A New Hybrid Algorithm to Image Lightning Channels Combining the Time Difference of Arrival Technique and Electromagnetic Time Reversal Technique
Abstract
:1. Introduction
2. Data and Methods
2.1. Instruments and Data
2.2. Procedure of TDOA-EMTR Method
- (1)
- For one positioning window, select the VHF electromagnetic signals in the time domain (denoted by ET) and perform a fast Fourier transform (FFT) on them. The obtained signals in the frequency domain are denoted by EF. In this study, the length of one positioning window is set to be 512 sample points (1024 ) and the sliding step for neighboring windows is 128 sample points (256 ).
- (2)
- Conjugate EF (equal to reversing ET in the time domain) and obtain the reversed signal (EF_TR).
- (3)
- Grid the two-dimensional space domain (azimuth and elevation) and calculate the delay vector (A).
- (4)
- Multiply EF_TR by A (EF_TR) and obtain the refocused signal (Y) on each grid point in the space.
- (5)
- Calculate the signal power (P) on each grid point using Y. Then the location of the radiation source is determined by searching the grid point with a maximum power P. For a given positioning window, if the location result can pass the thresholds of some filtering metrics, this location result is deemed to be a radiation source on a lightning channel.
2.3. Filtering Noise Events
3. Imaging Capacity and Improvement of TDOA and TDOA-EMTR Method
4. Detailed Imaging Result of the Natural CG Lightning Flash
5. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nag, A.; Murphy, M.J.; Schulz, W.; Cummins, K.L. Lightning locating systems: Insights on characteristics and validation tech-niques. Earth Space Sci. 2015, 2, 65–93. [Google Scholar] [CrossRef]
- Wang, Y.; Min, Y.; Liu, Y.; Zhao, G. A New Approach of 3D Lightning Location Based on Pearson Correlation Combined with Empirical Mode Decomposition. Remote. Sens. 2021, 13, 3883. [Google Scholar] [CrossRef]
- Wu, T.; Wang, D.; Takagi, N. Lightning Mapping with an Array of Fast Antennas. Geophys. Res. Lett. 2018, 45, 3698–3705. [Google Scholar] [CrossRef]
- Qie, X.; Yuan, S.; Chen, Z.; Wang, D.; Liu, D.; Sun, M.; Sun, Z.; Srivastava, A.; Zhang, H.; Lu, J. Understanding the dynam-ical-microphysical-electrical processes associated with severe thunderstorms over the Beijing metropolitan region. Sci. China Earth Sci. 2021, 64, 10–26. [Google Scholar] [CrossRef]
- Xiao, X.; Qie, X.; Chen, Z.; Lu, J.; Ji, L.; Wang, D.; Zhang, L.; Chen, M.; Chen, M. Evaluating the Performance of Lightning Data Assimilation from BLNET Observations in a 4DVAR-Based Weather Nowcasting Model for a High-Impact Weather over Beijing. Remote. Sens. 2021, 13, 2084. [Google Scholar] [CrossRef]
- Ma, Z.; Jiang, R.; Qie, X.; Xing, H.; Liu, M.; Sun, Z.; Qin, Z.; Zhang, H.; Li, X. A low frequency 3D lightning mapping network in north China. Atmos. Res. 2021, 249, 105314. [Google Scholar] [CrossRef]
- Zhu, Y.; Bitzer, P.; Stewart, M.; Podgorny, S.; Corredor, D.; Burchfield, J.; Carey, L.; Medina, B.; Stock, M. Huntsville Alabama Marx Meter Array 2: Upgrade and Capability. Earth Space Sci. 2020, 7, e2020EA001111. [Google Scholar] [CrossRef] [Green Version]
- Yuan, S.; Jiang, R.; Qie, X.; Wang, D. Side Discharges from the Active Negative Leaders in a Positive Cloud-To-Ground Lightning Flash. Geophys. Res. Lett. 2021, 48, e2021GL094127. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, G.; Lyu, F.; Ahmad, M.R.; Qie, X.; Cummer, S.A.; Xiong, S.; Briggs, M.S. First Measurements of Low-Frequency Sferics Associated with Terrestrial Gamma-Ray Flashes Produced by Equatorial Thunderstorms. Geophys. Res. Lett. 2020, 47, e2020GL089005. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Tan, Y.; Chen, Z.; Zheng, D.; Zhang, Y.; Fan, Y. Fast and Fine Location of Total Lightning from Low Fre-quency Signals Based on Deep-Learning Encoding Features. Remote Sens. 2021, 13, 2212. [Google Scholar] [CrossRef]
- Puričer, P.; Kovář, P.; Mikeš, J. New accuracy testing of the lightning VHF interferometer by an artificial intercloud pulse gener-ator. IEEE Trans. Electromagn. Compat. 2019, 62, 2128–2136. [Google Scholar] [CrossRef]
- Urbani, M.; Montanyá, J.; Van der Velde, O.; López, J.; Arcanjo, M.; Fontanes, P.; Romero, D.; Roncancio, J. High-energy radiation from natural lightning observed in coincidence with a VHF broadband interferometer. J. Geophys. Res. Atmos. 2021, 126, e2020JD033745. [Google Scholar] [CrossRef]
- Sun, Z.; Qie, X.; Liu, M.; Cao, D.; Wang, D. Lightning VHF radiation location system based on short-baseline TDOA technique—Validation in rocket-triggered lightning. Atmos. Res. 2013, 129, 58–66. [Google Scholar] [CrossRef]
- Stock, M.G.; Akita, M.; Krehbiel, P.R.; Rison, W.; Edens, H.E.; Kawasaki, Z.; Stanley, M.A. Continuous broadband digital interferometry of lightning using a generalized cross-correlation algorithm. J. Geophys. Res. Atmos. 2014, 119, 3134–3165. [Google Scholar] [CrossRef]
- Sun, Z.; Qie, X.; Jiang, R.; Liu, M.; Wu, X.; Wang, Z.; Lu, G.; Zhang, H. Characteristics of a rocket-triggered lightning flash with large stroke number and the associated leader propagation. J. Geophys. Res. Atmos. 2014, 119, 13–388. [Google Scholar] [CrossRef]
- Mora, N.; Rachidi, F.; Rubinstein, M. Application of the time reversal of electromagnetic fields to locate lightning discharges. Atmospheric Res. 2012, 117, 78–85. [Google Scholar] [CrossRef]
- Lugrin, G.; Parra, N.M.; Rachidi, F.; Rubinstein, M.; Diendorfer, G. On the Location of Lightning Discharges Using Time Reversal of Electromagnetic Fields. IEEE Trans. Electromagn. Compat. 2013, 56, 149–158. [Google Scholar] [CrossRef]
- Wang, T.; Qiu, S.; Shi, L.-H.; Li, Y. Broadband VHF Localization of Lightning Radiation Sources by EMTR. IEEE Trans. Electromagn. Compat. 2017, 59, 1949–1957. [Google Scholar] [CrossRef]
- Wang, T.; Shi, L.-H.; Qiu, S.; Sun, Z.; Zhang, Q.; Duan, Y.-T.; Liu, B. Multiple-Antennae Observation and EMTR Processing of Lightning VHF Radiations. IEEE Access 2018, 6, 26558–26566. [Google Scholar] [CrossRef]
- Chouragade, J.; Muthu, R.K. Continuous Mapping of Broadband VHF Lightning Sources by Real-Valued MUSIC. IEEE Trans. Geosci. Remote. Sens. 2021, 1–7. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Y.; Zheng, D.; Zhang, Y.; Fan, X.; Fan, Y.; Xu, L.; Lyu, W. A Method of Three-Dimensional Location for LFEDA Combining the Time of Arrival Method and the Time Reversal Technique. J. Geophys. Res. Atmos. 2019, 124, 6484–6500. [Google Scholar] [CrossRef]
- Rubinstein, M.; Rachidi, F.; Stojilovic, M. Development of a lightning location system based on electromagnetic time reversal: Technical challenges and expected gain. In Proceedings of the International Lightning Detection Conference, Fort Lauderdale, FL, USA, 12–15 March 2018. [Google Scholar]
- Rison, W.; Krehbiel, P.R.; Stock, M.G.; Edens, H.E.; Shao, X.-M.; Thomas, R.J.; Stanley, M.A.; Zhang, Y. Observations of narrow bipolar events reveal how lightning is initiated in thunderstorms. Nat. Commun. 2016, 7, 10721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Qiu, S.; Dong, W. The Three-Dimensional Locating of VHF Broadband Lightning Interferometers. Atmosphere 2018, 9, 317. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Qiu, S.; Shi, L.; Li, Y. Broadband VHF observations of two natural positive cloud-to-ground lightning flashes. Geophys. Res. Lett. 2020, 47, e2019GL086915. [Google Scholar] [CrossRef]
- Jensen, D.P.; Sonnenfeld, R.G.; Stanley, M.A.; Edens, H.E.; da Silva, C.L.; Krehbiel, P.R. Dart-Leader and K-Leader Velocity From Initiation Site to Termination Time-Resolved with 3D Interferometry. J. Geophys. Res. Atmos. 2021, 126, e2020JD034309. [Google Scholar] [CrossRef]
- Sun, Z.; Qie, X.; Liu, M.; Jiang, R.; Wang, Z.; Zhang, H. Characteristics of a negative lightning with multiple-ground terminations observed by a VHF lightning location system. J. Geophys. Res. Atmos. 2016, 121, 413–426. [Google Scholar] [CrossRef] [Green Version]
- Pu, Y.; Qie, X.; Jiang, R.; Sun, Z.; Liu, M.; Zhang, H. Broadband Characteristics of Chaotic Pulse Trains Associated with Sequential Dart Leaders in a Rocket-Triggered Lightning Flash. J. Geophys. Res. Atmos. 2019, 124, 4074–4085. [Google Scholar] [CrossRef]
- Li, F.; Sun, Z.; Jiang, R.; Tang, G.; Liu, M.; Li, X.; Zhang, H.; Yuan, S.; Tian, Y.; Qie, X. A Rocket-Triggered Lightning Flash Con-taining Negative-Positive-Negative Current Polarity Reversal During Its Initial Stage. J. Geophys. Res. Atmos. 2021, 126, e2020JD033187. [Google Scholar]
- Petersen, D.A.; Beasley, W.H. High-speed video observations of a natural negative stepped leader and subsequent dart-stepped leader. J. Geophys. Res. Atmos. 2013, 118, 12–110. [Google Scholar] [CrossRef]
- Wang, T.; Shi, L.; Qiu, S.; Sun, Z.; Duan, Y. Continuous broadband lightning VHF mapping array using MUSIC algorithm. Atmospheric Res. 2019, 231, 104647. [Google Scholar] [CrossRef]
- Pu, Y.; Cummer, S.A.; Liu, N. VHF Radio Spectrum of a Positive Leader and Implications for Electric Fields. Geophys. Res. Lett. 2021, 48, e2021GL093145. [Google Scholar] [CrossRef]
- Lyu, F.; Cummer, S.A.; Solanki, R.; Weinert, J.; McTague, L.; Katko, A.; Barrett, J.; Zigoneanu, L.; Xie, Y.; Wang, W. A low-frequency near-field interferometric-TOA 3-D Lightning Mapping Array. Geophys. Res. Lett. 2014, 41, 7777–7784. [Google Scholar] [CrossRef]
- Wu, T.; Wang, D.; Takagi, N. Velocities of positive leaders in intracloud and negative cloud-to-ground lightning flashes. J. Geophys. Res. Atmos. 2019, 124, 9983–9995. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Sun, Z.; Liu, M.; Yuan, S.; Wei, L.; Sun, C.; Lyu, H.; Zhu, K.; Tang, G. A New Hybrid Algorithm to Image Lightning Channels Combining the Time Difference of Arrival Technique and Electromagnetic Time Reversal Technique. Remote Sens. 2021, 13, 4658. https://doi.org/10.3390/rs13224658
Li F, Sun Z, Liu M, Yuan S, Wei L, Sun C, Lyu H, Zhu K, Tang G. A New Hybrid Algorithm to Image Lightning Channels Combining the Time Difference of Arrival Technique and Electromagnetic Time Reversal Technique. Remote Sensing. 2021; 13(22):4658. https://doi.org/10.3390/rs13224658
Chicago/Turabian StyleLi, Fengquan, Zhuling Sun, Mingyuan Liu, Shanfeng Yuan, Lei Wei, Chunfa Sun, Huimin Lyu, Kexin Zhu, and Guoying Tang. 2021. "A New Hybrid Algorithm to Image Lightning Channels Combining the Time Difference of Arrival Technique and Electromagnetic Time Reversal Technique" Remote Sensing 13, no. 22: 4658. https://doi.org/10.3390/rs13224658
APA StyleLi, F., Sun, Z., Liu, M., Yuan, S., Wei, L., Sun, C., Lyu, H., Zhu, K., & Tang, G. (2021). A New Hybrid Algorithm to Image Lightning Channels Combining the Time Difference of Arrival Technique and Electromagnetic Time Reversal Technique. Remote Sensing, 13(22), 4658. https://doi.org/10.3390/rs13224658