Carruthers, R.; Ordens, C.M. The contribution of citizen science in managing and monitoring groundwater systems impacted by coal seam gas production: An example from the Surat Basin in Australia’s Great Artesian Basin. Hydrogeol. J. 2019, 28, 439–459. [Google Scholar] [CrossRef] [Green Version]
- Great Artesian Basin Consultative Council (GABCC). Great Artesian Basin Resource Study; Cox, R., Barron, A., Eds.; Great Artesian Basin Consultative Council: Brisbane, Australia, 1998; p. 235. [Google Scholar]
- Herczeg, A.L.; Love, A.J. Review of Recharge Mechanisms for the Great Artesian Basin. Report to the Great Artesian Basin Coordinating Committee under the Auspices of a Consultancy Agreement; Commonwealth Department of Environment and Water Resources, Canberra, Australia; CSIRO Flagship: Canberra, Australia, 2007. [Google Scholar]
- Habermehl, R.; Pestov, I. Geothermal Resources of the Great Artesian Basin, Australia; GHC Bulletin; Bureau of Rural Sciences: Canberra, Australia, 2002; pp. 20–26. [Google Scholar]
- Habermehl, M.A. Inter-Aquifer Leakage in the Queensland and New South Wales Parts of the Great Artesian Basin; Final report for the Australian Government Department of Environment and Water Resources, Heritage and Arts; Bureau of Rural Sciences: Canberra, Australia, 2009. [Google Scholar]
- McMahon, G.A.; Ransley, T.R.; Barclay, D.F.; Coram, J.; Foster, L.; Hillier, J.; Kellett, J.R. Aquifer recharge in the Great Artesian Basin, Queensland. In Balancing the Groundwater Budget; International Association of Hydrogeologists: Darwin, Australia, 2002. [Google Scholar]
- Keppel, M.; Karlstrom, K.E.; Love, A.J.; Priestley, S.C.; Wohling, D.; De Ritter, S. Allocating Water and Maintaining Springs in the Great Artesian Basin, Vol I: Hydrogeological Framework of the Western Great Artesian Basin; National Water Commission: Canberra, Australia, 2013. [Google Scholar]
- Rossini, R.A.; Fensham, R.; Stewart-Koster, B.; Gotch, T.; Kennard, M. Biogeographical patterns of endemic diversity and its conservation in Australia’s artesian desert springs. Divers. Distrib. 2018, 24, 1199–1216. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Randall, A. The economic contest between coal seam gas mining and agriculture on prime farmland: It may be closer than we thought. J. Econ. Soc. Policy 2013, 15, 87–118. [Google Scholar]
- CSR GRACE/GRACE-FO RL06 Mascon Solutions (Version 02). Available online: http://www2.csr.utexas.edu/grace/RL06_mascons.html (accessed on 15 January 2020).
- Save, H.; Bettadpur, S.; Tapley, B. High-resolution CSR GRACE RL05 mascons. J. Geophys. Res. Solid Earth 2016, 121, 7547–7569. [Google Scholar] [CrossRef]
- Wiese, D.N.; Landerer, F.W.; Watkins, M.M. Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution. Water Resour. Res. 2016, 52, 7490–7502. [Google Scholar] [CrossRef]
- Awange, J.; Fleming, K.; Kuhn, M.; Featherstone, W.; Heck, B.; Anjasmara, I. On the suitability of the 4°×4° GRACE mascon solutions for remote sensing Australian hydrology. Remote Sens. Environ. 2011, 115, 864–875. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.; Beaudoing, H.K.; Rodell, M.; Teng, W.L.; Vollmer, B.E. Global Land data assimilation system (GLDAS) products, services and application from NASA hydrology data and information services center (HDISC). In Proceedings of the ASPRS 2009 Annual Conference, Baltimore, MD, USA, 8–13 March 2009. [Google Scholar]
- Bi, H.; Ma, J.; Zheng, W.; Zeng, J. Comparison of soil moisture in GLDAS model simulations and in situ observations over the Tibetan Plateau. J. Geophys. Res. Atmos. 2016, 121, 2658–2678. [Google Scholar] [CrossRef] [Green Version]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.J. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- GLDAS Noah Land Surface Model L4 monthly 0.25 × 0.25 degree V2.1 (GLDAS_NOAH025_M). Available online: https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_M_2.1/summary?keywords=GLDAS (accessed on 1 April 2020).
- Access Gridded Data. Available online: https://www.longpaddock.qld.gov.au/silo/gridded-data/ (accessed on 18 April 2020).
- Merasha, E. Annual Rainfall and potential evapotranspiration in Ethiopia. Ethiop. J. Nat. Resour. 1999, 137–154. [Google Scholar]
- Courault, D.; Seguin, B.; Olioso, A. Review on estimation of evapotranspiration from remote sensing data: From empirical to numerical modeling approaches. Irrig. Drain. Syst. 2005, 19, 223–249. [Google Scholar] [CrossRef]
- Ndehedehe, C.; Awange, J.; Agutu, N.; Kuhn, M.; Heck, B. Understanding changes in terrestrial water storage over West Africa between 2002 and 2014. Adv. Water Resour. 2016, 88, 211–230. [Google Scholar] [CrossRef] [Green Version]
- Jolliffe, I.T.; Uddin, M.; Vines, S.K. Simplified EOFs three alternatives to rotation. Clim. Res. 2002, 20, 271–279. [Google Scholar] [CrossRef] [Green Version]
- Ndehedehe, C.E.; Ferreira, V.G. Assessing land water storage dynamics over South America. J. Hydrol. 2020, 580, 124339. [Google Scholar] [CrossRef]
- Agutu, N.; Awange, J.; Zerihun, A.; Ndehedehe, C.E.; Kuhn, M.; Fukuda, Y. Assessing multi-satellite remote sensing, reanalysis, and land surface models’ products in characterizing agricultural drought in East Africa. Remote Sens. Environ. 2017, 194, 287–302. [Google Scholar] [CrossRef] [Green Version]
- Raziei, T.; Saghafian, B.; Paulo, A.; Pereira, L.S.; Bordi, I. Spatial Patterns and Temporal Variability of Drought in Western Iran. Water Resour. Manag. 2008, 23, 439–455. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, C.; Kumar, D.N. Identification of prominent spatio-temporal signals in grace derived terrestrial water storage for India. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 40, 333. [Google Scholar] [CrossRef] [Green Version]
- Vines, S.K. Simple principal components. J. R. Stat. Soc. Ser. C Appl. Stat. 2000, 49, 441–451. [Google Scholar] [CrossRef]
- Ndehedehe, C.E.; Awange, J.L.; Kuhn, M.; Agutu, N.O.; Fukuda, Y. Analysis of hydrological variability over the Volta river basin using in-situ data and satellite observations. J. Hydrol. Reg. Stud. 2017, 12, 88–110. [Google Scholar] [CrossRef]
- Ndehedehe, C.E.; Ferreira, V.G. Identifying the footprints of global climate modes in time-variable gravity hydrological signals. Clim. Chang. 2019, 159, 481–502. [Google Scholar] [CrossRef]
- Kalu, I.; Ndehedehe, C.; Okwuashi, O.; Eyoh, A. Assessing Freshwater Changes over Southern and Central Africa (2002–2017). Remote Sens. 2021, 13, 2543. [Google Scholar] [CrossRef]
- Yang, Y.; Long, D.; Guan, H.; Scanlon, B.R.; Simmons, C.T.; Jiang, L.; Xu, X. GRACE satellite observed hydrological controls on interannual and seasonal variability in surface greenness over mainland Australia. J. Geophys. Res. Biogeosci. 2014, 119, 2245–2260. [Google Scholar] [CrossRef]
- BoM. Record-breaking La Nina Events. Australian Government, Bureau of Meteorology. 2012. Available online: http://www.bom.gov.au/climate/enso/history/La-Nina-2010-12.pdf (accessed on 2 March 2020).
- Ordens, C.M.; McIntyre, N.; Underschultz, J.R.; Ransley, T.; Moore, C.; Mallants, D. Preface: Advances in hydrogeologic understanding of Australia’s Great Artesian Basin. Hydrogeol. J. 2020, 28, 1–11. [Google Scholar] [CrossRef] [Green Version]
- OGIA. Underground Water Impact Report for the Surat Cumulative Management Area; Department of Natural Resources, Mines and Energy, Office of Groundwater Impact Assessment: Brisbane, Australia, 2019. [Google Scholar]
- Prein, A.F.; Liu, C.; Ikeda, K.; Trier, S.B.; Rasmussen, R.M.; Holland, G.J.; Clark, M.P. Increased rainfall volume from future convective storms in the US. Nat. Clim. Chang. 2017, 7, 880–884. [Google Scholar] [CrossRef]
- Mondal, A.; Khare, D.; Kundu, S. Change in rainfall erosivity in the past and future due to climate change in the central part of India. Int. Soil Water Conserv. Res. 2016, 4, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Akpodiogaga-a, P.; Odjugo, O. General Overview of Climate Change Impacts in Nigeria. J. Hum. Ecol. 2010, 29, 47–55. [Google Scholar] [CrossRef]
- Trenberth, K. Changes in precipitation with climate change. Clim. Res. 2011, 47, 123–138. [Google Scholar] [CrossRef] [Green Version]
- Batisani, N.; Yarnal, B. Rainfall variability and trends in semi-arid Botswana: Implications for climate change adaptation policy. Appl. Geogr. 2010, 30, 483–489. [Google Scholar] [CrossRef]
- Almazroui, M.; Islam, P.D.M.N.; Jones, P.; Athar, H.; Rahman, M.A. Recent climate change in the Arabian Peninsula: Seasonal rainfall and temperature climatology of Saudi Arabia for 1979–2009. Atmos. Res. 2012, 111, 29–45. [Google Scholar] [CrossRef]
- Wheater, H.S. Modelling Hydrological Processes in Arid and Semi-Arid Areas: An Introduction. In Hydrological Modelling in Arid and Semi-Arid Areas; Wheater, H., Sorooshian, S., Sharma, K.D., Eds.; International Hydrology Series; University Press: Cambridge, UK, 2007; pp. 1–20. [Google Scholar] [CrossRef]
- Sharda, V.; Kurothe, R.; Sena, D.; Pande, V.; Tiwari, S. Estimation of groundwater recharge from water storage structures in a semi-arid climate of India. J. Hydrol. 2006, 329, 224–243. [Google Scholar] [CrossRef]
- Lubczynski, M.W. Groundwater fluxes in arid and semi-arid environments. In Groundwater and Ecosystems; Baba, A., Howard, K.W.F., Gunduz, O., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 225–236. [Google Scholar] [CrossRef]
- Boening, C.; Willis, J.K.; Landerer, F.; Nerem, R.S.; Fasullo, J. The 2011 La Niña: So strong, the oceans fell. Geophys. Res. Lett. 2012, 39, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Fleming, S.W.; Quilty, E.J. Aquifer Responses to El Niño-Southern Oscillation, Southwest British Columbia. Ground Water 2006, 44, 595–599. [Google Scholar] [CrossRef] [PubMed]
- Fensham, R.; Fairfax, R. Spring wetlands of the Great Artesian Basin, Queensland, Australia. Wetl. Ecol. Manag. 2003, 11, 343–362. [Google Scholar] [CrossRef]
- Flook, S.; Fawcett, J.; Cox, R.; Pandey, S.; Schoning, G.; Khor, J.; Singh, D.; Suckow, A.; Raiber, M. A multidisciplinary approach to the hydrological conceptualisation of springs in the Surat Basin of the Great Artesian Basin (Australia). Hydrogeol. J. 2020, 28, 219–236. [Google Scholar] [CrossRef]
Data | Source | Temporal Resolution | Spatial Resolution | Period of Study |
---|---|---|---|---|
Terrestrial Water Storage | GRACE | Monthly | 0.5° × 0.5° | 2002–2017 |
Soil Moisture Storage | GLDAS NOAH | Monthly | 0.25° × 0.25° | 2002–2017 |
Rainfall | Silos Gridded Rainfall | Monthly | 0.05° × 0.05° | 2002–2017 |
Evapotranspiration (ET) | GLDAS NOAH | Monthly | 0.25° × 0.25° | 2002–2017 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaushik, P.R.; Ndehedehe, C.E.; Burrows, R.M.; Noll, M.R.; Kennard, M.J. Assessing Changes in Terrestrial Water Storage Components over the Great Artesian Basin Using Satellite Observations. Remote Sens. 2021, 13, 4458. https://doi.org/10.3390/rs13214458
Kaushik PR, Ndehedehe CE, Burrows RM, Noll MR, Kennard MJ. Assessing Changes in Terrestrial Water Storage Components over the Great Artesian Basin Using Satellite Observations. Remote Sensing. 2021; 13(21):4458. https://doi.org/10.3390/rs13214458
Chicago/Turabian StyleKaushik, Pankaj R., Christopher E. Ndehedehe, Ryan M. Burrows, Mark R. Noll, and Mark J. Kennard. 2021. "Assessing Changes in Terrestrial Water Storage Components over the Great Artesian Basin Using Satellite Observations" Remote Sensing 13, no. 21: 4458. https://doi.org/10.3390/rs13214458
APA StyleKaushik, P. R., Ndehedehe, C. E., Burrows, R. M., Noll, M. R., & Kennard, M. J. (2021). Assessing Changes in Terrestrial Water Storage Components over the Great Artesian Basin Using Satellite Observations. Remote Sensing, 13(21), 4458. https://doi.org/10.3390/rs13214458