Analyzing Pixel-Level Relationships between Luojia 1-01 Nighttime Light and Urban Surface Features by Separating the Pixel Blooming Effect
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. NTL Data
2.3. Urban Surface Feature Datasets
2.3.1. Natural Surface from Landsat 8
2.3.2. Artificial Facilities from POI
2.3.3. Artificial Facilities from OpenStreetMap
3. Methods
3.1. The Pixel Blooming Effect (PIBE)
3.2. Data Preprocessing
3.3. Ordinary Least Squares Regression Model
3.4. Spatial Autoregressive Models
3.5. Moran’s I
4. Results
4.1. Exploratory Statistical Analysis
4.2. Spatial Autoregressive Model Hypothesis Test
4.2.1. Hypothesis Test of Neighboring Pixels’ Effect
4.2.2. Hypothesis Test of Neighboring Pixels’ NTL
4.2.3. Hypothesis Test of Neighboring Pixels’ Urban Surface Features
4.2.4. Comparison between Different Models
4.3. SDM Fitting
4.4. Spatial Partitioning of Feature Contributions
5. Discussion
5.1. Urban Surface Feature Contributions to Luojia 1-01 NTL Intensity
5.2. Neighboring Pixel’s Effect
5.3. Limitation
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Aggregated Type | Initial Type of Amap |
---|---|
Residential | Commercial House * (except Industrial Park, Building **) |
Government and Social organization | Medical Service |
Governmental Organization and Social Group | |
Science/Culture and Education Service (except Media Organization, Training Institution, Driving School) | |
Public Facility | |
Daily Life Service (including Job Center, Funeral Facilities) | |
Sports and Recreation (including Sports Stadium) | |
Commercial | Food and Beverages |
Shopping | |
Daily Life Service (except Job Center, Funeral Facilities) | |
Auto Service | |
Sports and Recreation (except Sports Stadium) | |
Accommodation Service | |
Finance and Insurance Service | |
Enterprises (except Factory, Company-Chemical and Metallurgy, Company-Machinery and Electronics) | |
Medical Service (including Clinic, Veterinary Hospital) | |
Science/Culture and Education Service (including Media Organization, Training Institution, Driving School) | |
Commercial House (including Building) | |
Industrial | Commercial House (including Industrial Park) |
Enterprises (including Factory, Company – Chemical and Metallurgy, Company – Machinery and Electronics) | |
Transportation facilities | Transportation Service |
Public garden | Tourist Attraction |
Aggregated Type | Initial Type of OSM |
---|---|
Road1 | motorway, trunk, motor way_link, trunk_link |
Road2 | primary way, primary way_link |
Road3 | secondary way, secondary way_link |
Road4 | tertiary way, tertiary way_link |
Road5 | residential, and others (such as cycleway, footway, living_street, path, pedestrian) |
References
- Jacobs, J. The Death and Life of Great American Cities; Random House: New York, NY, USA, 1961. [Google Scholar]
- Wigginton, N.S.; Fahrenkamp-Uppenbrink, J.; Wible, B.; Malakoff, D. Cities are the future. Science 2016, 352, 904–905. [Google Scholar] [CrossRef] [Green Version]
- Levin, N.; Kyba, C.C.M.; Zhang, Q.; Sánchez De Miguel, A.; Román, M.O.; Li, X.; Portnov, B.A.; Molthan, A.L.; Jechow, A.; Miller, S.D.; et al. Remote sensing of night lights: A review and an outlook for the future. Remote Sens. Environ. 2020, 237, 111443. [Google Scholar] [CrossRef]
- Zheng, Q.; Weng, Q.; Huang, L.; Wang, K.; Deng, J.; Jiang, R.; Ye, Z.; Gan, M. A new source of multi-spectral high spatial resolution night-time light imagery-JL1-3B. Remote Sens. Environ. 2018, 215, 300–312. [Google Scholar] [CrossRef]
- Kuechly, H.U.; Kyba, C.C.M.; Ruhtz, T.; Lindemann, C.; Wolter, C.; Fischer, J.; Hoelker, F. Aerial survey and spatial analysis of sources of light pollution in Berlin, Germany. Remote Sens. Environ. 2012, 126, 39–50. [Google Scholar] [CrossRef]
- Sun, J.; Di, L.; Sun, Z.; Wang, J.; Wu, Y. Estimation of GDP using deep learning with NPP-VIIRS Imagery and land cover data at the county level in CONUS. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1400–1415. [Google Scholar] [CrossRef]
- Shi, K.; Chang, Z.; Chen, Z.; Wu, J.; Yu, B. Identifying and evaluating poverty using multisource remote sensing and point of interest (POI) data: A case study of Chongqing, China. J. Clean Prod. 2020, 255, 120245. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, B.; Hu, Y.; Huang, C.; Shi, K.; Wu, J. Estimating house vacancy rate in metropolitan areas using NPP-VIIRS nighttime light composite data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2188–2197. [Google Scholar] [CrossRef]
- Wang, C.; Chen, Z.; Yang, C.; Li, Q.; Wu, Q.; Wu, J.; Zhang, G.; Yu, B. Analyzing parcel-level relationships between Luojia 1-01 nighttime light intensity and artificial surface features across Shanghai, China: A comparison with NPP-VIIRS data. Int. J. Appl. Earth Obs. Geoinf. 2020, 85, 101989. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R. Mapping city lights with nighttime data from the DMSP Operational Linescan System. Photogramm. Eng. Remote Sens. 1997, 63, 727–734. [Google Scholar]
- Miller, S.D.; Mills, S.P.; Elvidge, C.D.; Lindsey, D.T.; Lee, T.F.; Hawkins, J.D. Suomi satellite brings to light a unique frontier of nighttime environmental sensing capabilities. Proc. Natl. Acad. Sci. USA 2012, 109, 15706–15711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Li, X.; Li, D.; He, X.; Jendryke, M. A preliminary investigation of Luojia-1 night-time light imagery. Remote Sens. Lett. 2019, 10, 526–535. [Google Scholar] [CrossRef]
- Jiang, W.; He, G.; Long, T.; Guo, H.; Yin, R.; Leng, W.; Liu, H.; Wang, G. Potentiality of using Luojia 1-01 nighttime light imagery to investigate artificial light pollution. Sensors 2018, 18, 2900. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Ge, L.; Chen, X. Quantifying contribution of land use types to nighttime light using an unmixing model. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1667–1671. [Google Scholar] [CrossRef]
- Ma, T. An Estimate of the pixel-level connection between Visible Infrared Imaging Radiometer Suite Day/Night Band (VIIRS DNB) nighttime lights and land features across China. Remote Sens. 2018, 10, 723. [Google Scholar] [CrossRef] [Green Version]
- Levin, N.; Zhang, Q. A global analysis of factors controlling VIIRS nighttime light levels from densely populated areas. Remote Sens. Environ. 2017, 190, 366–382. [Google Scholar] [CrossRef] [Green Version]
- Henderson, M.; Yeh, E.T.; Gong, P.; Elvidge, C.; Baugh, K. Validation of urban boundaries derived from global night-time satellite imagery. Int. J. Remote Sens. 2003, 24, 595–609. [Google Scholar] [CrossRef]
- Small, C.; Elvidge, C.D. Night on earth: Mapping decadal changes of anthropogenic night light in Asia. Int. J. Appl. Earth Obs. Geoinf. 2013, 22, 40–52. [Google Scholar] [CrossRef] [Green Version]
- Small, C.; Pozzi, F.; Elvidge, C.D. Spatial analysis of global urban extent from DMSP-OLS night lights. Remote Sens. Environ. 2005, 96, 277–291. [Google Scholar] [CrossRef]
- Levin, N. The impact of seasonal changes on observed nighttime brightness from 2014 to 2015 monthly VIIRS DNB composites. Remote Sens. Environ. 2017, 193, 150–164. [Google Scholar] [CrossRef]
- Abrahams, A.; Oram, C.; Lozano-Gracia, N. Deblurring DMSP nighttime lights: A new method using Gaussian filters and frequencies of illumination. Remote Sens. Environ. 2018, 210, 242–258. [Google Scholar] [CrossRef]
- Biggs, J.D.; Fouche, T.; Bilki, F.; Zadnik, M.G. Measuring and mapping the night sky brightness of Perth, Western Australia. Mon. Not. R. Astron. Soc. 2012, 421, 1450–1464. [Google Scholar] [CrossRef] [Green Version]
- Townsend, A.C.; Bruce, D.A. The use of night-time lights satellite imagery as a measure of Australia’s regional electricity consumption and population distribution. Int. J. Remote Sens. 2010, 31, 4459–4480. [Google Scholar] [CrossRef]
- Guk, E.; Levin, N. Analyzing spatial variability in night-time lights using a high spatial resolution color Jilin-1 image-Jerusalem as a case study. ISPRS-J. Photogramm. Remote Sens. 2020, 163, 121–136. [Google Scholar] [CrossRef]
- Bennett, M.M.; Smith, L.C. Advances in using multitemporal night-time lights satellite imagery to detect, estimate, and monitor socioeconomic dynamics. Remote Sens. Environ. 2017, 192, 176–197. [Google Scholar] [CrossRef]
- Zheng, Q.; Weng, Q.; Wang, K. Correcting the Pixel Blooming Effect (PiBE) of DMSP-OLS nighttime light imagery. Remote Sens. Environ. 2020, 240, 111707. [Google Scholar] [CrossRef]
- Liu, M.; Ma, J.; Zhou, R.; Li, C.L.; Li, D.K.; Hu, Y.M. High-resolution mapping of mainland China’s urban floor area. Landsc. Urban Plan. 2021, 214, 104187. [Google Scholar] [CrossRef]
- Ou, J.; Liu, X.; Liu, P.; Liu, X. Evaluation of Luojia 1-01 nighttime light imagery for impervious surface detection: A comparison with NPP-VIIRS nighttime light data. Int. J. Appl. Earth Obs. Geoinf. 2019, 81, 1–12. [Google Scholar] [CrossRef]
- Zhang, G.; Guo, X.; Li, D.; Jiang, B. Evaluating the potential of LJ1-01 nighttime light data for modeling socio-economic parameters. Sensors 2019, 19, 1465. [Google Scholar] [CrossRef] [Green Version]
- Yin, Z.; Li, X.; Tong, F.; Li, Z.; Jendryke, M. Mapping urban expansion using night-time light images from Luojia1-01 and international space station. Int. J. Remote Sens. 2020, 41, 2603–2623. [Google Scholar] [CrossRef]
- Li, X.; Zhao, L.; Li, D.; Xu, H. Mapping urban extent using Luojia 1-01 nighttime light imagery. Sensors 2018, 18, 3665. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Hu, Y.; Zhu, X.; Shi, F.; Zhuo, L.; Chen, J. A simple self-adjusting model for correcting the blooming effects in DMSP-OLS nighttime light images. Remote Sens. Environ. 2019, 224, 401–411. [Google Scholar] [CrossRef]
- Hendry, D.F. Dynamic Econometrics; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Cox, D.T.C.; Sánchez De Miguel, A.; Dzurjak, S.A.; Bennie, J.; Gaston, K.J. National scale spatial variation in artificial light at night. Remote Sens. 2020, 12, 1591. [Google Scholar] [CrossRef]
- Anselin, L. Spatial Econometrics: Methods and Models; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Manski, C.F. Identification of endogenous social effects: The reflection problem. Rev. Econ. Stud. 1993, 60, 531–542. [Google Scholar] [CrossRef] [Green Version]
- LeSage, J.; Pace, R.K. Introduction to Spatial Econometrics; Chapman and Hall/CRC Press: New York, NY, USA, 2009. [Google Scholar]
- Cliff, A.; Ord, J.K. Testing for spatial autocorrelation among regression residuals. Geogr. Anal. 1972, 4, 267–284. [Google Scholar] [CrossRef]
- Anselin, L.; Bera, A.K.; Florax, R.; Yoon, M.J. Simple diagnostic tests for spatial dependence. Reg. Sci. Urban Econ. 1996, 26, 77–104. [Google Scholar] [CrossRef]
- Elhorst, J.P. Spatial Econometrics: From Cross-Sectional Data to Spatial Panels; Springer: Berlin, Germany, 2014. [Google Scholar]
- Levin, N.; Johansen, K.; Hacker, J.M.; Phinn, S. A new source for high spatial resolution night time images-The EROS-B commercial satellite. Remote Sens. Environ. 2014, 149, 1–12. [Google Scholar] [CrossRef]
- Li, X.; Levin, N.; Xie, J.; Li, D. Monitoring hourly night-time light by an unmanned aerial vehicle and its implications to satellite remote sensing. Remote Sens. Environ. 2020, 247, 111942. [Google Scholar] [CrossRef]
- Li, X.; Ma, R.; Zhang, Q.; Li, D.; Liu, S.; He, T.; Zhao, L. Anisotropic characteristic of artificial light at night–systematic investigation with VIIRS DNB multi-temporal observations. Remote Sens. Environ. 2019, 233, 111357. [Google Scholar] [CrossRef]
- Stakhovych, S.; Bijmolt, T.H.A. Specification of spatial models: A simulation study on weights matrices. Pap. Reg. Sci. 2009, 88, 389–408. [Google Scholar] [CrossRef]
Sensor | DMSP/OLS | VIIRS/DNB | Luojia 1-01 |
---|---|---|---|
Temporal resolution | Global coverage can be obtained every 24 h | Daily images can be downloaded | 15 day revisit time |
Spectral band | 500–900 nm | 500–900 nm | 460–980 nm |
Quantization | 6 bits | 14 bits | 14 bits |
Spatial resolution | 3000 m | 740 m | 130 m |
Time span | 1992–2013 | 2011–present | 2018–2019 |
Model | Moran’s I | Ajusted-R2 | LM-Lag | Robust LM-Lag | LM-Error | Robust LM-Error |
---|---|---|---|---|---|---|
OLS | 0.685 ** | 0.45 | 35,769.6 ** | 6056.5 ** | 29,760.4 ** | 47.3 ** |
SLX | 0.732 ** | 0.56 | 35,485.9 ** | 1812.1 ** | 34,049.1 ** | 375.3 ** |
Model | Wald Test | LR Test | LM Test |
---|---|---|---|
SLM | 206,437.6 ** | 49,988.9 ** | 35,769.6 ** |
SDM | 150,180.3 ** | 43,034.5 ** | 35,485.9 ** |
Model | Moran’s I | Pearson Correlation (Squared) | R2 | Log Likelihood | AIC |
---|---|---|---|---|---|
OLS | 0.685 ** | 0.674 (0.454 #) | 0.454 | −35,838.7 | 71,701.4 |
SEM | −0.013 ** | 0.618 (0.382 #) | 0.914 | −11,889.8 | 23,803.7 |
SLM | −0.002 * | 0.769 (0.592 #) | 0.915 | −10,844.2 | 21,714.5 |
SLX | 0.732 ** | 0.751 (0.564 #) | 0.563 | −32,236.2 | 64,518.3 |
SDEM | −0.016 ** | 0.736 (0.542 #) | 0.915 | −11,139.9 | 22,326.1 |
SDM | 0.014 ** | 0.774 (0.600 #) | 0.915 | −10,718.9 | 21,485.8 |
Urban Surface Features | Total Effect | Direct Effect | Indirect Effect |
---|---|---|---|
Residential | −0.137 ** | −0.011 ** (7.8%) # | −0.127 * (92.2%) # |
Commercial | 0.098 *** | 0.023 *** (23.4%) | 0.075 ** (76.6%) |
Industrial | −0.073 * | −0.005 (7.0%) | −0.068 * (93.0%) |
Transportation facilities | 0.299 *** | 0.025 *** (8.5%) | 0.273 *** (91.5%) |
Road1 | 0.508 *** | 0.061 *** (12.0%) | 0.447 *** (88.0%) |
Road2 | 0.662 *** | 0.059 *** (9.0%) | 0.603 *** (91.0%) |
Road3 | 0.567 *** | 0.057 *** (10.1%) | 0.510 *** (89.9%) |
Road4 | 0.285 *** | 0.035 *** (12.4%) | 0.250 *** (87.6%) |
Road5 | 0.184 *** | 0.024 *** (13.2%) | 0.160 *** (86.8%) |
Water | −0.879 *** | −0.078 *** (8.9%) | −0.800 *** (91.1%) |
Vegetation | −0.958 *** | −0.077 *** (8.0%) | −0.881 *** (92.0%) |
Order | Marginal Direct Effect | Cumulative Percent | Marginal Indirect Effect | Cumulative Percent |
---|---|---|---|---|
W0 | 0.0278 | 46.8% | 0.0355 | 5.9% |
W1 | 0.0081 | 60.5% | 0.0490 | 14.0% |
W2 | 0.0057 | 70.0% | 0.0460 | 21.7% |
W3 | 0.0038 | 76.4% | 0.0427 | 28.8% |
W4 | 0.0026 | 80.8% | 0.0397 | 35.3% |
W5 | 0.0021 | 84.4% | 0.0359 | 41.3% |
W6 | 0.0016 | 87.0% | 0.0328 | 46.7% |
W7 | 0.0013 | 89.2% | 0.0297 | 51.7% |
W8 | 0.0010 | 90.9% | 0.0274 | 56.2% |
W9…W23 | …… | …… | …… | …… |
W24 | …… | …… | 0.0060 | 90.8% |
Cumulative | 0.0594 | 100.00% | 0.6030 | 100.00% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Zhang, Z.; Yang, X.; Li, X. Analyzing Pixel-Level Relationships between Luojia 1-01 Nighttime Light and Urban Surface Features by Separating the Pixel Blooming Effect. Remote Sens. 2021, 13, 4838. https://doi.org/10.3390/rs13234838
Wu J, Zhang Z, Yang X, Li X. Analyzing Pixel-Level Relationships between Luojia 1-01 Nighttime Light and Urban Surface Features by Separating the Pixel Blooming Effect. Remote Sensing. 2021; 13(23):4838. https://doi.org/10.3390/rs13234838
Chicago/Turabian StyleWu, Ji, Zhi Zhang, Xiao Yang, and Xi Li. 2021. "Analyzing Pixel-Level Relationships between Luojia 1-01 Nighttime Light and Urban Surface Features by Separating the Pixel Blooming Effect" Remote Sensing 13, no. 23: 4838. https://doi.org/10.3390/rs13234838
APA StyleWu, J., Zhang, Z., Yang, X., & Li, X. (2021). Analyzing Pixel-Level Relationships between Luojia 1-01 Nighttime Light and Urban Surface Features by Separating the Pixel Blooming Effect. Remote Sensing, 13(23), 4838. https://doi.org/10.3390/rs13234838