A Dual Network for Super-Resolution and Semantic Segmentation of Sentinel-2 Imagery
Abstract
:1. Introduction
2. Related Work
2.1. Semantic Segmentation
2.2. Single Image Super-Resolution
2.3. Super-Resolution for Improving Semantic Segmentation
3. Materials and Methods
3.1. Dataset
3.2. Network Architecture
3.3. Loss Functions
3.3.1. Semantic Segmentation Loss (SSL)
3.3.2. Super-Resolution Loss (SRL)
3.3.3. Feature Affinity Loss (FAL)
3.3.4. Multi-Task Loss
3.4. Training Details
3.4.1. Data Standardization
3.4.2. Weights for Unbalanced Classes
3.4.3. Optimizer
3.5. Quality Assessment
3.5.1. Semantic Segmentation Metrics
- Intersection-Over-Union (IoU) or Jaccard Index: it is a very popular metric used in semantic segmentation. The IoU is computed as the ratio of the area of overlap between the predicted segmentation and the ground truth (intersection), and the area of union between the predicted segmentation and the ground truth. The metric ranges from 0 to 1, with 0 indicating no overlap and 1 indicating ideally overlapping segmentation. For a multi-class segmentation, the mean IoU (mIoU) is computed by averaging the per class IoU.
- Confusion matrix: it is a matrix indicating on its rows the instances of the true classes whilst in its columns indicates the instances of the predicted classes. From the confusion matrix, the per class IoU can be obtained as:
3.5.2. Super-Resolution Metrics
- Peak Signal-to-Noise Ratio (PSNR): it is a widely used metric to quantify the quality of reconstructed images. It is defined as follows:
- Structural Similarity Index Measure (SSIM) [66]: it is a metric used for measuring the similarity between two images. SSIM is a perception-based model that considers image degradation as perceived change in structural information. The SSIM extracts three key features from an image: luminance, contrast and structure from both the reference image (x) and the reconstructed one (y).The resulting metric ranges from −1 to 1, or is re-adjusted to be in the range [0, 1]. The larger the value, the better results.
4. Experiments and Results
- v1: The basic model with the addition of an extra long skip-connection in the decoder path of both SISR and SSSR branches, consisting in the concatenation with the low level feature map of the ResNet backbone F1, which is two times smaller than the input image.
- v2: The previous model with the addition of a skip connection consisting in the concatenation with the bicubic interpolation of the input image right before the last convolution of the extra upsampling module. The interpolated image is added only to the SISR branch.
- v3: The previous but also concatenating the interpolated image to the SSSR branch, since the segmentation branch could also benefit from the structural information of the bicubic interpolated image.
- v4: A modification of , where the spectral information of the bicubic interpolated image is diffused by passing it through a 1 × 1 2D Convolution with 16 filters prior to the concatenation.
5. Discussion
5.1. Dual Network Architecture
5.2. Class Re-Labeling
5.3. Noisy Annotations
5.4. Comparison with Low-Resolution Predictions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ASPP | Atrous Spatial Pyramid Pooling |
CE | Cross Entropy |
CNN | Convolutional Neural Network |
DL | Deep Learning |
DSR | Dual Super-resolution |
FA | Feature Affinity |
HR | High-Resolution |
IoU | Intersection over Union |
LR | Low-Resolution |
LULC | Land Use and Land Cover |
MAE | Mean Absolute Error |
MSE | Mean Squared Error |
NIR | Near Infra-red Band |
OS | Output Stride |
PSNR | Peak Signal to Noiser Ratio |
RF | Random Forest |
RS | Remote Sensing |
SISR | Single Image Super-Resolution |
S2GLC | Sentinel-2 Global Land Cover |
SR | Super-Resolution |
SSIM | Structural Similarity Index Measure |
SSL | Semantic Segmentation Loss |
SSSR | Semantic Segmentation Super-Resolution |
SRL | Super-Resolution Loss |
SVM | Support Vector Machine |
Appendix A. Confusion Matrix Obtained for the Original Dataset
Classification Data | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | IoU | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Clouds | 0.19 | 0.29 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.05 | 0 | 0.11 | 0.04 | 0.31 | 0.129 |
2 | Art. Surf | 0 | 0.87 | 0.02 | 0.03 | 0 | 0 | 0 | 0 | 0.02 | 0.01 | 0 | 0.05 | 0 | 0 | 0.730 |
3 | Cul. Areas | 0 | 0.02 | 0.76 | 0.07 | 0 | 0 | 0.06 | 0.02 | 0.02 | 0.02 | 0.01 | 0.02 | 0 | 0 | 0.645 |
4 | Vineyards | 0 | 0.03 | 0.13 | 0.68 | 0 | 0 | 0.07 | 0.01 | 0.03 | 0 | 0.02 | 0.03 | 0 | 0 | 0.465 |
5 | Broadleaf TC | 0 | 0 | 0.01 | 0 | 0.79 | 0.08 | 0.05 | 0.04 | 0.03 | 0.01 | 0 | 0 | 0 | 0 | 0.685 |
6 | Coniferous TC | 0 | 0 | 0 | 0 | 0.10 | 0.78 | 0 | 0.04 | 0.05 | 0.02 | 0 | 0 | 0 | 0 | 0.691 |
7 | Herb. Veg. | 0 | 0 | 0.08 | 0.08 | 0.04 | 0 | 0.64 | 0.06 | 0.06 | 0.02 | 0.01 | 0.01 | 0 | 0 | 0.514 |
8 | Moors and Heathland | 0 | 0 | 0.01 | 0.02 | 0.06 | 0.02 | 0.04 | 0.74 | 0.07 | 0 | 0.02 | 0.05 | 0 | 0 | 0.464 |
9 | Scl. Veg. | 0 | 0.02 | 0.03 | 0.04 | 0.03 | 0.05 | 0.05 | 0.09 | 0.63 | 0.04 | 0 | 0.03 | 0 | 0 | 0.475 |
10 | Marshes | 0 | 0.03 | 0.02 | 0.02 | 0.04 | 0.04 | 0.04 | 0.03 | 0.11 | 0.65 | 0.01 | 0.02 | 0 | 0 | 0.302 |
11 | Peatbogs | 0 | 0 | 0.19 | 0.14 | 0.03 | 0 | 0.12 | 0.07 | 0.04 | 0.02 | 0.35 | 0.03 | 0 | 0.01 | 0.140 |
12 | Nat. Mat. Surf. | 0 | 0.1 | 0.06 | 0.05 | 0 | 0 | 0.01 | 0.04 | 0.06 | 0.01 | 0 | 0.67 | 0 | 0.02 | 0.430 |
13 | Perm. Snow | 0 | 0.01 | 0 | 0 | 0 | 0 | 0 | 0.01 | 0 | 0 | 0 | 0.69 | 0.28 | 0.02 | 0.213 |
14 | Water Bodies | 0 | 0.03 | 0.05 | 0 | 0 | 0 | 0 | 0 | 0 | 0.01 | 0 | 0.02 | 0 | 0.89 | 0.860 |
mean | 0.482 |
References
- Venter, Z.S.; Sydenham, M.A.K. Continental-Scale Land Cover Mapping at 10 m Resolution Over Europe (ELC10). Remote Sens. 2021, 13, 2301. [Google Scholar] [CrossRef]
- Malinowski, R.; Lewiński, S.; Rybicki, M.; Gromny, E.; Jenerowicz, M.; Krupiński, M.; Nowakowski, A.; Wojtkowski, C.; Krupiński, M.; Krätzschmar, E.; et al. Automated Production of a Land Cover/Use Map of Europe Based on Sentinel-2 Imagery. Remote Sens. 2020, 12, 3523. [Google Scholar] [CrossRef]
- Alparone, L.; Aiazzi, B.; Baronti, S.; Garzelli, A. Remote Sensing Image Fusion; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 4. [Google Scholar] [CrossRef] [Green Version]
- Hoeser, T.; Kuenzer, C. Object Detection and Image Segmentation with Deep Learning on Earth Observation Data: A Review-Part I: Evolution and Recent Trends. Remote Sens. 2020, 12, 1667. [Google Scholar] [CrossRef]
- Tsagkatakis, G.; Aidini, A.; Fotiadou, K.; Giannopoulos, M.; Pentari, A.; Tsakalides, P. Survey of Deep-Learning Approaches for Remote Sensing Observation Enhancement. Sensors 2019, 19, 3929. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep learning in remote sensing applications: A meta-analysis and review. Isprs J. Photogramm. Remote Sens. 2019, 152, 166–177. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A.; Bengio, Y. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; Volume 1. [Google Scholar]
- Vali, A.; Comai, S.; Matteucci, M. Deep Learning for Land Use and Land Cover Classification Based on Hyperspectral and Multispectral Earth Observation Data: A Review. Remote Sens. 2020, 12, 2495. [Google Scholar] [CrossRef]
- Salgueiro Romero, L.; Marcello, J.; Vilaplana, V. Super-Resolution of Sentinel-2 Imagery Using Generative Adversarial Networks. Remote Sens. 2020, 12, 2424. [Google Scholar] [CrossRef]
- Romero, L.S.; Marcello, J.; Vilaplana, V. Comparative study of upsampling methods for super-resolution in remote sensing. In Proceedings of the Twelfth International Conference on Machine Vision (ICMV 2019), Amsterdam, The Netherlands, 25–28 September 2019; pp. 417–424. [Google Scholar] [CrossRef]
- Moliner, E.; Romero, L.S.; Vilaplana, V. Weakly Supervised Semantic Segmentation For Remote Sensing Hyperspectral Imaging. In Proceedings of the ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 2273–2277. [Google Scholar]
- Everingham, M.; Eslami, S.; Van Gool, L.; Williams, C.; Winn, J.; Zisserman, A. The PASCAL Visual Object Classes Challenge: A Retrospective. Int. J. Comput. Vis. 2015, 111, 98–136. [Google Scholar] [CrossRef]
- Mottaghi, R.; Chen, X.; Liu, X.; Cho, N.; Lee, S.; Fidler, S.; Urtasun, R.; Yuille, A. The role of context for object detection and semantic segmentation in the wild. In Proceedings of the 27th IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 891–898. [Google Scholar] [CrossRef]
- Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The cityscapes dataset for semantic urban scene understanding. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 3213–3223. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 12. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Chen, L.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 9. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Khatami, R.; Mountrakis, G.; Stehman, S.V. A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research. Remote Sens. Environ. 2016, 177, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Talukdar, S.; Singha, P.; Mahato, S.; Shahfahad; Pal, S.; Liou, Y.A.; Rahman, A. Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations—A Review. Remote Sens. 2020, 12, 1135. [Google Scholar] [CrossRef] [Green Version]
- Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 778–782. [Google Scholar] [CrossRef]
- Ding, J.; Chen, B.; Liu, H.; Huang, M. Convolutional Neural Network With Data Augmentation for SAR Target Recognition. IEEE Geosci. Remote Sens. Lett. 2016, 13, 3. [Google Scholar] [CrossRef]
- Parente, L.; Taquary, E.; Silva, A.P.; Souza, C.; Ferreira, L. Next Generation Mapping: Combining Deep Learning, Cloud Computing, and Big Remote Sensing Data. Remote Sens. 2019, 11, 2881. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, H.; Xue, X.; Jiang, Y.; Shen, Q. Deep learning for remote sensing image classification: A survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1264. [Google Scholar] [CrossRef] [Green Version]
- Mahdianpari, M.; Salehi, B.; Rezaee, M.; Mohammadimanesh, F.; Zhang, Y. Very Deep Convolutional Neural Networks for Complex Land Cover Mapping Using Multispectral Remote Sensing Imagery. Remote Sens. 2018, 10, 1119. [Google Scholar] [CrossRef] [Green Version]
- Carranza-García, M.; García-Gutiérrez, J.; Riquelme, J.C. A Framework for Evaluating Land Use and Land Cover Classification Using Convolutional Neural Networks. Remote Sens. 2019, 11, 274. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Li, F.F. Imagenet: A large-scale hierarchical image database. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Alhassan, V.; Henry, C.; Ramanna, S.; Storie, C. A deep learning framework for land-use/land-cover mapping and analysis using multispectral satellite imagery. Neural Comput. Appl. 2020, 32, 12. [Google Scholar] [CrossRef]
- Zhang, P.; Ke, Y.; Zhang, Z.; Wang, M.; Li, P.; Zhang, S. Urban Land Use and Land Cover Classification Using Novel Deep Learning Models Based on High Spatial Resolution Satellite Imagery. Sensors 2018, 18, 3717. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Sargent, I.; Pan, X.; Li, H.; Gardiner, A.; Hare, J.; Atkinson, P.M. An object-based convolutional neural network (OCNN) for urban land use classification. Remote Sens. Environ. 2018, 216, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Jozdani, S.E.; Johnson, B.A.; Chen, D. Comparing Deep Neural Networks, Ensemble Classifiers, and Support Vector Machine Algorithms for Object-Based Urban Land Use/Land Cover Classification. Remote Sens. 2019, 11, 1713. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Zhang, X.; Tian, Y.; Wang, W.; Xue, J.H.; Liao, Q. Deep Learning for Single Image Super-Resolution: A Brief Review. IEEE Trans. Multimed. 2019, 21, 3106–3121. [Google Scholar] [CrossRef] [Green Version]
- Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 1874–1883. [Google Scholar]
- Wang, L.; Li, D.; Zhu, Y.; Tian, L.; Shan, Y. Dual Super-Resolution Learning for Semantic Segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 3773–3782. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Nets. In Proceedings of the Neural Information Processing Systems (NIPS), Montreal, QC, Canada, 8–11 December 2014; pp. 2672–2680. [Google Scholar]
- Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4681–4690. [Google Scholar]
- Wang, X.; Yu, K.; Wu, S.; Gu, J.; Liu, Y.; Dong, C.; Qiao, Y.; Change Loy, C. Esrgan: Enhanced super-resolution generative adversarial networks. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops, Munich, Germany, 8–14 September 2018; pp. 63–79. [Google Scholar]
- Ma, W.; Pan, Z.; Guo, J.; Lei, B. Super-Resolution of Remote Sensing Images Based on Transferred Generative Adversarial Network. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 22–27 July 2018; pp. 1148–1151. [Google Scholar] [CrossRef]
- Ma, W.; Pan, Z.; Yuan, F.; Lei, B. Super-Resolution of Remote Sensing Images via a Dense Residual Generative Adversarial Network. Remote Sens. 2019, 11, 2578. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Zhang, X.; Liu, Y.; Zeng, Q. Generative Adversarial Networks Capabilities for Super-Resolution Reconstruction of Weather Radar Echo Images. Atmosphere 2019, 10, 555. [Google Scholar] [CrossRef] [Green Version]
- Lanaras, C.; Bioucas-Dias, J.; Galliani, S.; Baltsavias, E.; Schindler, K. Super-resolution of Sentinel-2 images: Learning a globally applicable deep neural network. ISPRS J. Photogramm. Remote Sens. 2018, 146, 305–319. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. Image super-resolution using very deep residual channel attention networks. In Proceedings of the European conference on computer vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 286–301. [Google Scholar]
- Zhang, K.; Sumbul, G.; Demir, B. An Approach To Super-Resolution Of Sentinel-2 Images Based On Generative Adversarial Networks. In Proceedings of the Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS), Tunis, Tunisia, 9–11 March 2020; pp. 69–72. [Google Scholar]
- Wagner, L.; Liebel, L.; Körner, M. Deep residual learning for single-image super-resolution of multi-spectral satellite imagery. In Proceedings of the Photogrammetric Image Analysis and Munich Remote Sensing Symposium, Munich, Germany, 18–20 September 2019; pp. 189–196. [Google Scholar]
- Gargiulo, M.; Mazza, A.; Gaetano, R.; Ruello, G.; Scarpa, G. Fast super-resolution of 20 m Sentinel-2 bands using convolutional neural networks. Remote Sens. 2019, 11, 2635. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; He, Z.; Hu, J. Sentinel-2 Sharpening via parallel residual network. Remote Sens. 2020, 12, 279. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Xu, Y.; Wei, Z. Super-Resolution of Sentinel-2 Images Based on Deep Channel-Attention Residual Network. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Yokohama, Japan, 28 July–2 August 2019; pp. 628–631. [Google Scholar]
- Gong, Y.; Liao, P.; Zhang, X.; Zhang, L.; Chen, G.; Zhu, K.; Tan, X.; Lv, Z. Enlighten-GAN for Super Resolution Reconstruction in Mid-Resolution Remote Sensing Images. Remote Sens. 2021, 13, 1104. [Google Scholar] [CrossRef]
- Li, Y.; Li, B. Super-Resolution of Sentinel-2 Images at 10 m Resolution without Reference Images. Automot. Eng. 2021. Available online: https://www.preprints.org/manuscript/202104.0556/v1 (accessed on 15 June 2021). [CrossRef]
- Wald, L.; Ranchin, T.; Mangolini, M. Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images. Photogramm. Eng. Remote Sens. 1997, 63, 691–699. [Google Scholar]
- Armannsson, S.E.; Ulfarsson, M.O.; Sigurdsson, J.; Nguyen, H.V.; Sveinsson, J.R. A Comparison of Optimized Sentinel-2 Super-Resolution Methods Using Wald’s Protocol and Bayesian Optimization. Remote Sens. 2021, 13, 2192. [Google Scholar] [CrossRef]
- Dai, D.; Wang, Y.; Chen, Y.; Van Gool, L. Is image super-resolution helpful for other vision tasks? In Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Placid, NY, USA, 7–10 March 2016; pp. 1–9. [Google Scholar]
- Haris, M.; Shakhnarovich, G.; Ukita, N. Task-Driven Super Resolution: Object Detection in Low-resolution Images. arXiv 2018, arXiv:1803.11316. [Google Scholar]
- Guo, Z.; Wu, G.; Song, X.; Yuan, W.; Chen, Q.; Zhang, H.; Shi, X.; Xu, M.; Xu, Y.; Shibasaki, R.; et al. Super-resolution integrated building semantic segmentation for multi-source remote sensing imagery. IEEE Access 2019, 7, 99381–99397. [Google Scholar] [CrossRef]
- Pereira, M.B.; dos Santos, J.A. How Effective Is Super-Resolution to Improve Dense Labelling of Coarse Resolution Imagery? In Proceedings of the Conference on Graphics, Patterns and Images (SIBGRAPI), Rio de Janeiro, Brazil, 28–31 October 2019; pp. 202–209. [Google Scholar] [CrossRef]
- Lei, S.; Shi, Z.; Wu, X.; Pan, B.; Xu, X.; Hao, H. Simultaneous super-resolution and segmentation for remote sensing images. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Yokohama, Japan, 28 July–2 August 2019; pp. 3121–3124. [Google Scholar]
- Pereira, M.B.; Santos, J.A.d. An End-To-End Framework For Low-Resolution Remote Sensing Semantic Segmentation. In Proceedings of the IEEE Latin American GRSS ISPRS Remote Sensing Conference (LAGIRS), Santiago, Chile, 22–26 March 2020; pp. 6–11. [Google Scholar] [CrossRef]
- ISPRS 2D Semantic Labeling Contest. Available online: https://www2.isprs.org/commissions/comm2/wg4/benchmark/semantic-labeling/ (accessed on 21 June 2021).
- Pan, B.; Tang, Z.; Liu, E.; Xu, X.; Shi, T.; Shi, Z. SRDA-Net: Super-Resolution Domain Adaptation Networks for Semantic Segmentation. arXiv 2020, arXiv:2005.06382. [Google Scholar]
- Sentinel-2 Global Land Cover Dataset. Available online: http://s2glc.cbk.waw.pl/ (accessed on 10 June 2021).
- Copernicus Open Access Hub. European Space Agency. Available online: https://scihub.copernicus.eu/dhus/#/home (accessed on 21 March 2021).
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
- Paszke, A.; Chaurasia, A.; Kim, S.; Culurciello, E. ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. arXiv 2016, arXiv:1606.02147. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Date | ID | Size |
---|---|---|
20170705T105031 | T31TCH | 9726 × 9851 |
20170824T105031 | T31TCG | 9353 × 10,134 |
20170705T105031 | T31TBG | 9679 × 9792 |
20170622T104021 | T31TDF | 2760 × 4977 |
20170612T104021 | T31RDG | 9199 × 9893 |
20170615T105031 | T31TCF | 4801 × 10,456 |
Architecture | v1 | v2 | v3 | v4 |
---|---|---|---|---|
- F1 from backbone. | x | x | x | x |
- Bicubic interpolation of input image on SISR branch. | x | x | x | |
- Bicubic interpolation of input image on SSSR branch. | x | |||
- Bicubic interpolation spectrally diffused with a 1 × 1 Conv2d | x |
Model | SR Loss/W | Ups. | lr | PSNR | SSIM | mIoU |
---|---|---|---|---|---|---|
v1 | MSE, 1.0 | NN | 35.318 | 0.770 | 0.450 | |
v2 | MSE, 0.1 | NN | 35.418 | 0.776 | 0.480 | |
v2 | MSE, 1.0 | NN | 35.424 | 0.776 | 0.475 | |
v2 | MAE, 0.1 | NN | 35.413 | 0.775 | 0.473 | |
v2 | MAE, 1.0 | NN | 35.423 | 0.775 | 0.475 | |
v3 | MSE, 1.0 | NN | 35.428 | 0.776 | 0.465 | |
v4 | MSE, 1.0 | NN | 35.419 | 0.776 | 0.484 | |
v4 | MSE, 1.0 | PS | 35.422 | 0.776 | 0.482 |
Interpolation Technique | ||||
---|---|---|---|---|
Nearest Neighbor | Bilinear | Bicubic | Our SISR Model | |
PSNR | 34.1415 | 34.1408 | 34.1574 | 35.422 |
SSIM | 0.6729 | 0.6726 | 0.6732 | 0.776 |
Class | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | IoU | IoU* | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Clouds | 0.96 | 0 | 0.01 | 0 | 0 | 0 | 0 | 0 | 0.02 | 0 | 0 | 0 | 0 | 0.01 | 0.755 | 0.129 |
2 | Art. Surf. | 0 | 0.89 | 0.02 | 0.02 | 0 | 0 | 0 | 0 | 0.02 | 0.01 | 0 | 0.04 | 0 | 0 | 0.730 | 0.730 |
3 | Cul. Areas | 0.01 | 0.02 | 0.76 | 0.06 | 0 | 0 | 0.07 | 0.01 | 0.02 | 0.01 | 0.02 | 0.02 | 0 | 0 | 0.645 | 0.645 |
4 | Vineyards | 0 | 0.02 | 0.13 | 0.66 | 0 | 0 | 0.09 | 0.01 | 0.05 | 0 | 0.02 | 0.03 | 0 | 0 | 0.474 | 0.465 |
5 | Broadleaf TC | 0 | 0 | 0 | 0 | 0.78 | 0.1 | 0.04 | 0.03 | 0.03 | 0.01 | 0 | 0 | 0 | 0 | 0.688 | 0.685 |
6 | Coniferous TC | 0 | 0 | 0 | 0 | 0.1 | 0.80 | 0 | 0.02 | 0.06 | 0.02 | 0 | 0 | 0 | 0 | 0.697 | 0.691 |
7 | Herb. Veg. | 0 | 0 | 0.08 | 0.06 | 0.04 | 0 | 0.68 | 0.05 | 0.06 | 0.02 | 0.01 | 0 | 0 | 0 | 0.525 | 0.514 |
8 | Moors & Heathland | 0 | 0 | 0.01 | 0.02 | 0.06 | 0.03 | 0.06 | 0.69 | 0.09 | 0.01 | 0.01 | 0.05 | 0 | 0 | 0.470 | 0.464 |
9 | Scl. Veg. | 0 | 0.02 | 0.03 | 0.03 | 0.02 | 0.04 | 0.07 | 0.07 | 0.65 | 0.04 | 0.01 | 0.03 | 0 | 0 | 0.480 | 0.475 |
10 | Marshes | 0 | 0.04 | 0.03 | 0.01 | 0.04 | 0.05 | 0.05 | 0.03 | 0.11 | 0.63 | 0.01 | 0.01 | 0 | 0.01 | 0.308 | 0.302 |
11 | Peatbogs | 0 | 0 | 0.17 | 0.13 | 0.03 | 0.01 | 0.12 | 0.06 | 0.05 | 0.03 | 0.37 | 0.03 | 0 | 0.01 | 0.136 | 0.140 |
12 | Nat. Mat. Surf. | 0 | 0.13 | 0.06 | 0.04 | 0 | 0 | 0.01 | 0.04 | 0.06 | 0.01 | 0.01 | 0.63 | 0.01 | 0.01 | 0.413 | 0.430 |
13 | Perm. Snow | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.08 | 0.02 | 0 | 0 | 0.43 | 0.45 | 0.02 | 0.365 | 0.213 |
14 | Water Bodies | 0.06 | 0.04 | 0.02 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.02 | 0 | 0.85 | 0.796 | 0.860 |
mIoU | 0.535 | 0.482 |
Classes | DeepLabV3+ | Our SSSR Model | |||||
---|---|---|---|---|---|---|---|
IoU | Precision | Recall | IoU | Precision | Recall | ||
1 | Clouds | 0.778 | 0.83 | 0.93 | 0.755 | 0.78 | 0.96 |
2 | Artificial surfaces and constructions | 0.673 | 0.76 | 0.86 | 0.730 | 0.80 | 0.89 |
3 | Cultivated areas | 0.627 | 0.74 | 0.80 | 0.645 | 0.82 | 0.76 |
4 | Vineyards | 0.406 | 0.62 | 0.54 | 0.474 | 0.63 | 0.66 |
5 | Broadleaf tree cover | 0.634 | 0.76 | 0.79 | 0.688 | 0.85 | 0.78 |
6 | Coniferous tree cover | 0.659 | 0.78 | 0.81 | 0.697 | 0.85 | 0.80 |
7 | Herbaceous vegetation | 0.478 | 0.67 | 0.62 | 0.525 | 0.70 | 0.68 |
8 | Moors and Heathland | 0.445 | 0.63 | 0.61 | 0.470 | 0.60 | 0.69 |
9 | Sclerophyllous vegetation | 0.419 | 0.59 | 0.59 | 0.480 | 0.65 | 0.65 |
10 | Marshes | 0.238 | 0.52 | 0.30 | 0.308 | 0.38 | 0.63 |
11 | Peatbogs | 0.040 | 0.36 | 0.04 | 0.136 | 0.18 | 0.37 |
12 | Natural material surfaces | 0.309 | 0.55 | 0.41 | 0.413 | 0.54 | 0.63 |
13 | Permanent snow covered surfaces | 0.262 | 0.60 | 0.32 | 0.365 | 0.67 | 0.45 |
14 | Water bodies | 0.817 | 0.92 | 0.88 | 0.796 | 0.92 | 0.85 |
Mean | 0.485 | 0.667 | 0.608 | 0.535 | 0.669 | 0.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abadal, S.; Salgueiro, L.; Marcello, J.; Vilaplana, V. A Dual Network for Super-Resolution and Semantic Segmentation of Sentinel-2 Imagery. Remote Sens. 2021, 13, 4547. https://doi.org/10.3390/rs13224547
Abadal S, Salgueiro L, Marcello J, Vilaplana V. A Dual Network for Super-Resolution and Semantic Segmentation of Sentinel-2 Imagery. Remote Sensing. 2021; 13(22):4547. https://doi.org/10.3390/rs13224547
Chicago/Turabian StyleAbadal, Saüc, Luis Salgueiro, Javier Marcello, and Verónica Vilaplana. 2021. "A Dual Network for Super-Resolution and Semantic Segmentation of Sentinel-2 Imagery" Remote Sensing 13, no. 22: 4547. https://doi.org/10.3390/rs13224547
APA StyleAbadal, S., Salgueiro, L., Marcello, J., & Vilaplana, V. (2021). A Dual Network for Super-Resolution and Semantic Segmentation of Sentinel-2 Imagery. Remote Sensing, 13(22), 4547. https://doi.org/10.3390/rs13224547