Detecting Rock Glacier Displacement in the Central Himalayas Using Multi-Temporal InSAR
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Datasets
3. Methodology
3.1. InSAR Processing
3.2. PS, DS Identification, and DS Filter
3.3. Deformation Network Construction and Estimation
3.4. State of Activity of Rock Glacier Detection
3.4.1. Active Deformation Areas Detection
3.4.2. Rock Glacier Activity Classification
4. Results
4.1. Deformation Rates over the Central Himalayas
4.2. Rock Glacier Activity Statistical Analysis
4.2.1. Rock Glacier ADA
4.2.2. Rock Glacier Activity
5. Discussion
5.1. Cross Comparison between the Proposed MT-InSAR Method and the SBAS Method
5.2. Comparison with Other Rock Glacier Surface Displacement Studies
Study Area | Observation Period | SAR Dataset | Method | Deformation Rate (mm/y) | Deformation Direction | Authors |
---|---|---|---|---|---|---|
Southern Dry Andes | 2014–2016 | Sentinel-1 | InSAR | 22–1700 | LOS | [17] |
Sierra Nevada | 2007–2008 | ALOS PALSAR | InSAR | 550 | Slope | [4] |
Northern Tien Shan | 2007–2009 | ALOS PALSAR | InSAR | 50 | Slope | [31] |
Northern Tien Shan | 1998–2018 | ALOS PALSAR, Sentinel-1 | InSAR | 0–1000 | LOS | [86] |
Swiss Alps | 2008–2017 | TerraSAR-X, Sentinel-1 | InSAR | 0–2000 | LOS, Slope | [33] |
Western Swiss Alps | 2008–2012 | TerraSAR-X | PSI, SBAS | <35 for PSI And 350 for SBAS | LOS | [32] |
Nyaiqêntanglha Range, Tibetan Plateau | 2016–2019 | Sentinel-1 | MT-InSAR | 870 | Slope | [44] |
Himalaya of NW Bhutan | 2007–2011 | Envisat, ALOS PALSAR | SBAS | 100 | LOS | [43] |
Southern Carpathian Mountains | 2007–2010 | ALOS PALSAR | SBAS | 0–30 | LOS | [34] |
5.3. Source of Rock Glacier Surface Displacements and Activity Estimation Error
5.4. The Advantages of the Multi-Baseline PS–DS Combined MT-InSAR Method
6. Conclusions
- (1)
- Our analysis shows that the deformation rate of rock glaciers in the central Himalayas is experiencing spatial variations, with velocities ranging from 0 to 75 mm/y. More than half of the pixels of the rock glaciers have large deformations. Noticeable deformation differences between rock glaciers and their surrounding areas were found. The active deformation discrepancies can provide a visual indicator for the recognition of rock glaciers.
- (2)
- Based on regional MT-InSAR deformation estimates, the active thresholds of rock glaciers were 28.84 mm/y in the ascending orbit and 29.47 mm/y in the descending orbit. With these thresholds, about 32% of fine monitored rock glaciers had a ratio of active pixels greater than 10%. The percentage increased to 49% after merging the ascending and descending results. Following the criteria in the IPA Action Group guidelines of rock glacier activity classification, 12% of the recognized rock glaciers were active.
- (3)
- This work demonstrated the potential of the multi-baseline PS–DS network-based MT-InSAR for monitoring the activity of rock glaciers in an extensive periglacial environment. The use of a DTN network for the inversion of the deformation parameters provided a practical approach for suppressing the APS influence caused by the high reliefs in the periglacial zones of the Himalayas.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berthling, I. Beyond Confusion: Rock Glaciers as Cryo-Conditioned Landforms. Geomorphology 2011, 131, 98–106. [Google Scholar] [CrossRef]
- Bonnaventure, P.P.; Lamoureux, S.F. The Active Layer: A Conceptual Review of Monitoring, Modelling Techniques and Changes in a Warming Climate. Prog. Phys. Geogr. 2013, 37, 352–376. [Google Scholar] [CrossRef]
- Jones, D.B.; Harrison, S.; Anderson, K.; Whalley, W.B. Rock Glaciers and Mountain Hydrology: A Review. Earth-Sci. Rev. 2019, 193, 66–90. [Google Scholar] [CrossRef]
- Liu, L.; Millar, C.I.; Westfall, R.D.; Zebker, H.A. Surface Motion of Active Rock Glaciers in the Sierra Nevada, California, USA: Inventory and a Case Study Using InSAR. Cryosphere 2013, 7, 1109–1119. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.B.; Harrison, S.; Anderson, K.; Betts, R.A. Mountain Rock Glaciers Contain Globally Significant Water Stores. Sci. Rep. 2018, 8, 2834. [Google Scholar] [CrossRef] [Green Version]
- Liljedahl, A.K.; Boike, J.; Daanen, R.P.; Fedorov, A.N.; Frost, G.V.; Grosse, G.; Hinzman, L.D.; Iijma, Y.; Jorgenson, J.C.; Matveyeva, N.; et al. Pan-Arctic Ice-Wedge Degradation in Warming Permafrost and Its Influence on Tundra Hydrology. Nat. Geosci. 2016, 9, 312–318. [Google Scholar] [CrossRef]
- Bosson, J.B.; Lambiel, C. Internal Structure and Current Evolution of Very Small Debris-Covered Glacier Systems Located in Alpine Permafrost Environments. Front. Earth Sci. 2016, 4, 39. [Google Scholar] [CrossRef] [Green Version]
- Marcer, M.; Serrano, C.; Brenning, A.; Bodin, X.; Goetz, J.; Schoeneich, P. Evaluating the Destabilization Susceptibility of Active Rock Glaciers in the French Alps. Cryosphere 2019, 13, 141–155. [Google Scholar] [CrossRef] [Green Version]
- Biskaborn, B.K.; Smith, S.L.; Noetzli, J.; Matthes, H.; Vieira, G.; Streletskiy, D.A.; Schoeneich, P.; Romanovsky, V.E.; Lewkowicz, A.G.; Abramov, A.; et al. Permafrost Is Warming at a Global Scale. Nat. Commun. 2019, 10, 264. [Google Scholar] [CrossRef] [Green Version]
- Rouyet, L.; Lauknes, T.R.; Berthling, I. Recent Acceleration of a Rock Glacier Complex, Ádjet, Norway, Documented by 62 Years of Remote Sensing. Geophys. Res. Lett. 2018, 16, 8314–8323. [Google Scholar] [CrossRef] [Green Version]
- Boeckli, L.; Brenning, A.; Gruber, S.; Noetzli, J. A Statistical Approach to Modelling Permafrost Distribution in the European Alps or Similar Mountain Ranges. Cryosphere 2012, 6, 125–140. [Google Scholar] [CrossRef] [Green Version]
- Cao, B.; Li, X.; Feng, M.; Zheng, D. Quantifying Overestimated Permafrost Extent Driven by Rock Glacier Inventory. Geophys. Res. Lett. 2021, 48, e2021GL092476. [Google Scholar] [CrossRef]
- Kenner, R.; Pruessner, L.; Beutel, J.; Limpach, P.; Phillips, M. How Rock Glacier Hydrology, Deformation Velocities and Ground Temperatures Interact: Examples from the Swiss Alps. Permafr. Periglac. Process. 2020, 31, 3–14. [Google Scholar] [CrossRef]
- Ulrich, V.; Williams, J.G.; Zahs, V.; Anders, K.; Hfle, B. Measurement of Rock Glacier Surface Change over Different Timescales Using Terrestrial Laser Scanning Point Clouds. Earth Surf. Dyn. 2021, 9, 19–28. [Google Scholar] [CrossRef]
- Fey, C.; Krainer, K. Analyses of UAV and GNSS Based Flow Velocity Variations of the Rock Glacier Lazaun (Ötztal Alps, South Tyrol, Italy). Geomorphology 2020, 365, 107261. [Google Scholar] [CrossRef]
- Strozzi, T.; Delaloye, R.; Kääb, A.; Ambrosi, C.; Perruchoud, E. Combined Observations of Rock Mass Movements Using Satellite SAR Interferometry, Differential GPS, Airborne Digital Photogrammetry, and Airborne Photography Interpretation. J. Geophys. Res. Earth Surf. 2010, 115, F1. [Google Scholar] [CrossRef] [Green Version]
- Villarroel, C.D.; Beliveau, G.T.; Forte, A.P.; Monserrat, O.; Morvillo, M. DInSAR for a Regional Inventory of Active Rock Glaciers in the Dry Andes Mountains of Argentina and Chile with Sentinel-1 Data. Remote Sens. 2018, 10, 1588. [Google Scholar] [CrossRef] [Green Version]
- Kääb, A. Remote sensing of permafrost related problems and hazards. Permafr. Periglac. Process 2008, 19, 107–136. [Google Scholar] [CrossRef]
- Johnson, G.; Chang, H.; Fountain, A. Active rock glaciers of the contiguous United States: Geographic information system inventory and spatial distribution patterns. Earth Syst. Sci. Data. 2021, 13, 3979–3994. [Google Scholar] [CrossRef]
- Aoyama, M. Rock Glaciers in the Northern Japanese Alps: Palaeoenvironmental Implications since the Late Glacial. J. Quat. Sci. 2005, 20, 471–484. [Google Scholar] [CrossRef]
- Millar, C.I.; Westfall, R.D. Geographic, Hydrological, and Climatic Significance of Rock Glaciers in the Great Basin, USA. Arct. Antarct. Alp. Res. 2019, 51, 232–249. [Google Scholar] [CrossRef] [Green Version]
- Iasio, C.; Novali, F.; Corsini, A.; Mulas, M.; Branzanti, M.; Benedetti, E.; Giannico, C.; Tamburini, A.; Mair, V. COSMO SkyMed high frequency-high resolution monitoring of an alpine slow landslide, Corvara in Badia, Northern Italy. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 7577–7580. [Google Scholar]
- Benoit, L.; Dehecq, A.; Pham, H.-T.; Vernier, F.; Trouvé, E.; Moreau, L.; Martin, O.; Thom, C.; Pierrot-Deseilligny, M.; Briole, P. Multi-Method Monitoring of Glacier d’Argentière Dynamics. Ann. Glaciol. 2015, 56, 118–128. [Google Scholar] [CrossRef] [Green Version]
- Kenyi, L.W.; Kaufmann, V. Estimation of Alpine Permafrost Surface Deformation Using InSAR Data. Int. Geosci. Remote Sens. Symp. 2001, 3, 1107–1109. [Google Scholar] [CrossRef]
- Nagler, T.; Mayer, C.; Rott, H. Feasibility of DINSAR for Mapping Complex Motion Fields of Alpine Ice- and Rock-Glaciers. In Proceedings of the Retrieval of Bio-and Geo-Physical Parameters from SAR Data for Land Applications, Sheffield, UK, 11–14 September 2001; Volume 475, pp. 377–382. [Google Scholar]
- Barboux, C.; Delaloye, R.; Lambiel, C. Inventorying Slope Movements in an Alpine Environment Using DInSAR. Earth Surf. Process. Landf. 2014, 39, 2087–2099. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, A.; Mukherjee, K. Review on InSAR Based Displacement Monitoring of Indian Himalayas: Issues, Challenges and Possible Advanced Alternatives. Geocarto Int. 2017, 32, 298–321. [Google Scholar] [CrossRef]
- Rignot, E.; Hallet, B.; Fountain, A. Rock Glacier Surface Motion in Beacon Valley, Antarctica, from Synthetic-Aperture Radar Interferometry. Geophys. Res. Lett. 2002, 29, 48-1–48-4. [Google Scholar] [CrossRef] [Green Version]
- Eckerstorfer, M.; Eriksen, H.Ø.; Rouyet, L.; Christiansen, H.H.; Lauknes, T.R.; Blikra, L.H. Comparison of Geomorphological Field Mapping and 2D-InSAR Mapping of Periglacial Landscape Activity at Nordnesfjellet, Northern Norway. Earth Surf. Process. Landf. 2018, 43, 2147–2156. [Google Scholar] [CrossRef]
- Dini, B.; Manconi, A.; Loew, S. Investigation of Slope Instabilities in NW Bhutan as Derived from Systematic DInSAR Analyses. Eng. Geol. 2019, 259, 105111. [Google Scholar] [CrossRef]
- Wang, X.; Liu, L.; Zhao, L.; Wu, T.; Li, Z.; Liu, G. Mapping and Inventorying Active Rock Glaciers in the Northern Tien Shan of China Using Satellite SAR Interferometry. Cryosphere 2017, 11, 997–1014. [Google Scholar] [CrossRef] [Green Version]
- Barboux, C.; Strozzi, T.; Delaloye, R.; Wegmüller, U.; Collet, C. Mapping Slope Movements in Alpine Environments Using TerraSAR-X Interferometric Methods. ISPRS J. Photogramm. Remote Sens. 2015, 109, 178–192. [Google Scholar] [CrossRef] [Green Version]
- Strozzi, T.; Caduff, R.; Jones, N.; Barboux, C.; Delaloye, R.; Bodin, X.; Kääb, A.; Mätzler, E.; Schrott, L. Monitoring Rock Glacier Kinematics with Satellite Synthetic Aperture Radar. Remote Sens. 2020, 12, 559. [Google Scholar] [CrossRef] [Green Version]
- Necsoiu, M.; Onaca, A.; Wigginton, S.; Urdea, P. Rock Glacier Dynamics in Southern Carpathian Mountains from High-Resolution Optical and Multi-Temporal SAR Satellite Imagery. Remote Sens. Environ. 2016, 177, 21–36. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent Scatterers in SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Du, W.; Ji, W.; Xu, L.; Wang, S. Deformation Time Series and Driving-Force Analysis of Glaciers in the Eastern Tienshan Mountains Using the Sbas Insar Method. Int. J. Environ. Res. Public Health 2020, 17, 2836. [Google Scholar] [CrossRef] [Green Version]
- Daout, S.; Sudhaus, H.; Kausch, T.; Steinberg, A.; Dini, B. Interseismic and Postseismic Shallow Creep of the North Qaidam Thrust Faults Detected with a Multitemporal InSAR Analysis. J. Geophys. Res. Solid Earth 2019, 124, 7259–7279. [Google Scholar] [CrossRef]
- Survey, F.G.; Foumelis, M.; Survey, F.G.; Raucoules, D.; Survey, F.G.; Michele, M.D.; Survey, F.G. Landslide Mapping and Monitoring Using Persistent Scatterer Interferometry (PSI) Technique in the French Alps. Remote Sens. 2020, 12, 1305. [Google Scholar] [CrossRef] [Green Version]
- Rouyet, L.; Lauknes, T.R.; Christiansen, H.H.; Strand, S.M.; Larsen, Y. Seasonal Dynamics of a Permafrost Landscape, Adventdalen, Svalbard, Investigated by InSAR. Remote Sens. Environ. 2019, 231, 111236. [Google Scholar] [CrossRef]
- Yhokha, A.; Chang, C.P.; Goswami, P.K.; Yen, J.Y.; Lee, S.I. Surface Deformation in the Himalaya and Adjoining Piedmont Zone of the Ganga Plain, Uttarakhand, India: Determined by Different Radar Interferometric Techniques. J. Asian Earth Sci. 2015, 106, 119–129. [Google Scholar] [CrossRef]
- Øverli, H.; Rune, T.; Larsen, Y.; Corner, G.D.; Bergh, S.G. Visualizing and Interpreting Surface Displacement Patterns on Unstable Slopes Using Multi-Geometry Satellite SAR Interferometry ( 2D InSAR ) Remote Sensing of Environment Visualizing and Interpreting Surface Displacement Patterns on Unstable Slopes Using. Remote Sens. Environ. 2017, 191, 297–312. [Google Scholar] [CrossRef] [Green Version]
- Dini, B.; Daout, S.; Manconi, A.; Loew, S. Classification of Slope Processes Based on Multitemporal DInSAR Analyses in the Himalaya of NW Bhutan. Remote Sens. Environ. 2019, 233, 111408. [Google Scholar] [CrossRef]
- Reinosch, E.; Gerke, M.; Riedel, B.; Schwalb, A.; Ye, Q.; Buckel, J. Rock Glacier Inventory of the Western Nyainqêntanglha Range, Tibetan Plateau, Supported by InSAR Time Series and Automated Classification. Permafr. Periglac. Process. 2021, 32, 657–672. [Google Scholar] [CrossRef]
- Reinosch, E.; Buckel, J.; Dong, J.; Gerke, M.; Baade, J.; Riedel, B. InSAR Time Series Analysis of Seasonal Surface Displacement Dynamics on the Tibetan Plateau. Cryosphere Discuss. 2019, 14, 1633–1650. [Google Scholar] [CrossRef]
- Longépé, N.; Allain, S.; Ferro-Famil, L.; Pottier, E.; Durand, Y. Snowpack Characterization in Mountainous Regions Using C-Band SAR Data and a Meteorological Model. IEEE Trans. Geosci. Remote Sens. 2009, 47, 406–418. [Google Scholar] [CrossRef]
- Tsai, Y.L.S.; Dietz, A.; Oppelt, N.; Kuenzer, C. Remote Sensing of Snow Cover Using Spaceborne SAR: A Review. Remote Sens. 2019, 11, 1456. [Google Scholar] [CrossRef] [Green Version]
- Wasowski, J.; Bovenga, F. Investigating Landslides and Unstable Slopes with Satellite Multi Temporal Interferometry: Current Issues and Future Perspectives. Eng. Geol. 2014, 174, 103–138. [Google Scholar] [CrossRef]
- Notti, D.; Herrera, G.; Bianchini, S.; Meisina, C.; García-Davalillo, J.C.; Zucca, F. A Methodology for Improving Landslide PSI Data Analysis. Int. J. Remote Sens. 2014, 35, 2186–2214. [Google Scholar] [CrossRef]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Philipp, M.; Dietz, A.; Buchelt, S.; Kuenzer, C. Trends in Satellite Earth Observation for Permafrost Related Analyses—A Review. Remote Sens. 2021, 13, 1217. [Google Scholar] [CrossRef]
- Daout, S.; Dini, B.; Haeberli, W.; Doin, M.P.; Parsons, B. Ice Loss in the Northeastern Tibetan Plateau Permafrost as Seen by 16 Yr of ESA SAR Missions. Earth Planet. Sci. Lett. 2020, 545, 116404. [Google Scholar] [CrossRef]
- Jolivet, R.; Grandin, R.; Lasserre, C.; Doin, M.P.; Peltzer, G. Systematic InSAR Atmospheric Phase Delay Corrections from Global Meteorological Reanalysis Data Systematic InSAR Tropospheric Phase Delay Corrections from Global Meteorological Reanalysis Data. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Bekaert, D.; Hooper, A.; Wright, T. A Spatially Variable Power Law Tropospheric Correction Technique for InSAR Data. J. Geophys. Res. Solid Earth 2015, 120, 1345–1356. [Google Scholar] [CrossRef]
- Kang, Y.; Lu, Z.; Zhao, C.; Xu, Y.; Kim, J.; Gallegos, A.J. InSAR Monitoring of Creeping Landslides in Mountainous Regions: A Case Study in Eldorado National Forest, California. Remote Sens. Environ. 2021, 258, 112400. [Google Scholar] [CrossRef]
- Jones, D.B.; Harrison, S.; Anderson, K.; Selley, H.L.; Wood, J.L.; Betts, R.A. The Distribution and Hydrological Significance of Rock Glaciers in the Nepalese Himalaya. Glob. Planet. Chang. 2018, 160, 123–142. [Google Scholar] [CrossRef] [Green Version]
- Owens, R.G.; Hewson, T. ECMWF Forecast User Guide. 2018. Available online: https://www.ecmwf.int/en/elibrary/16559-ecmwf-forecast-user-guide (accessed on 19 November 2021). [CrossRef]
- Jones, D.B.; Harrison, S.; Anderson, K.; Shannon, S.; Betts, R.A. Rock Glaciers Represent Hidden Water Stores in the Himalaya. Sci. Total Environ. 2021, 793, 145368. [Google Scholar] [CrossRef]
- RGIK. IPA Action Group Rock Glacier Inventories and Kinematics: Baseline Concepts Version 4.1. 2020. Available online: https://bigweb.unifr.ch/Science/Geosciences/Geomorphology/Pub/Website/IPA/Guidelines/V4/210801_Baseline_Concepts_Inventorying_Rock_Glaciers_V4.2.1.pdf (accessed on 19 November 2021).
- Qin, Y. Sentinel-1 Wide Swath Interferometry: Processing Techniques and Applications. Ph.D. Thesis, Purdue University Graduate School, West Lafayette, IN, USA, 2018; p. 132. [Google Scholar] [CrossRef]
- Wang, C.; Tang, Y.; Zhang, H.; You, H.; Zhang, W.; Duan, W.; Wang, J.; Dong, L.; Zhang, B. First Mapping of China Surface Movement Using Supercomputing Interferometric SAR Technique. Sci. Bull. 2021, 66, 1608–1610. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Z.; Zhang, H.; Zhang, B.; Tang, Y.; Wu, Q. Active Layer Thickness Retrieval of Qinghai-Tibet Permafrost Using the TerraSAR-X InSAR Technique. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 4403–4413. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, Y.; Kang, Y.; Lu, Z.; Cheng, X. Semi-Automatic Selection of Optimum Image Pairs Based on the Interferometric Coherence for Time Series SAR Interferometry. Remote Sens. Lett. 2019, 10, 1105–1112. [Google Scholar] [CrossRef]
- Jarvis, A.; Reuter, H.; Nelson, A.; Guevara, E. Hole-Filled SRTM for the Globe Version 3, from the CGIAR-CSI SRTM 90 m Database. 2008. Available online: https://srtm.csi.cgiar.org/srtmdata/ (accessed on 19 November 2021).
- Zhang, Z.; Wang, C.; Tang, Y.; Fu, Q.; Zhang, H. Subsidence Monitoring in Coal Area Using Time-Series InSAR Combining Persistent Scatterers and Distributed Scatterers. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 49–55. [Google Scholar] [CrossRef]
- Ma, P.; Lin, H. Robust Detection of Single and Double Persistent Scatterers in Urban Built Environments. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2124–2139. [Google Scholar] [CrossRef]
- Ma, P.; Wang, W.; Zhang, B.; Wang, J.; Shi, G.; Huang, G.; Chen, F.; Jiang, L.; Lin, H. Remotely Sensing Large- and Small-Scale Ground Subsidence: A Case Study of the Guangdong–Hong Kong–Macao Greater Bay Area of China. Remote Sens. Environ. 2019, 232, 111282. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, X.X.; Bamler, R. Retrieval of Phase History Parameters from Distributed Scatterers in Urban Areas Using Very High Resolution SAR Data. ISPRS J. Photogramm. Remote Sens. 2012, 73, 89–99. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Wang, R.; Deng, Y.; Ma, P.; Lin, H.; Wang, J. Mapping the Yellow River Delta Land Subsidence with Multitemporal SAR Interferometry by Exploiting Both Persistent and Distributed Scatterers. ISPRS J. Photogramm. Remote Sens. 2019, 148, 157–173. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, Z.; Wang, C.; Zhang, H.; Wu, F.; Zhang, B.; Liu, M. The Deformation Analysis of Wenjiagou Giant Landslide by the Distributed Scatterer Interferometry Technique. Landslides 2018, 15, 347–357. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, H.; Wang, C.; Tang, Y.; Zhang, B.; Wu, F. Soil Moisture Estimation Based on the Distributed Scatterers Adaptive Filter over the QTP Permafrost Region Using Sentinel-1 and High-Resolution TerraSAR-X Data. Int. J. Remote Sens. 2020, 42, 902–928. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, C.; Wang, M.; Wang, Z.; Zhang, H. Surface Deformation Monitoring in Zhengzhou City from 2014 to 2016 Using Time-Series InSAR. Remote Sens. 2018, 10, 1731. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhang, H.; Wang, C.; Tang, Y.; Zhang, B.; Wu, F.; Wang, J.; Zhang, Z. Time-Series InSAR Monitoring of Permafrost Freeze-Thaw Seasonal Displacement over Qinghai-Tibetan Plateau Using Sentinel-1 Data. Remote Sens. 2019, 11, 1000. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Dong, Z.; Yu, A.; Wu, M.; Li, D.; Zhang, Y. New Approaches for Robust and Efficient Detection of Persistent Scatterers in SAR Tomography. Remote Sens. 2019, 11, 356. [Google Scholar] [CrossRef] [Green Version]
- Hansen, P.C.; O’Leary, D.P. The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems. SIAM J. Sci. Comput. 1993, 14, 1487–1503. [Google Scholar] [CrossRef]
- Cultrera, A.; Callegaro, L. A Simple Algorithm to Find the L-Curve Corner in the Regularisation of Ill-Posed Inverse Problems. IOP SciNotes 2020, 1, 025004. [Google Scholar] [CrossRef]
- Navarro, J.A.; Tomás, R.; Barra, A.; Pagán, J.I.; Reyes-Carmona, C.; Solari, L.; Vinielles, J.L.; Falco, S.; Crosetto, M. ADAtools: Automatic Detection and Classification of Active Deformation Areas from PSI Displacement Maps. ISPRS Int. J. Geo-Inf. 2020, 9, 584. [Google Scholar] [CrossRef]
- Barra, A.; Solari, L.; Béjar-Pizarro, M.; Monserrat, O.; Bianchini, S.; Herrera, G.; Crosetto, M.; Sarro, R.; González-Alonso, E.; Mateos, R.M.; et al. A Methodology to Detect and Update Active Deformation Areas Based on Sentinel-1 SAR Images. Remote Sens. 2017, 9, 1002. [Google Scholar] [CrossRef] [Green Version]
- RGIK. Rock Glacier Kinematics as an Associated Parameter of ECV Permafrost (Version 3.0). 2021. Available online: https://bigweb.unifr.ch/Science/Geosciences/Geomorphology/Pub/Website/IPA/RGK/20211102_RockGlacierKinematics_V3.pdf (accessed on 19 November 2021).
- Yunjun, Z.; Fattahi, H.; Amelung, F. Small Baseline InSAR Time Series Analysis: Unwrapping Error Correction and Noise Reduction. Comput. Geosci. 2019, 133, 104331. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Gong, H.; Chen, B.; Gao, M.; Cao, Q.; Cao, J.; Duan, L.; Zuo, J.; Shi, M. Land Subsidence Response to Different Land Use Types and Water Resource Utilization in Beijing-Tianjin-Hebei, China. Remote Sens. 2020, 12, 457. [Google Scholar] [CrossRef] [Green Version]
- López-Quiroz, P.; Doin, M.-P.; Tupin, F.; Briole, P.; Nicolas, J.-M. Time Series Analysis of Mexico City Subsidence Constrained by Radar Interferometry. J. Appl. Geophys. 2009, 69, 1–15. [Google Scholar] [CrossRef]
- Doin, M.-P.; Lasserre, C.; Peltzer, G.; Cavalié, O.; Doubre, C. Corrections of Stratified Tropospheric Delays in SAR Interferometry: Validation with Global Atmospheric Models. J. Appl. Geophys. 2009, 69, 35–50. [Google Scholar] [CrossRef]
- Bekaert, D.P.S. Spaceborne Synthetic Aperture Radar Survey of Subsidence in Hampton Roads, Virginia (USA). Sci. Rep. 2017, 7, 14752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brencher, G.; Handwerger, A.L.; Munroe, J.S. InSAR-Based Characterization of Rock Glacier Movement in the Uinta Mountains, Utah, USA. Cryosphere 2021, 15, 4823–4844. [Google Scholar] [CrossRef]
- Kääb, A.; Strozzi, T.; Bolch, T.; Caduff, R.; Trefall, H.; Stoffel, M.; Kokarev, A. Inventory, Motion and Acceleration of Rock Glaciers in Ile Alatau and Kungöy Ala-Too, Northern Tien Shan, since the 1950s. Cryosphere Discuss. 2020, 2020, 1–37. [Google Scholar] [CrossRef]
- Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Crippa, B. Persistent Scatterer Interferometry: A Review. ISPRS J. Photogramm. Remote Sens. 2016, 115, 78–89. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Zhao, C.; Zhang, Q.; Chen, L.; Chen, H. Update Two-Dimensional SAR Offset Tracking Deformation Time Series with Complex Sequential Least Squares Estimation. Remote Sens. Lett. 2021, 12, 247–256. [Google Scholar] [CrossRef]
Path | Frame | Temporal Span (y/m/d) | Image Counts | Orbit Geometry | Counts of Interferometric Combination |
---|---|---|---|---|---|
56 | 93 | 2018/5/9–2019/1/4 | 21 | Ascending | 48 |
158 | 92 | 2018/5/16–2018/12/30 | 19 | Ascending | 50 |
158 | 87 | 2018/5/16–2018/12/30 | 20 | Ascending | 51 |
85 | 88 | 2018/5/11–2018/12/29 | 19 | Ascending | 52 |
12 | 84 | 2018/5/18–2019/1/1 | 19 | Ascending | 53 |
12 | 89 | 2018/5/6–2018/12/20 | 19 | Ascending | 50 |
165 | 493 | 2018/5/5–2019/1/12 | 19 | Descending | 50 |
92 | 494 | 2018/5/12–2019/1/7 | 19 | Descending | 50 |
19 | 498 | 2018/5/7–2019/1/2 | 20 | Descending | 40 |
121 | 496 | 2018/5/14–2018/12/28 | 19 | Descending | 45 |
121 | 501 | 2018/5/14–2018/12/28 | 19 | Descending | 46 |
48 | 499 | 2018/5/9–2019/1/16 | 19 | Descending | 44 |
Indicators | Ascending | Descending | Merged | |||
---|---|---|---|---|---|---|
Counts | Percentage (%) | Counts | Percentage (%) | Counts | Percentage (%) | |
Mean > 2σ | 492 | 11 | 582 | 12 | 933 | 19 |
Median deformation > 2σ | 414 | 8 | 504 | 10 | 775 | 16 |
Maximum deformation > 2σ | 2757 | 59 | 2817 | 60 | 3538 | 71 |
Active rock glacier ratios > 0.1 and Monitoring rate > 0.3 | 1589 | 32 | 1588 | 32 | 2446 | 49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Feng, M.; Zhang, H.; Wang, C.; Tang, Y.; Xu, J.; Yan, D.; Wang, C. Detecting Rock Glacier Displacement in the Central Himalayas Using Multi-Temporal InSAR. Remote Sens. 2021, 13, 4738. https://doi.org/10.3390/rs13234738
Zhang X, Feng M, Zhang H, Wang C, Tang Y, Xu J, Yan D, Wang C. Detecting Rock Glacier Displacement in the Central Himalayas Using Multi-Temporal InSAR. Remote Sensing. 2021; 13(23):4738. https://doi.org/10.3390/rs13234738
Chicago/Turabian StyleZhang, Xuefei, Min Feng, Hong Zhang, Chao Wang, Yixian Tang, Jinhao Xu, Dezhao Yan, and Chunling Wang. 2021. "Detecting Rock Glacier Displacement in the Central Himalayas Using Multi-Temporal InSAR" Remote Sensing 13, no. 23: 4738. https://doi.org/10.3390/rs13234738
APA StyleZhang, X., Feng, M., Zhang, H., Wang, C., Tang, Y., Xu, J., Yan, D., & Wang, C. (2021). Detecting Rock Glacier Displacement in the Central Himalayas Using Multi-Temporal InSAR. Remote Sensing, 13(23), 4738. https://doi.org/10.3390/rs13234738