A Self-Adaptive Method for Mapping Coastal Bathymetry On-The-Fly from Wave Field Video
Abstract
:1. Introduction
1.1. Optimizing Wave-Number–Frequency Extraction from Optical Spectra
1.2. Optimizing Depth and Near-Surface Current Estimates
1.3. Outlook of This Study
- Data reduction and retrieval of wave components through DMD.
- Wave-component-dependent subdomains using pyramid cells.
- Counteracting spectral outliers and errors in d, with loss functions.
- Fast convergence of d, and recognition of current refraction through temporary spectral data storage.
- Additional fast convergence of d, using Kalman filtering.
2. Method
2.1. Dynamic Mode Decomposition
2.2. Mapping Algorithm
3. Field Sites and Data
4. Results
5. Discussion
5.1. Maps of and
5.2. On-The-Fly Processing
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Review of Strategies to Extract Spectral Gravity Wave Signatures
- The most straightforward strategy is to transform local video cut-outs from 3D into 3D spectra via 3D fast Fourier transforms (3D-FFTs). An energy threshold can then be used to separate the spectral footprint of gravity waves from the noise floor. A benefit of this approach is the possibility to retrieve spectral data up to two times the Nyquist frequency [18], which can be important if frame rates are low (e.g., slow radar rotation speeds).
- Senet et al. [30]The strategy starts as [11,20,21,37], but with reduced size of the video cut-out, which requires a follow-up step: after producing 3D spectra, they are sliced into separate 2D wave-number layers per constant frequency . These spectral layers are then filtered to separate the wave-number signature of gravity waves from the noise floor. Subsequently, using inverse 2D fast Fourier transforms (2D-FFT−1), each filtered 2D layer is transformed back to the spatial domain to produce a corresponding complex-valued image (), which depicts the local wave pattern associated to . Being associated to one frequency component and neglecting spatial differences in amplitude (which can be achieved through entry wise normalization), the complex valued images represent LOCPI. Finally, assuming the wave field is homogenous, spatial gradients in each LOCPI yield a local representative vector associated to that frequency component = . The suggested benefit of extracting from LOCPI, instead of straight from 3D spectra, is that the reduced size of the video cut-out leads to better localisation of .
- Similar to [30], this strategy constructs one-component phase images. First, the video is transformed from 3D to 3D via FFTs in time. This process finds GOCPI per Fourier frequency but without taking spatial coherence into account. A subsequent local analysis aims to find this spatial coherency. Cross-spectral matrices are computed for predefined frequency bands with central frequencies . The idea is that the strongest eigenvector of each cross-spectral matrix, after entry-wise normalization to unit magnitude, resembles a spatially coherent LOCPI () corresponding to . Analogous to [30], is finally deduced from phase gradients and = . A benefit of this strategy is that the video can be sampled in any fashion (e.g., non-regularly) in preparation of local cross-spectral matrices. A drawback of this strategy is the uncertainty around the frequency associated to as it lies within a frequency band and needs to be approximated by the bands’ central frequency .
- Simarro et al. [53]The most recently developed strategy suggests that globally coherent GOCPI can be found through a singular value decomposition of the time-analytic signal of the video. First, the video is reshaped into a matrix , whose columns represent the video frames squeezed into arrays and whose rows hence contain the timeseries of a pixel. Each timeseries is converted into its analytic signal using the Hilbert transform, which makes the timeseries complex valued (with a single-sided frequency spectrum) and prepares for a natural retrieval of phases. A singular value decomposition (svd) of the video matrix , Equation (A1), then describes the video as a sum of modes, given by pairs of spatial structures and their associated temporal evolution:Unfolding into the two spatial video dimensions now provides GOCPI. Simarro et al. [53] argue that the associated time evolution closely corresponds to a fixed-frequency oscillation and can therefore be estimated by the averaged temporal phase gradient. This moreover implies that approximately resembles global one-component phase images (), that is, GOCPI. In practice, the final deduction of local is done from phase gradients in local subdomains of the GOCPI.However, the GOCPI being only approximately one-component (i.e., GPI, where ∼ denotes approximate) flags a deeply rooted issue: using the svd on a wave signal, whether analytic or not, is prone to the mixing of Fourier modes, meaning that wave patterns of different frequencies mix together in (Equation (A1)) (see [54], Figure 6). The problem can be understood from the fact that the svd result for is invariant to the ordering of the video frames [54]. As such, these GPIs do not reflect the distinctly sinusoidal time dynamics of ocean waves.
Strategy | Pros | Cons |
---|---|---|
e.g., [37] |
|
|
[30] |
|
|
[43] |
|
|
[53] |
|
|
proposed |
|
Appendix B. Optimized DMD Based on Variable Projections
Appendix B.1. Synopsis
Appendix B.2. Eigenvectors B of Linear Model A
Appendix C. Default Algorithm Settings
References
- De Schipper, M.A.; Ludka, B.C.; Raubenheimer, B.; Luijendijk, A.P.; Schlacher, T.A. Beach nourishment has complex implications for the future of sandy shores. Nat. Rev. Earth Environ. 2021, 2, 70–84. [Google Scholar] [CrossRef]
- Gawehn, M.; van Dongeren, A.; de Vries, S.; Swinkels, C.; Hoekstra, R.; Aarninkhof, S.; Friedman, J. The application of a radar-based depth inversion method to monitor near-shore nourishments on an open sandy coast and an ebb-tidal delta. Coast. Eng. 2020, 159, 103716. [Google Scholar] [CrossRef]
- Van Prooijen, B.C.; Tissier, M.F.; De Wit, F.P.; Pearson, S.G.; Brakenhoff, L.B.; Van Maarseveen, M.C.; Van Der Vegt, M.; Mol, J.W.; Kok, F.; Holzhauer, H.; et al. Measurements of hydrodynamics, sediment, morphology and benthos on Ameland ebb-tidal delta and lower shoreface. Earth Syst. Sci. Data 2020, 12, 2775–2786. [Google Scholar] [CrossRef]
- Van Dongeren, A.; Ciavola, P.; Martinez, G.; Viavattene, C.; Bogaard, T.; Ferreira, O.; Higgins, R.; McCall, R. Introduction to RISC-KIT: Resilience-increasing strategies for coasts. Coast. Eng. 2018, 134, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Austin, M.J.; Scott, T.M.; Russell, P.E.; Masselink, G. Rip current prediction: Development, validation, and evaluation of an operational tool. J. Coast. Res. 2013, 29, 283–300. [Google Scholar] [CrossRef] [Green Version]
- Davidson, M.; Aarninkhof, S.; Van Koningsveld, M.; Holman, R. Developing coastal video monitoring systems in support of coastal zone management. J. Coast. Res. 2006, 2004, 49–56. [Google Scholar]
- Radermacher, M.; Wengrove, M.; Van Thiel De Vries, J.; Holman, R. Applicability of video-derived bathymetry estimates to nearshore current model predictions. J. Coast. Res. 2014, 70, 290–295. [Google Scholar] [CrossRef] [Green Version]
- Netzband, A.; Adnitt, C. Dredging Management Practices for the Environment: A Structured Selection Approach. Terra Et Aqua 2009, 114, 3–8. [Google Scholar]
- Williams, W. The Determination of Gradients on Enemy-Held Beaches. Geogr. J. 1947, 109, 76–90. [Google Scholar] [CrossRef]
- Holman, R.A.; Stanley, J. The history and technical capabilities of Argus. Coast. Eng. 2007, 54, 477–491. [Google Scholar] [CrossRef]
- Dugan, J.P.; Piotrowski, C.C.; Williams, J.Z. Water depth and surface current retrievals from airborne optical measurements of surface gravity wave dispersion. J. Geophys. Res. Ocean. 2001, 106, 16903–16915. [Google Scholar] [CrossRef] [Green Version]
- Bergsma, E.W.; Almar, R.; Melo de Almeida, L.P.; Sall, M. On the operational use of UAVs for video-derived bathymetry. Coast. Eng. 2019, 152, 103527. [Google Scholar] [CrossRef]
- Brodie, K.L.; Bruder, B.L.; Slocum, R.K.; Spore, N.J. Simultaneous Mapping of Coastal Topography and Bathymetry from a Lightweight Multicamera UAS. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6844–6864. [Google Scholar] [CrossRef]
- Holland, K.T.; Lalejini, D.M.; Spansel, S.D.; Holman, R.A. Littoral environmental reconnaissance using tactical imagery from unmanned aircraft systems. Ocean. Sens. Monit. II 2010, 7678, 767806. [Google Scholar] [CrossRef]
- Holman, R.A.; Holland, K.T.; Lalejini, D.M.; Spansel, S.D. Surf zone characterization from Unmanned Aerial Vehicle imagery. Ocean. Dyn. 2011, 61, 1927–1935. [Google Scholar] [CrossRef]
- Holman, R.A.; Brodie, K.L.; Spore, N.J. Surf Zone Characterization Using a Small Quadcopter: Technical Issues and Procedures. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2017–2027. [Google Scholar] [CrossRef]
- Bell, P. Shallow water bathymetry derived from an analysis of X-band marine radar images of waves. Coast. Eng. 1999, 37, 513–527. [Google Scholar] [CrossRef]
- Seemann, J.; Ziemer, F.; Senet, C. A method for computing calibrated ocean wave spectra from measurements with a nautical X-band radar. In Proceedings of the Oceans ’97. MTS/IEEE Conference Proceedings, Halifax, NS, Canada, 6–9 October 1997; IEEE: Piscataway, NJ, USA, 1997; Volume 2, pp. 1148–1154. [Google Scholar] [CrossRef]
- Serafino, F.; Lugni, C.; Soldovieri, F. A novel strategy for the surface current determination from marine X-Band radar data. IEEE Geosci. Remote Sens. Lett. 2010, 7, 231–235. [Google Scholar] [CrossRef]
- Young, I.R.; Rosenthal, W.; Ziemer, F. A three-dimensional analysis of marine radar images for the determination of ocean wave directionality and surface currents. J. Geophys. Res. 1985, 90, 1049–1059. [Google Scholar] [CrossRef] [Green Version]
- Ziemer, F. Directional spectra from shipboard navigation radar during LEWEX. In Directional Ocean Wave Spectra: Measuring, Modeling, Predicting, and Applying; Beal, R.C., Ed.; The Johns Hopkins University Press: Baltimore, MA, USA, 1991; Volume 1, pp. 125–127. [Google Scholar]
- Abileah, R. Mapping near shore bathymetry using wave kinematics in a time series of WorldView-2 satellite images. Int. Geosci. Remote Sens. Symp. (IGARSS) 2013, 2, 2274–2277. [Google Scholar] [CrossRef]
- Almar, R.; Bergsma, E.W.; Maisongrande, P.; de Almeida, L.P.M. Wave-derived coastal bathymetry from satellite video imagery: A showcase with Pleiades persistent mode. Remote Sens. Environ. 2019, 231, 111263. [Google Scholar] [CrossRef]
- Aarninkhof, S.G.J.; Ruessink, B.G.; Roelvink, J.A. Nearshore subtidal bathymetry from time-exposure video images. J. Geophys. Res. Ocean. 2005, 110, 1–13. [Google Scholar] [CrossRef]
- Benshila, R.; Thoumyre, G.; Najar, M.A.; Abessolo, G.; Almar, R.; Bergsma, E.; Hugonnard, G.; Labracherie, L.; Lavie, B.; Ragonneau, T.; et al. A Deep Learning Approach for Estimation of the Nearshore Bathymetry. J. Coast. Res. 2020, 95, 1011–1015. [Google Scholar] [CrossRef]
- Chernyshov, P.; Vrecica, T.; Streßer, M.; Carrasco, R.; Toledo, Y. Rapid wavelet-based bathymetry inversion method for nearshore X-band radars. Remote Sens. Environ. 2020, 240, 111688. [Google Scholar] [CrossRef]
- Collins, A.; Brodie, K.L.; Bak, S.; Hesser, T.; Farthing, M.W.; Gamble, D.W.; Long, J.W. A 2D fully convolutional neural network for nearshore and surfzone bathymetry inversion from synthetic imagery of the surfzone using the wave model Celeris. CEUR Workshop Proceedings. 2020, pp. 1–8. Available online: http://ceur-ws.org/Vol-2587/article_1.pdf (accessed on 1 November 2021).
- Ghorbanidehno, H.; Lee, J.; Farthing, M.; Hesser, T.; Kitanidis, P.K.; Darve, E.F. Novel data assimilation algorithm for nearshore bathymetry. J. Atmos. Ocean. Technol. 2019, 36, 699–715. [Google Scholar] [CrossRef]
- Van Dongeren, A.; Plant, N.; Cohen, A.; Roelvink, D.; Haller, M.C.; Catalán, P. Beach Wizard: Nearshore bathymetry estimation through assimilation of model computations and remote observations. Coast. Eng. 2008, 55, 1016–1027. [Google Scholar] [CrossRef]
- Senet, C.M.; Seemann, J.; Flampouris, S.; Ziemer, F. Determination of bathymetric and current maps by the method DiSC based on the analysis of nautical X-band radar image sequences of the sea surface (November 2007). IEEE Trans. Geosci. Remote Sens. 2008, 46, 2267–2279. [Google Scholar] [CrossRef]
- Honegger, D.A.; Haller, M.C.; Holman, R.A. High-resolution bathymetry estimates via X-band marine radar: 1. beaches. Coast. Eng. 2019, 149, 39–48. [Google Scholar] [CrossRef]
- Wilson, G.W.; Özkan-Haller, H.T.; Holman, R.A.; Haller, M.C.; Honegger, D.A.; Chickadel, C.C. Surf zone bathymetry and circulation predictions via data assimilation of remote sensing observations. J. Geophys. Res. Ocean. 2014, 119, 1993–2016. [Google Scholar] [CrossRef] [Green Version]
- Atanassov, V.; Rosenthal, W.; Ziemer, F. Removal of Ambiguity of Two-Dimensional Power Spectra Obtained by Processing Ship Radar Images of Ocean Waves. J. Geophys. Res. 1985, 90, 1061–1067. [Google Scholar] [CrossRef]
- Borge, J.C.N.; Reichert, K.; Dittmer, J. Use of nautical radar as a wave monitoring instrument. Coast. Eng. 1999, 37, 331–342. [Google Scholar] [CrossRef]
- Izquierdo, P.; Guedes Soares, C. Analysis of sea waves and wind from X-band radar. Ocean. Eng. 2005, 32, 1404–1419. [Google Scholar] [CrossRef]
- Wolf, J.; Bell, P.S. Waves at Holderness from X-band radar. Coast. Eng. 2001, 43, 247–263. [Google Scholar] [CrossRef]
- Irani, G.B.; Gotwols, B.L.; Bjerkaas, A.W. THE 1978 OCEAN WAVE DYNAMICS EXPERIMENT, Optical and in Situ Measurement of the Phase Velocity of Wind Waves. In Wave Dynamics and Radio Probing of the Ocean Surface, 1st ed.; Phillips, O., Hasselmann, K., Eds.; Plenum Press: New York, NY, USA; London, UK, 1986; Chapter 10; pp. 165–179. [Google Scholar]
- Jähne, B.; Klinke, J.; Geißler, P.; Hering, F. Image Sequence Analysis of Ocean Wind Waves. In Proceedings of the International Seminar on Imaging in Transport Processes, Athens, Greece, 25–29 May 1992; pp. 1–12. [Google Scholar]
- Stockdon, H.F.; Holman, R.A. Estimation of wave phase speed and nearshore bathymetry from video imagery. J. Geophys. Res. Ocean. 2000, 105, 22015–22033. [Google Scholar] [CrossRef]
- Hessner, K.; Reichert, K.; Carlos, J.; Borge, N.; Stevens, C.L.; Smith, M.J. High-resolution X-Band radar measurements of currents, bathymetry and sea state in highly inhomogeneous coastal areas. Ocean. Dyn. 2014, 64, 989–998. [Google Scholar] [CrossRef]
- Senet, C.M.; Seemann, J.; Ziemer, F. The near-surface current velocity determined from image sequences of the sea surface. IEEE Trans. Geosci. Remote Sens. 2001, 39, 492–505. [Google Scholar] [CrossRef]
- Hessner, K.; Reichert, K.; Rosenthal, W. Mapping of Sea Bottom Topography in Shallow Seas by Using a Nautical Radar. In Proceedings of the 2nd International Symposium on Operationalization of Remote Sensing, Enschede, The Netherlands, 16–20 August 1999; pp. 1–5. [Google Scholar]
- Holman, R.; Plant, N.; Holland, T. CBathy: A robust algorithm for estimating nearshore bathymetry. J. Geophys. Res. Ocean. 2013, 118, 2595–2609. [Google Scholar] [CrossRef]
- Zuckerman, S.; Anderson, S. Bathymetry and water-level estimation using x-band radar at a tidal inlet. J. Coast. Res. 2018, 34, 1227–1235. [Google Scholar] [CrossRef]
- Heathershaw, A.D.; Blackley, M.W.; Hardcastle, P.J. Wave direction estimates in coastal waters using radar. Coast. Eng. 1979, 3, 249–267. [Google Scholar] [CrossRef]
- Mattie, M.G.; Lee Harris, D. The Use of Imaging Radar in Studying Ocean Waves. Coast. Eng. 1978, 1, 174–189. [Google Scholar]
- Bell, P. Mapping Shallow Water Coastal Areas Using a Standard Marine X-Band Radar. In Hydro8; International Federation of Hydrographic Societies: Liverpool, UK, 2008; pp. 1–9. [Google Scholar]
- Honegger, D.A.; Haller, M.C.; Holman, R.A. High-resolution bathymetry estimates via X-band marine radar: 2. Effects of currents at tidal inlets. Coast. Eng. 2020, 156, 103626. [Google Scholar] [CrossRef]
- Ludeno, G.; Reale, F.; Dentale, F.; Carratelli, E.P.; Natale, A.; Soldovieri, F.; Serafino, F. An X-band radar system for bathymetry and wave field analysis in a harbour area. Sensors 2015, 15, 1691–1707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campana, J.; Terrill, E.J.; de Paolo, T. The development of an inversion technique to extract vertical current profiles from X-band radar observations. J. Atmos. Ocean. Technol. 2016, 33, 2015–2028. [Google Scholar] [CrossRef]
- Smeltzer, B.K.; Æsøy, E.; Ådnøy, A.; Ellingsen, S. An Improved Method for Determining Near-Surface Currents From Wave Dispersion Measurements. J. Geophys. Res. Ocean. 2019, 124, 8832–8851. [Google Scholar] [CrossRef] [Green Version]
- Hessner, K.; Wallbridge, S.; Dolphin, T. Validation of areal wave and current measurements based on X-band radar. In Proceedings of the 2015 IEEE/OES 11th Current, Waves and Turbulence Measurement, CWTM 2015, St. Petersburg, FL, USA, 2–6 March 2015; pp. 1–10. [Google Scholar] [CrossRef]
- Simarro, G.; Calvete, D.; Luque, P.; Orfila, A.; Ribas, F. UBathy: A new approach for bathymetric inversion from video imagery. Remote Sens. 2019, 11, 2722. [Google Scholar] [CrossRef] [Green Version]
- Brunton, S.L.; Proctor, J.L.; Tu, J.H.; Kutz, J.N. Compressed sensing and dynamic mode decomposition. J. Comput. Dyn. 2015, 2, 165–191. [Google Scholar] [CrossRef]
- Tu, J.H.; Rowley, C.W.; Luchtenburg, D.M.; Brunton, S.L.; Kutz, J.N. On dynamic mode decomposition: Theory and applications. J. Comput. Dyn. 2014, 1, 391–421. [Google Scholar] [CrossRef] [Green Version]
- Jovanović, M.R.; Schmid, P.J.; Nichols, J.W. Sparsity-promoting dynamic mode decomposition. Phys. Fluids 2014, 26. [Google Scholar] [CrossRef]
- Proctor, J.L.; Brunton, S.L.; Kutz, J.N. Dynamic mode decomposition with control. SIAM J. Appl. Dyn. Syst. 2016, 15, 142–161. [Google Scholar] [CrossRef] [Green Version]
- Kutz, J.N.; Fu, X.; Brunton, S.L. Multiresolution dynamic mode decomposition. SIAM J. Appl. Dyn. Syst. 2016, 15, 713–735. [Google Scholar] [CrossRef] [Green Version]
- Klus, S.; Gelß, P.; Peitz, S.; Schütte, C. Tensor-based dynamic mode decomposition. Nonlinearity 2018, 31, 3359–3380. [Google Scholar] [CrossRef] [Green Version]
- Askham, T.; Kutz, J.N. Variable projection methods for an optimized dynamic mode decomposition. SIAM J. Appl. Dyn. Syst. 2018, 17, 380–416. [Google Scholar] [CrossRef] [Green Version]
- Barocio, E.; Pal, B.C.; Thornhill, N.F.; Messina, A.R. A Dynamic Mode Decomposition Framework for Global Power System Oscillation Analysis. IEEE Trans. Power Syst. 2015, 30, 2902–2912. [Google Scholar] [CrossRef]
- Mohan, N.; Soman, K.P.; Sachin Kumar, S. A data-driven strategy for short-term electric load forecasting using dynamic mode decomposition model. Appl. Energy 2018, 232, 229–244. [Google Scholar] [CrossRef]
- Brunton, B.W.; Johnson, L.A.; Ojemann, J.G.; Kutz, J.N. Extracting spatial-temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition. J. Neurosci. Methods 2016, 258, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.q.; Herdman, L.M.; Erikson, L.; Barnard, P.; Hummel, M.; Stacey, M.T. Interactions of Estuarine Shoreline Infrastructure With Multiscale Sea Level Variability. J. Geophys. Res. Ocean. 2017, 122, 9962–9979. [Google Scholar] [CrossRef]
- Taylor, Z.J.; Gurka, R.; Kopp, G.A.; Liberzon, A. Long-duration time-resolved PIV to study unsteady aerodynamics. IEEE Trans. Instrum. Meas. 2010, 59, 3262–3269. [Google Scholar] [CrossRef]
- Holthuijsen, L.H. Waves in Oceanic and Coastal Waters; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Barron, J.T. A general and adaptive robust loss function. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 4326–4334. [Google Scholar] [CrossRef] [Green Version]
- Madsen, K.; Nielsen, H.B.; Tingleff, O. Methods for Non-Linear Least Squares Problems, 2nd ed.; Technical University of Denmark: Copenhagen, Denmark, 2004; pp. 1–58. [Google Scholar]
- Black, M.J.; Rangarajan, A. On the unification of line processes, outlier rejection, and robust statistics with applications in early vision. Int. J. Comput. Vision 1996, 19, 57–91. [Google Scholar] [CrossRef]
- Rutten, J.; De Jong, S.M.; Ruessink, G. Accuracy of Nearshore Bathymetry Inverted from X-Band Radar and Optical Video Data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1106–1116. [Google Scholar] [CrossRef]
- Schmid, P.J. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 2010, 656, 5–28. [Google Scholar] [CrossRef] [Green Version]
- Gavish, M.; Donoho, D.L. The optimal hard threshold for singular values is 4/3. IEEE Trans. Inf. Theory 2014, 60, 5040–5053. [Google Scholar] [CrossRef]
- Mendible, A.; Koch, J.; Lange, H.; Brunton, S.L.; Kutz, J.N. Data-driven modeling of rotating detonation waves. Phys. Rev. Fluids 2021, 6, 1–20. [Google Scholar] [CrossRef]
- Askham, T.; Zheng, P.; Aravkin, A.; Kutz, J.N. Robust and scalable methods for the dynamic mode decomposition. arXiv 2017, arXiv:1712.01883. [Google Scholar]
- Elgar, S.; Herbers, T.H.C.; Guza, R.T. Reflection of Ocean Surface Gravity Waves from a Natural Beach. J. Phys. Oceanogr. 1994, 24, 1503–1511. [Google Scholar] [CrossRef]
- Brodie, K.L.; Raubenheimer, B.; Elgar, S.; Slocum, R.K.; McNinch, J.E. Lidar and pressure measurements of inner-surfzone waves and setup. J. Atmos. Ocean. Technol. 2015, 32, 1945–1959. [Google Scholar] [CrossRef]
- Huntley, D.A.; Simmonds, D.; Tatavarti, R. Use of Collocated Sensors to Measure Coastal Wave Reflection. J. Waterw. Port Coastal Ocean. Eng. 1999, 125, 46–52. [Google Scholar] [CrossRef]
- Battjes, J.A. Surf similarity. In Proceedings of the 14th International Conference on Coastal Engineering, Copenhagen, Denmark, 24–28 June 1974; Volume 1, pp. 466–480. [Google Scholar]
- Raubenheimer, B.; Guza, R.T. Observations and predictions of run-up. J. Geophys. Res. Ocean. 1996, 101, 25575–25587. [Google Scholar] [CrossRef]
- Miles, J.R.; Russell, P.E.; Huntley, D.A. Sediment transport and wave reflection near a seawall. Proc. Coast. Eng. Conf. 1997, 3, 2612–2624. [Google Scholar] [CrossRef]
- Goda, Y.; Suzuki, Y. Estimation of incident and reflected waves in random wave experiments. In Coastal Engineering 1976; ASCE: Honolulu, HI, USA, 1976; pp. 828–845. [Google Scholar]
- Gawehn, M.; de Vries, S.; Aarninkhof, S. Depth and Surface Current Inversion on the Fly: A New Video Based Approach Using the Dynamic Mode Decomposition. In Proceedings of the Coastal Sediments 2019–Proceedings of the 9th International Conference, St. Petersburg, FL, USA, 27–31 May 2019; pp. 2511–2520. [Google Scholar] [CrossRef]
- Trizna, D. Errors in bathymetric retrievals using linear dispersion in 3-D FFT analysis of marine radar ocean wave imagery. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2465–2469. [Google Scholar] [CrossRef]
- Fienup, J.R. Invariant error metrics for image reconstruction. Appl. Opt. 1997, 36, 8352. [Google Scholar] [CrossRef]
- Bosboom, J.; Stive, M.J.F. Coastal Dynamics; Delft University of Technology: Delft, The Netherlands, 2021; Volume 1269, p. 595. [Google Scholar] [CrossRef]
- Bell, P.S.; Osler, J.C. Mapping bathymetry using X-band marine radar data recorded from a moving vessel. Ocean. Dyn. 2011, 61, 2141–2156. [Google Scholar] [CrossRef]
- Kraft, D. A Software Package for Sequential Quadratic Programming; Technical Report; DLR German Aerospace Center—Institute for Flight Mechanics: Köln, Germany, 1988. [Google Scholar]
- Bergsma, E.W.; Conley, D.C.; Davidson, M.A.; O’Hare, T.J. Video-based nearshore bathymetry estimation in macro-tidal environments. Mar. Geol. 2016, 374, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Aarnink, J.L. Bathymetry Mapping Using Drone Imagery. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2017. [Google Scholar]
- Vos, K. Remote Sensing of the Nearshore Zone Using a Rotary-Wing UAV. Master’s Thesis, University of New South Wales, Kensington, Australia, 2017. [Google Scholar]
- Bergsma, E.W.J. Application of an Improved Video-Based Depth Inversion Technique to a Macrotidal Sandy Beach. Ph.D. Thesis, University of Plymouth, Plymouth, UK, 2017. [Google Scholar]
- Bell, P. Determination of bathymetry using marine radar images of waves. In Proceedings of the 4th International Symposium on Ocean Wave Measurement and Analysis, San Francisco, CA, USA, 2–6 September 2001; pp. 251–257. [Google Scholar] [CrossRef] [Green Version]
- Reniers, A.J.; Thornton, E.B.; Stanton, T.P.; Roelvink, J.A. Vertical flow structure during Sandy Duck: Observations and modeling. Coast. Eng. 2004, 51, 237–260. [Google Scholar] [CrossRef]
- Sonu, C.J. Field observation of nearshore circulation and meandering currents. J. Geophys. Res. 1972, 77, 3232–3247. [Google Scholar] [CrossRef]
- Short, A.D. Australian rip systems–Friend or foe? J. Coast. Res. 2007, 2007, 7–11. [Google Scholar]
- Anderson, D.; Spicer Bak, A.; Brodie, K.L.; Cohn, N.; Holman, R.A.; Stanley, J. Quantifying optically derived two-dimensional wave-averaged currents in the surf zone. Remote Sens. 2021, 13, 690. [Google Scholar] [CrossRef]
- Haller, M.C.; Honegger, D.; Catalan, P.A. Rip Current Observations via Marine Radar. J. Waterw. Port Coastal Ocean. Eng. 2014, 140, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Mortlock, T.R.; Goodwin, I.D.; McAneney, J.K.; Roche, K. The June 2016 Australian East Coast Low: Importance of wave direction for coastal erosion assessment. Water 2017, 9, 121. [Google Scholar] [CrossRef]
- Plant, N.G.; Holland, K.T.; Haller, M.C. Ocean wavenumber estimation from wave-resolving time series imagery. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2644–2658. [Google Scholar] [CrossRef]
- Boyce, W.E.; DiPrima, R.C. Elementary Differential Equations and Boundary Value Problems, 9th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010. [Google Scholar]
Field Site | Instrument | Camera Height (m) | Camera Tilt () | Video Length (min) | Frame Rate (fps) | Pixel Size (m) | Reprojection Error (at Distance) |
---|---|---|---|---|---|---|---|
Duck | Argus | 43 | 68–82 | 17 | 2 | 5 | <1 m (<500 m) |
Porthtowan | Argus | 44 | 75–85 | 17 | 2 | 5 | - |
Scheveningen | UAV | 110 | 61 | 9 | 2 | 2 | ∼ 1 m (<200 m) |
∼7 m (400–600 m) | |||||||
Narrabeen | UAV | 89 | 73 | 9 | 2 | 2 | < 1 m (<250 m) |
∼7 m (1.5–2 km) |
Field Site | (m) | (s) | (m) |
---|---|---|---|
Duck | 0.79 | 5.0 | 0.08 |
Porthtowan | 1.03 | 10.0 | −0.96 |
Scheveningen | 0.75 | 5.5 | 0.60 |
Narrabeen | 1.63 | 8.5 | 0.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gawehn, M.; de Vries, S.; Aarninkhof, S. A Self-Adaptive Method for Mapping Coastal Bathymetry On-The-Fly from Wave Field Video. Remote Sens. 2021, 13, 4742. https://doi.org/10.3390/rs13234742
Gawehn M, de Vries S, Aarninkhof S. A Self-Adaptive Method for Mapping Coastal Bathymetry On-The-Fly from Wave Field Video. Remote Sensing. 2021; 13(23):4742. https://doi.org/10.3390/rs13234742
Chicago/Turabian StyleGawehn, Matthijs, Sierd de Vries, and Stefan Aarninkhof. 2021. "A Self-Adaptive Method for Mapping Coastal Bathymetry On-The-Fly from Wave Field Video" Remote Sensing 13, no. 23: 4742. https://doi.org/10.3390/rs13234742
APA StyleGawehn, M., de Vries, S., & Aarninkhof, S. (2021). A Self-Adaptive Method for Mapping Coastal Bathymetry On-The-Fly from Wave Field Video. Remote Sensing, 13(23), 4742. https://doi.org/10.3390/rs13234742