Alteration Detection of Multispectral/Hyperspectral Images Using Dual-Path Partial Recurrent Networks
Abstract
:1. Introduction
2. Proposed ADM-D-PRNs
2.1. CVA Pre-Detection
2.2. The Proposed D-PRNs
2.3. Post-Processing Algorithms
2.4. Chi-Square Distance and Thresholding
3. Experiments
3.1. Projection Feature Maps
3.2. Detected Binary Alteration Maps
3.3. Comparison Results of Alteration Detection Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, H.; Liu, S.; He, J.; Wen, Q.; Song, L.; Ma, Y. A new model for the automatic relative radiometric normalization of multiple images with pseudo-invariant features. Int. J. Remote. Sens. 2016, 37, 4554–4573. [Google Scholar] [CrossRef]
- Schott, J.R.; Salvaggio, C.; Volchok, W.J. Radiometric scene normalization using pseudoinvariant features. Remote Sens. Environ. 1988, 26, 1–16. [Google Scholar] [CrossRef]
- Cheng, X.-Y.; Zhuang, X.-Q.; Zhang, D.; Yao, Y.; Hou, J.; He, D.-G.; Jia, J.-X.; Wang, Y.-M. A relative radiometric correction method for airborne SWIR hyperspectral image using the side-slither technique. Opt. Quantum Electron. 2019, 51, 105. [Google Scholar] [CrossRef]
- Li, Z.; Shen, H.; Cheng, Q.; Li, W.; Zhang, L. Thick Cloud Removal in High-Resolution Satellite Images Using Stepwise Radiometric Adjustment and Residual Correction. Remote Sens. 2019, 11, 1925. [Google Scholar] [CrossRef] [Green Version]
- Cao, P.; Zhang, S. Research on image recognition of Wushu action based on remote sensing image and embedded system. Microprocess. Microsyst. 2021, 82, 103841. [Google Scholar] [CrossRef]
- Zyurt, F. Efficient deep feature selection for remote sensing image recognition with fused deep learning architectures. J. Supercomput. 2020, 76, 1–19. [Google Scholar] [CrossRef]
- You, H.; Tian, S.; Yu, L.; Lv, Y. Pixel-Level Remote Sensing Image Recognition Based on Bidirectional Word Vectors. IEEE Trans. Geosci. Remote Sens. 2019, 58, 1281–1293. [Google Scholar] [CrossRef]
- Chebbi, I.; Mellouli, N.; Farah, I.; Lamolle, M. Big Remote Sensing Image Classification Based on Deep Learning Extraction Features and Distributed Spark Frameworks. Big Data Cogn. Comput. 2021, 5, 21. [Google Scholar] [CrossRef]
- Alhassan, V.; Henry, C.; Ramanna, S.; Storie, C. A deep learning framework for land-use/land-cover mapping and analysis using multispectral satellite imagery. Neural Comput. Appl. 2019, 32, 8529–8544. [Google Scholar] [CrossRef]
- Nielsen, A.A.; Conradsen, K.; Simpson, J.J. Multivariate alteration detection (MAD) and MAF postprocessing in multispectral, bitemporal image data: New approaches to change detection studies. Remote Sens. Environ. 1998, 64, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, A.A. The Regularized Iteratively Reweighted MAD Method for Change Detection in Multi- and Hyperspectral Data. IEEE Trans. Image Process. 2007, 16, 463–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Marchesi, S.; Bruzzone, L. Ica and Kernel Ica for Change Detection in Multispectral Remote Sensing Images, 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa. IEEE 2009, 2, 980–983. [Google Scholar] [CrossRef]
- Collins, J.B.; Woodcock, C.E. Change detection using the Gramm-Schmidt transformation applied to mapping forest mortality. Remote Sens. Environ. 1994, 50, 267–279. [Google Scholar] [CrossRef]
- Wei, Y.; Liu, H.; Song, W.; Yu, B.; Xiu, C. Normalization of time series DMSP-OLS nighttime light images for urban growth analysis with Pseudo Invariant Features. Landsc. Urban. Plan. 2014, 128, 1–13. [Google Scholar] [CrossRef]
- Zhan, Y.; Fu, K.; Yan, M.; Sun, X.; Wang, H.; Qiu, X. Change Detection Based on Deep Siamese Convolutional Network for Optical Aerial Images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1845–1849. [Google Scholar] [CrossRef]
- Gong, M.; Zhao, J.; Liu, J.; Miao, Q.; Jiao, L. Change Detection in Synthetic Aperture Radar Images Based on Deep Neural Networks. IEEE Trans. Neural Netw. Learn. Syst. 2015, 27, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Gong, M.; Qin, K.; Zhang, P. A Deep Convolutional Coupling Network for Change Detection Based on Heterogeneous Optical and Radar Images. IEEE Trans. Neural Netw. Learn. Syst. 2016, 29, 545–559. [Google Scholar] [CrossRef]
- Zhang, C.; Yue, P.; Tapete, D.; Jiang, L.; Shangguan, B.; Huang, L.; Liu, G. A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images. ISPRS J. Photogramm. Remote Sens. 2020, 166, 183–200. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, Z.; Gong, M.; Liu, J. Discriminative Feature Learning for Unsupervised Change Detection in Heterogeneous Images Based on a Coupled Neural Network. IEEE Trans. Geosci. Remote Sens. 2017, 55, 7066–7080. [Google Scholar] [CrossRef]
- Zhang, M.; Shi, W. A Feature Difference Convolutional Neural Network-Based Change Detection Method. IEEE Trans. Geosci. Remote Sens. 2020, 58, 7232–7246. [Google Scholar] [CrossRef]
- Liu, F.; Jiao, L.; Tang, X.; Yang, S.; Ma, W.; Hou, B. Local Restricted Convolutional Neural Network for Change Detection in Polarimetric SAR Images. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 818–833. [Google Scholar] [CrossRef]
- Liu, X.; Lathrop, R., Jr. Urban change detection based on an artificial neural network. Int. J. Remote Sens. 2002, 23, 2513–2518. [Google Scholar] [CrossRef]
- Georgakopoulos, S.V.; Tasoulis, S.K.; Mallis, G.I.; Vrahatis, A.G.; Plagianakos, V.P.; Maglogiannis, I.G. Change detection and convolution neural networks for fall recognition. Neural Comput. Appl. 2020, 32, 17245–17258. [Google Scholar] [CrossRef]
- Ghosh, S.; Roy, M.; Ghosh, A. Semi-supervised change detection using modified self-organizing feature map neural network. Appl. Soft Comput. 2014, 15, 1–20. [Google Scholar] [CrossRef]
- Connors, C.; Vatsavai, R.R. Semi-Supervised Deep Generative Models for Change Detection in Very High Resolution Imagery. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, TX, USA, IEEE. 23–28 July 2017; pp. 1063–1066. [Google Scholar] [CrossRef]
- Chen, H.; Wu, C.; Du, B.; Zhang, L.; Wang, L. Change Detection in Multisource VHR Images via Deep Siamese Convolutional Multiple-Layers Recurrent Neural Network. IEEE Trans. Geosci. Remote Sens. 2019, 58, 2848–2864. [Google Scholar] [CrossRef]
- Andermatt, P.; Timofte, R. A Weakly Supervised Convolutional Network for Change Segmentation and Classification; Springer: Cham, Switzerland, 2021; Volume 12628, pp. 103–119. [Google Scholar] [CrossRef]
- Daudt, R.C.; Le Saux, B.; Boulch, A.; Gousseau, Y. Weakly supervised change detection using guided anisotropic diffusion. Mach. Learn. 2021, 1–27. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, G.; Chen, K.; Yan, M.; Sun, X. Triplet-Based Semantic Relation Learning for Aerial Remote Sensing Image Change Detection. IEEE Geosci. Remote Sens. Lett. 2018, 16, 266–270. [Google Scholar] [CrossRef]
- Du, B.; Ru, L.; Wu, C.; Zhang, L. Unsupervised Deep Slow Feature Analysis for Change Detection in Multi-Temporal Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9976–9992. [Google Scholar] [CrossRef] [Green Version]
- Kanungo, T.; Mount, D.M.; Netanyahu, N.S.; Piatko, C.D.; Silverman, R.; Wu, A.Y. An efficient k-means clustering algorithm: Analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 881–892. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Danielsson, P.-E. Euclidean Distance Mapping. Comput. Graph. Image Process. 1980, 14, 227–248. [Google Scholar] [CrossRef] [Green Version]
- Hardoon, D.R.; Szedmak, S.; Shawe-Taylor, J. Canonical correlation analysis: An overview with application to learning methods. Neural Comput. 2004, 16, 2639–2664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; Gao, T.; Zhang, Y. Image Sharpening Detection Based on Difference Sets. IEEE Access 2020, 8, 51431–51445. [Google Scholar] [CrossRef]
- De Bem, P.P.; de Carvalho Junior, O.A.; Guimarães, R.F.; Gomes, R.A.T. Change Detection of Deforestation in the Brazilian Amazon Using Landsat Data and Convolutional Neural Networks. Remote Sens. 2020, 12, 901. [Google Scholar] [CrossRef] [Green Version]
Methods | DSFA-64-2 [31] | DSFA-128-2 [31] | DSFA-256-2 [31] | ADM-D-PRNs Using USFA (Proposed) | ADM-D-PRNs Using IRMAD (Proposed) | ADM-D-PRNs Using PCA (Proposed) |
---|---|---|---|---|---|---|
GP GN | 12,560 | |||||
99,023 | ||||||
TP TN | 7707 | 8478 | 8319 | 8911 | 9235 | 9248 |
97,162 | 97,149 | 96,463 | 97,109 | 96,398 | 96,607 | |
FP FN | 1861 | 1874 | 2560 | 1914 | 2625 | 2416 |
4853 | 4082 | 4241 | 3649 | 3325 | 3312 | |
OA_CHG OA_UN | 0.6136 | 0.6750 | 0.6623 | 0.7095 | 0.7353 | 0.7363 |
0.9812 | 0.9811 | 0.9741 | 0.9807 | 0.9735 | 0.9756 | |
OA Kappa | 0.9398 | 0.9466 | 0.9390 | 0.9501 | 0.9467 | 0.9487 |
0.6639 | 0.7106 | 0.6760 | 0.7344 | 0.7264 | 0.7348 | |
F1 | 0.6966 | 0.7400 | 0.7098 | 0.7621 | 0.7563 | 0.7635 |
Methods | DSFA-64-2 [31] | DSFA-128-2 [31] | DSFA-256-2 [31] | ADM-D-PRNs Using USFA (Proposed) | ADM-D-PRNs Using IRMAD (Proposed) | ADM-D-PRNs Using PCA (Proposed) |
---|---|---|---|---|---|---|
GP GN | 12,560 | |||||
99,023 | ||||||
TP TN | 7667 | 8342 | 8298 | 8530 | 8970 | 9225 |
97,192 | 97,267 | 96,483 | 97,546 | 96,984 | 96,720 | |
FP FN | 1831 | 1756 | 2540 | 1477 | 2039 | 2303 |
4893 | 4218 | 4262 | 4030 | 3590 | 3335 | |
OA_CHG OA_UN | 0.6104 | 0.6642 | 0.6623 | 0.6791 | 0.7142 | 0.7345 |
0.9815 | 0.9823 | 0.9741 | 0.9851 | 0.9794 | 0.9767 | |
OA Kappa | 0.9397 | 0.9465 | 0.9390 | 0.9506 | 0.9496 | 0.9495 |
0.6624 | 0.7069 | 0.7284 | 0.7289 | 0.7331 | 0.7377 | |
F1 | 0.6952 | 0.7363 | 0.7098 | 0.7560 | 0.7612 | 0.7659 |
Methods | DSFA-64-2 [31] | DSFA-128-2 [31] | DSFA-256-2 [31] | ADM-D-PRNs Using USFA (Proposed) | ADM-D-PRNs Using IRMAD (Proposed) | ADM-D-PRNs Using PCA (Proposed) |
---|---|---|---|---|---|---|
GP GN | 4227 | |||||
17,163 | ||||||
TP TN | 3673 | 3769 | 3538 | 3942 | 4061 | 4112 |
16,954 | 17,104 | 17,117 | 17,069 | 16,900 | 16,898 | |
FP FN | 209 | 59 | 46 | 94 | 263 | 265 |
554 | 458 | 689 | 285 | 166 | 115 | |
OA_CHG OA_UN | 0.8689 | 0.8916 | 0.8370 | 0.9326 | 0.9607 | 0.9728 |
0.9878 | 0.9966 | 0.9973 | 0.9945 | 0.9847 | 0.9846 | |
OA Kappa | 0.9643 | 0.9758 | 0.9656 | 0.9823 | 0.9799 | 0.9822 |
0.8839 | 0.9210 | 0.8851 | 0.9432 | 0.9373 | 0.9447 | |
F1 | 0.9059 | 0.9358 | 0.9059 | 0.9541 | 0.9493 | 0.9558 |
Methods | DSFA-64-2 [31] | DSFA-128-2 [31] | DSFA-256-2 [31] | ADM-D-PRNs Using USFA (Proposed) | ADM-D-PRNs Using IRMAD (Proposed) | ADM-D-PRNs Using PCA (Proposed) |
---|---|---|---|---|---|---|
GP GN | 4227 | |||||
17,163 | ||||||
TP TN | 3662 | 3759 | 3529 | 3955 | 4062 | 4119 |
16,958 | 17,112 | 17,120 | 17,065 | 16,893 | 16,892 | |
FP FN | 205 | 51 | 43 | 87 | 270 | 271 |
565 | 468 | 698 | 295 | 165 | 108 | |
OA_CHG OA_UN | 0.8663 | 0.8893 | 0.8349 | 0.9302 | 0.9610 | 0.9744 |
0.9881 | 0.9970 | 0.9975 | 0.9949 | 0.9843 | 0.9842 | |
OA Kappa | 0.9640 | 0.9757 | 0.9654 | 0.9821 | 0.9797 | 0.9823 |
0.8827 | 0.9205 | 0.8840 | 0.9426 | 0.9365 | 0.9449 | |
F1 | 0.9049 | 0.9354 | 0.9050 | 0.9537 | 0.9492 | 0.9560 |
Sampling | Random | CVA_CHG | CVA_UN | G_CHG | G_UN |
---|---|---|---|---|---|
OA_CHG OA_UN | 0.6323 | 0.3356 | 0.7088 | 0.9023 | 0.7072 |
0.9796 | 0.6947 | 0.9805 | 0.5512 | 0.9807 | |
OA Kappa | 0.9405 | 0.6543 | 0.9499 | 0.5907 | 0.9499 |
0.6727 | 0.0172 | 0.7334 | 0.1812 | 0.7330 | |
F1 | 0.7053 | 0.1794 | 0.7612 | 0.3317 | 0.7608 |
Sampling | Random | CVA_CHG | CVA_UN | G_CHG | G_UN |
---|---|---|---|---|---|
OA_CHG OA_UN | 0.9342 | 0.9470 | 0.9326 | 0.9562 | 0.9357 |
0.9948 | 0.9927 | 0.9945 | 0.9957 | 0.9943 | |
OA Kappa | 0.9828 | 0.9836 | 0.9823 | 0.9879 | 0.9827 |
0.9448 | 0.9479 | 0.9432 | 0.9614 | 0.9446 | |
F1 | 0.9555 | 0.9581 | 0.9541 | 0.9690 | 0.9553 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Yuan, X.; Feng, L. Alteration Detection of Multispectral/Hyperspectral Images Using Dual-Path Partial Recurrent Networks. Remote Sens. 2021, 13, 4802. https://doi.org/10.3390/rs13234802
Li J, Yuan X, Feng L. Alteration Detection of Multispectral/Hyperspectral Images Using Dual-Path Partial Recurrent Networks. Remote Sensing. 2021; 13(23):4802. https://doi.org/10.3390/rs13234802
Chicago/Turabian StyleLi, Jinlong, Xiaochen Yuan, and Li Feng. 2021. "Alteration Detection of Multispectral/Hyperspectral Images Using Dual-Path Partial Recurrent Networks" Remote Sensing 13, no. 23: 4802. https://doi.org/10.3390/rs13234802
APA StyleLi, J., Yuan, X., & Feng, L. (2021). Alteration Detection of Multispectral/Hyperspectral Images Using Dual-Path Partial Recurrent Networks. Remote Sensing, 13(23), 4802. https://doi.org/10.3390/rs13234802