A Review of Quantifying pCO2 in Inland Waters with a Global Perspective: Challenges and Prospects of Implementing Remote Sensing Technology
Abstract
:1. Introduction
2. General Background and Motivation of pCO2 Remote Sensing
2.1. Spatio-Temporal Variability of pCO2 in Inland Waters
2.2. The Current State of CO2 Fluxes in Inland Waters
3. Studies on Remote Sensing of pCO2
3.1. Remote Sensing Estimating pCO2 in Marine and Coastal Waters
3.2. Remote Sensing of pCO2 and CO2 Fluxes for Inland Waters
4. Challenges and Limitations of pCO2 Remote Sensing Algorithms
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cole, J.J.; Prairie, Y.T.; Caraco, N.F.; McDowell, W.H.; Tranvik, L.J.; Striegl, R.G.; Duarte, C.M.; Kortelainen, P.; Downing, J.A.; Middelburg, J.J.; et al. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems 2007, 10, 171–184. [Google Scholar] [CrossRef] [Green Version]
- Meybeck, M.; Vörösmarty, C. Global transfer of carbon by rivers. Glob. Chang. News 1999, 37, 18–19. [Google Scholar]
- Raymond, P.A.; Hartmann, J.; Lauerwald, R.; Sobek, S.; McDonald, C.; Hoover, M.; Butman, D.; Striegl, R.; Mayorga, E.; Humborg, C.; et al. Global carbon dioxide emissions from inland waters. Nature 2013, 503, 355–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tranvik, L.J.; Cole, J.J.; Prairie, Y.T. The study of carbon in inland waters-from isolated ecosystems to players in the global carbon cycle. Limnol. Oceanogr. Lett. 2018, 3, 41–48. [Google Scholar] [CrossRef]
- IPCC. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; pp. 1–151. [Google Scholar]
- Yan, X.; Ma, J.; Li, Z.; Ji, M.; Xu, J.; Xu, X.; Wang, G.; Li, Y. CO2 dynamic of Lake Donghu highlights the need for long-term monitoring. Environ. Sci. Pollut. Res. Int. 2020, 28, 10967–10976. [Google Scholar] [CrossRef]
- Bogard, M.J.; del Giorgio, P.A. The role of metabolism in modulating CO2 fluxes in boreal lakes. Glob. Biogeochem. Cycles 2016, 30, 1509–1525. [Google Scholar] [CrossRef]
- Chmiel, H.E.; Hofmann, H.; Sobek, S.; Efremova, T.; Pasche, N. Where does the river end? Drivers of spatiotemporal variability in CO2 concentration and flux in the inflow area of a large boreal lake. Limnol. Oceanogr. 2020, 65, 1161–1174. [Google Scholar] [CrossRef]
- Raymond, P.A.; Oh, N.-H.; Turner, R.E.; Broussard, W. Anthropogenically enhanced fluxes of water and carbon from the Mississippi River. Nature 2008, 451, 449–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ran, L.; Butman, D.E.; Battin, T.J.; Yang, X.; Tian, M.; Duvert, C.; Hartmann, J.; Geeraert, N.; Liu, S. Substantial decrease in CO2 emissions from Chinese inland waters due to global change. Nat. Commun. 2021, 12, 1730. [Google Scholar] [CrossRef]
- Li, S.; Bush, R.T.; Santos, I.R.; Zhang, Q.; Song, K.; Mao, R.; Wen, Z.; Lu, X.X. Large greenhouse gases emissions from China’s lakes and reservoirs. Water Res. 2018, 147, 13–24. [Google Scholar] [CrossRef]
- Hastie, A.; Lauerwald, R.; Weyhenmeyer, G.; Sobek, S.; Verpoorter, C.; Regnier, P. CO2 evasion from boreal lakes: Revised estimate, drivers of spatial variability, and future projections. Glob. Change Biol. 2018, 24, 711–728. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Meng, X.; Yang, Q.; Wu, R.; Lv, S.; Li, Z.; Wang, X.; Li, Y.; Yu, L. Connections Between Daily Surface Temperature Contrast and CO2 Flux Over a Tibetan Lake: A Case Study of Ngoring Lake. J. Geophys. Res.-Atmos. 2020, 125, e2019JD032277. [Google Scholar] [CrossRef]
- Xu, Y.J.; Xu, Z.; Yang, R. Rapid daily change in surface water pCO2 and CO2 evasion: A case study in a subtropical eutrophic lake in Southern USA. J. Hydrol. 2019, 570, 486–494. [Google Scholar] [CrossRef]
- Yang, R.; Xu, Z.; Liu, S.; Xu, Y.J. Daily pCO(2) and CO2 flux variations in a subtropical mesotrophic shallow lake. Water Res. 2019, 153, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Ngochera, M.J.; Bootsma, H.A. Spatial and temporal dynamics of pCO(2) and CO2 flux in tropical Lake Malawi. Limnol. Oceanogr. 2020, 65, 1594–1607. [Google Scholar] [CrossRef] [Green Version]
- Sobek, S.; Algesten, G.; Bergstrom, A.K.; Jansson, M.; Tranvik, L.J. The catchment and climate regulation of pCO(2) in boreal lakes. Glob. Chang. Biol. 2003, 9, 630–641. [Google Scholar] [CrossRef]
- Jones, S.E.; Kratz, T.K.; Chiu, C.-Y.; McMahon, K.D. Influence of typhoons on annual CO2 flux from a subtropical, humic lake. Glob. Chang. Biol. 2009, 15, 243–254. [Google Scholar] [CrossRef]
- Marce, R.; Obrador, B.; Morgui, J.-A.; Lluis Riera, J.; Lopez, P.; Armengol, J. Carbonate weathering as a driver of CO2 supersaturation in lakes. Nat. Geosci. 2015, 8, 107–111. [Google Scholar] [CrossRef]
- DelSontro, T.; Beaulieu, J.J.; Downing, J.A. Greenhouse gas emissions from lakes and impoundments: Upscaling in the face of global change. Limnol. Oceanogr. Lett. 2018, 3, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Qi, T.; Xiao, Q.; Cao, Z.; Shen, M.; Ma, J.; Liu, D.; Duan, H. Satellite Estimation of Dissolved Carbon Dioxide Concentrations in China’s Lake Taihu. Environ. Sci. Technol. 2020, 54, 13709–13718. [Google Scholar] [CrossRef]
- Frankignoulle, M.; Borges, A.; Biondo, R. A new design of equilibrator to monitor carbon dioxide in highly dynamic and turbid environments. Water Res. 2001, 35, 1344–1347. [Google Scholar] [CrossRef] [Green Version]
- Abril, G.; Richard, S.; Guerin, F. In situ measurements of dissolved gases (CO2 and CH4) in a wide range of concentrations in a tropical reservoir using an equilibrator. Sci. Total Environ. 2006, 354, 246–251. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, C.; Ning, C.; Pang, Y. Intercomparison Study of Seawater pCO2 Measuring Instruments. Periodical Ocean Univ. China 2015, 45, 80–86. [Google Scholar]
- Reiman, J.H.; Xu, Y.J. Dissolved carbon export and CO2 outgassing from the lower Mississippi River—Implications of future river carbon fluxes. J. Hydrol. 2019, 578, 124093. [Google Scholar] [CrossRef]
- Wen, Z.; Song, K.; Shang, Y.; Fang, C.; Li, L.; Lv, L.; Lv, X.; Chen, L. Carbon dioxide emissions from lakes and reservoirs of China: A regional estimate based on the calculated pCO2. Atmos. Environ. 2017, 170, 71–81. [Google Scholar] [CrossRef]
- Wen, Z.; Song, K.; Zhao, Y.; Jin, X. Carbon dioxide and methane supersaturation in lakes of semi-humid/semi-arid region, Northeastern China. Atmos. Environ. 2016, 138, 65–73. [Google Scholar] [CrossRef]
- Atilla, N.; McKinley, G.A.; Bennington, V.; Baehr, M.; Urban, N.; DeGrandpre, M.; Desai, A.R.; Wu, C. Observed variability of Lake Superior pCO(2). Limnol. Oceanogr. 2011, 56, 775–786. [Google Scholar] [CrossRef]
- Yamamoto, K.; Sayama, T.; Apip. Impact of climate change on flood inundation in a tropical river basin in Indonesia. Prog. Earth Planet. Sci. 2021, 8, 5. [Google Scholar] [CrossRef]
- Saurav, K.C.; Shrestha, S.; Ninsawat, S.; Chonwattana, S. Predicting flood events in Kathmandu Metropolitan City under climate change and urbanisation. J. Environ. Manag. 2021, 281, 111894. [Google Scholar] [CrossRef]
- Takagaki, N.; Komori, S. Effects of rainfall on mass transfer across the air-water interface. J. Geophys. Res.-Ocean. 2007, 112. [Google Scholar] [CrossRef]
- Macklin, P.A.; Suryaputra, I.G.N.A.; Maher, D.T.; Sidik, F.; Santos, I.R. Carbon dioxide dynamics in a tropical estuary over seasonal and rain-event time scales. Cont. Shelf Res. 2020, 206, 104196. [Google Scholar] [CrossRef]
- Han, G.; Chu, X.; Xing, Q.; Li, D.; Yu, J.; Luo, Y.; Wang, G.; Mao, P.; Rafique, R. Effects of episodic flooding on the net ecosystem CO2 exchange of a supratidal wetland in the Yellow River Delta. J. Geophys. Res.-Biogeosci. 2015, 120, 1506–1520. [Google Scholar] [CrossRef] [Green Version]
- Lees, K.J.; Quaife, T.; Artz, R.R.E.; Khomik, M.; Clark, J.M. Potential for using remote sensing to estimate carbon fluxes across northern peatlands—A review. Sci. Total Environ. 2018, 615, 857–874. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Hu, L.; Chen, Z.; Zhang, F.; Shi, Z.; Hu, B.; Du, Z.; Liu, R. Estimating spatial and temporal variation in ocean surface pCO2 in the Gulf of Mexico using remote sensing and machine learning techniques. Sci. Total Environ. 2020, 745, 140965. [Google Scholar] [CrossRef]
- Lafont, S.; Kergoat, L.; Dedieu, G.; Chevillard, A.; Karstens, U.; Kolle, O. Spatial and temporal variability of land CO2 fluxes estimated with remote sensing and analysis data over western Eurasia. Tellus Ser. B-Chem. Phys. Meteorol. 2002, 54, 820–833. [Google Scholar] [CrossRef]
- Else, B.G.T.; Yackel, J.J.; Papakyriakou, T.N. Application of satellite remote sensing techniques for estimating air-sea CO2 fluxes in Hudson Bay, Canada during the ice-free season. Remote Sens. Environ. 2008, 112, 3550–3562. [Google Scholar] [CrossRef]
- Song, X.; Bai, Y.; Cai, W.-J.; Chen, C.-T.A.; Pan, D.; He, X.; Zhu, Q. Remote Sensing of Sea Surface pCO(2) in the Bering Sea in Summer Based on a Mechanistic Semi-Analytical Algorithm (MeSAA). Remote Sens. 2016, 8, 558. [Google Scholar] [CrossRef] [Green Version]
- Kutser, T.; Verpoorter, C.; Paavel, B.; Tranvik, L.J. Estimating lake carbon fractions from remote sensing data. Remote Sens. Environ. 2015, 157, 138–146. [Google Scholar] [CrossRef]
- Valerio, A.d.M.; Kampel, M.; Vantrepotte, V.; Ward, N.D.; Sawakuchi, H.O.; Da Silva Less, D.F.; Neu, V.; Cunha, A.; Richey, J. Using CDOM optical properties for estimating DOC concentrations and pCO(2) in the Lower Amazon River. Opt. Express 2018, 26, A657–A677. [Google Scholar] [CrossRef] [Green Version]
- Tranvik, L.J.; Downing, J.A.; Cotner, J.B.; Loiselle, S.A.; Striegl, R.G.; Ballatore, T.J.; Dillon, P.; Finlay, K.; Fortino, K.; Knoll, L.B.; et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr. 2009, 54, 2298–2314. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhang, Q.; Bush, R.T.; Sullivan, L.A. Methane and CO2 emissions from China’s hydroelectric reservoirs: A new quantitative synthesis. Environ. Sci. Pollut. Res. 2015, 22, 5325–5339. [Google Scholar] [CrossRef]
- Lauerwald, R.; Laruelle, G.G.; Hartmann, J.; Ciais, P.; Regnier, P.A.G. Spatial patterns in CO2 evasion from the global river network. Glob. Biogeochem. Cycles 2015, 29, 534–554. [Google Scholar] [CrossRef] [Green Version]
- Morales-Pineda, M.; Cozar, A.; Laiz, I.; Ubeda, B.; Galvez, J.A. Daily, biweekly, and seasonal temporal scales of pCO(2) variability in two stratified Mediterranean reservoirs. J. Geophys. Res.-Biogeosci. 2014, 119, 509–520. [Google Scholar] [CrossRef]
- Jonsson, A.; Aberg, J.; Jansson, M. Variations in pCO(2) during summer in the surface water of an unproductive lake in northern Sweden. Tellus Ser. B-Chem. Phys. Meteorol. 2007, 59, 797–803. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, Z.; Shao, C.; Chu, H.; Becker, R.; Bridgeman, T.; Stepien, C.A.; John, R.; Chen, J. The Effect of Algal Blooms on Carbon Emissions in Western Lake Erie: An Integration of Remote Sensing and Eddy Covariance Measurements. Remote Sens. 2017, 9, 44. [Google Scholar] [CrossRef]
- Yan, X.; Xu, X.; Wang, M.; Wang, G.; Wu, S.; Li, Z.; Sun, H.; Shi, A.; Yang, Y. Climate warming and cyanobacteria blooms: Looks at their relationships from a new perspective. Water Res. 2017, 125, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Huttunen, J.T.; Alm, J.; Liikanen, A.; Juutinen, S.; Larmola, T.; Hammar, T.; Silvola, J.; Martikainen, P.J. Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions. Chemosphere 2003, 52, 609–621. [Google Scholar] [CrossRef]
- Hanson, P.C.; Pollard, A.I.; Bade, D.L.; Predick, K.; Carpenter, S.R.; Foley, J.A. A model of carbon evasion and sedimentation in temperate lakes. Glob. Chang. Biol. 2004, 10, 1285–1298. [Google Scholar] [CrossRef]
- Zavoruev, V.V.; Domysheva, V.M.; Pestunov, D.A.; Sakirko, M.V.; Panchenko, M.V. Daily Course of CO2 Fluxes in the Atmosphere-Water System and Variable Fluorescence of Phytoplankton during the Open-Water Period for Lake Baikal according to Long-Term Measurements. Dokl. Earth Sci. 2018, 479, 507–510. [Google Scholar] [CrossRef]
- Yang, L.-B.; Li, X.-Y.; Yan, W.-J.; Ma, P.; Wang, J.-N. CH4 Concentrations and Emissions from Three Rivers in the Chaohu Lake Watershed in Southeast China. J. Integr. Agric. 2012, 11, 665–673. [Google Scholar] [CrossRef]
- Manaka, T.; Ushie, H.; Araoka, D.; Otani, S.; Inamura, A.; Suzuki, A.; Hossain, H.M.Z.; Kawahata, H. Spatial and Seasonal Variation in Surface Water pCO(2) in the Ganges, Brahmaputra, and Meghna Rivers on the Indian Subcontinent. Aquat. Geochem. 2015, 21, 437–458. [Google Scholar] [CrossRef]
- Wen, Z.; Song, K.; Zhao, Y.; Shao, T.; Li, S. Seasonal Variability of Greenhouse Gas Emissions in the Urban Lakes in Changchun, China. Environ. Sci. 2016, 37, 102–111. [Google Scholar]
- Lu, L.-C.; Liu, C.Q.; Wang, S.L.; Xu, G.; Liu, F. Seasonal Variability of p(CO2)in the Two Karst Reservoirs,Hongfeng and Baihua Lakes in Guizhou Province, China. Environ. Sci. 2007, 28, 2674–2681. [Google Scholar]
- Cole, J.J.; Pace, M.L.; Carpenter, S.R.; Kitchell, J.F. Persistence of net heterotrophy in lakes during nutrient addition and food web manipulations. Limnol. Oceanogr. 2000, 45, 1718–1730. [Google Scholar] [CrossRef] [Green Version]
- Schindler, D.W.; Broecker, W.S.; Brunskill, G.J.; Peng, T.H.; Emerson, S. Atmospheric carbon dioxide: Its role in maintaining phytoplankton standing crops. Science 1972, 177, 1192. [Google Scholar] [CrossRef] [PubMed]
- Denfeld, B.A.; Kortelainen, P.; Rantakari, M.; Sobek, S.; Weyhenmeyer, G.A. Regional Variability and Drivers of Below Ice CO2 in Boreal and Subarctic Lakes. Ecosystems 2016, 19, 461–476. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, J.; Giesler, R.; Persson, J.; Lundin, E. High emission of carbon dioxide and methane during ice thaw in high latitude lakes. Geophys. Res. Lett. 2013, 40, 1123–1127. [Google Scholar] [CrossRef]
- Zhai, W.; Dai, M. On the seasonal variation of air-sea CO2 fluxes in the outer Changjiang (Yangtze River) Estuary, East China Sea. Mar. Chem. 2009, 117, 2–10. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Luo, J.; Wu, D.; Xu, Y.J. Carbon and nutrients as indictors of daily fluctuations of pCO(2) and CO2 flux in a river draining a rapidly urbanizing area. Ecol. Indic. 2019, 109, 105821. [Google Scholar] [CrossRef]
- St Louis, V.L.; Kelly, C.A.; Duchemin, E.; Rudd, J.W.M.; Rosenberg, D.M. Reservoir surfaces as sources of greenhouse gases to the atmosphere: A Global estimate. Bioscience 2000, 50, 766–775. [Google Scholar] [CrossRef]
- Sobek, S.; Tranvik, L.J.; Cole, J.J. Temperature independence of carbon dioxide supersaturation in global lakes. Glob. Biogeochem. Cycles 2005, 19, 208. [Google Scholar] [CrossRef]
- Roland, F.; Vidal, L.O.; Pacheco, F.S.; Barros, N.O.; Assireu, A.; Ometto, J.P.H.B.; Cimbleris, A.C.P.; Cole, J.J. Variability of carbon dioxide flux from tropical (Cerrado) hydroelectric reservoirs. Aquat. Sci. 2010, 72, 283–293. [Google Scholar] [CrossRef] [Green Version]
- Aufdenkampe, A.K.; Mayorga, E.; Raymond, P.A.; Melack, J.M.; Doney, S.C.; Alin, S.R.; Aalto, R.E.; Yoo, K. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front. Ecol. Environ. 2011, 9, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Barros, N.; Cole, J.J.; Tranvik, L.J.; Prairie, Y.T.; Bastviken, D.; Huszar, V.L.M.; del Giorgio, P.; Roland, F. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nat. Geosci. 2011, 4, 593–596. [Google Scholar] [CrossRef]
- Hutchins, R.H.S.; Prairie, Y.T.; del Giorgio, P.A. Large-Scale Landscape Drivers of CO2, CH4, DOC, and DIC in Boreal River Networks. Glob. Biogeochem. Cycles 2019, 33, 125–142. [Google Scholar] [CrossRef]
- Downing, J.A. Global limnology: Up-scaling aquatic services and processes to planet Earth. Verh. Intern. Ver. Limnol. 2009, 30, 1149–1166. [Google Scholar] [CrossRef]
- Lehner, B.; Doll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 2004, 296, 1–22. [Google Scholar] [CrossRef]
- Lazzarino, J.K.; Bachmann, R.W.; Hoyer, M.V.; Canfield, D.E., Jr. Carbon dioxide supersaturation in Florida lakes. Hydrobiologia 2009, 627, 169–180. [Google Scholar] [CrossRef]
- Kortelainen, P.; Rantakari, M.; Huttunen, J.T.; Mattsson, T.; Alm, J.; Juutinen, S.; Larmola, T.; Silvola, J.; Martikainen, P.J. Sediment respiration and lake trophic state are important predictors of large CO2 evasion from small boreal lakes. Glob. Change Biol. 2006, 12, 1554–1567. [Google Scholar] [CrossRef]
- Duarte, C.M.; Prairie, Y.T.; Montes, C.; Cole, J.J.; Striegl, R.; Melack, J.; Downing, J.A. CO2 emissions from saline lakes: A global estimate of a surprisingly large flux. J. Geophys. Res.-Biogeosci. 2008, 113, 80. [Google Scholar] [CrossRef] [Green Version]
- Selvam, B.P.; Natchimuthu, S.; Arunachalam, L.; Bastviken, D. Methane and carbon dioxide emissions from inland waters in India—implications for large scale greenhouse gas balances. Glob. Chang. Biol. 2014, 20, 3397–3407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saidi, H.; Koschorreck, M. CO2 emissions from German drinking water reservoirs. Sci. Total Environ. 2017, 581, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Richey, J.E.; Melack, J.M.; Aufdenkampe, A.K.; Ballester, V.M.; Hess, L.L. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 2002, 416, 617–620. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.S.; Lehmann, J.; Riha, S.J.; Krusche, A.V.; Richey, J.E.; Ometto, J.P.H.B.; Couto, E.G. CO2 efflux from Amazonian headwater streams represents a significant fate for deep soil respiration. Geophys. Res. Lett. 2008, 35, 141. [Google Scholar] [CrossRef]
- Butman, D.; Raymond, P.A. Significant efflux of carbon dioxide from streams and rivers in the United States. Nat. Geosci. 2011, 4, 839–842. [Google Scholar] [CrossRef]
- Borges, A.V.; Darchambeau, F.; Teodoru, C.R.; Marwick, T.R.; Tamooh, F.; Geeraert, N.; Omengo, F.O.; Guérin, F.; Lambert, T.; Morana, C.; et al. Globally significant greenhouse-gas emissions from African inland waters. Nat. Geosci. 2015, 8, 637–642. [Google Scholar] [CrossRef] [Green Version]
- Holgerson, M.A.; Raymond, P.A. Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nat. Geosci. 2016, 9, 222–226. [Google Scholar] [CrossRef]
- Mallast, U.; Staniek, M.; Koschorreck, M. Spatial upscaling of CO(2) emissions from exposed river sediments of the Elbe River during an extreme drought. Ecohydrology 2020, 13, e2216. [Google Scholar] [CrossRef]
- Jin, H.; Yoon, T.K.; Lee, S.H.; Kang, H.; Im, J.; Park, J.H. Enhanced greenhouse gas emission from exposed sediments along a hydroelectric reservoir during an extreme drought event. Environ. Res. Lett. 2016, 11, 124003. [Google Scholar] [CrossRef] [Green Version]
- Alkezweeny, A.J. Aircraft measurements of CO2, O−3, water vapor, aerosol fluxes and, turbulence over Lake Michigan. Atmosfera 1996, 9, 137–145. [Google Scholar]
- Sawakuchi, H.O.; Neu, V.; Ward, N.D.; Barros, M.d.L.C.; Valerio, A.M.; Gagne-Maynard, W.; Cunha, A.C.; Less, D.F.S.; Diniz, J.E.M.; Brito, D.C.; et al. Carbon Dioxide Emissions along the Lower Amazon River. Front. Mar. Sci. 2017, 4, 76. [Google Scholar] [CrossRef] [Green Version]
- Duarte, C.M.; Prairie, Y.T. Prevalence of heterotrophy and atmospheric CO2 emissions from aquatic ecosystems. Ecosystems 2005, 8, 862–870. [Google Scholar] [CrossRef]
- Andrade, C.; Cruz, J.V.; Viveiros, F.; Coutinho, R. Diffuse CO2 emissions from Sete Cidades volcanic lake (Sao Miguel Island, Azores): Influence of eutrophication processes. Environ. Pollut. 2020, 268, 115624. [Google Scholar] [CrossRef] [PubMed]
- Finlay, K.; Vogt, R.J.; Bogard, M.J.; Wissel, B.; Tutolo, B.M.; Simpson, G.L.; Leavitt, P.R. Decrease in CO2 efflux from northern hardwater lakes with increasing atmospheric warming. Nature 2015, 519, 215–218. [Google Scholar] [CrossRef] [PubMed]
- Li, M.L.; Chen, K.L. CO2 Flux from Qinghai Lake Alpine Wetland Ecosystems on Short-Term Warming and Nitrogen Response; In Proceedings of the International Conference on Energy, Environment and Chemical Engineering (ICEECE 2015). Bangkok, Thailand, 25–26 October 2015; pp. 64–67. [Google Scholar]
- Yan, X.; Wu, S.; Xu, J.; Xu, X.; Wang, G. Parallelism of Nutrients and CO(2) Dynamics: Evidence Based on Long-Term Data in Taihu Lake. Bull. Environ. Contam. Toxicol. 2020, 105, 742–749. [Google Scholar] [CrossRef]
- Kosten, S.; Roland, F.; Da Motta Marques, D.M.L.; Van Nes, E.H.; Mazzeo, N.; Sternberg, L.d.S.L.; Scheffer, M.; Cole, J.J. Climate-dependent CO2 emissions from lakes. Glob. Biogeochem. Cycles 2010, 24, 91. [Google Scholar] [CrossRef]
- Bellido, J.L.; Tulonen, T.; Kankaala, P.; Ojala, A. CO2 and CH4 fluxes during spring and autumn mixing periods in a boreal lake (Paajarvi, southern Finland). J. Geophys. Res.-Biogeosci. 2009, 114, 48. [Google Scholar] [CrossRef]
- Finlay, K.; Leavitt, P.R.; Wissel, B.; Prairie, Y.T. Regulation of spatial and temporal variability of carbon flux in six hard-water lakes of the northern Great Plains. Limnol. Oceanogr. 2009, 54, 2553–2564. [Google Scholar] [CrossRef]
- Xiao, Q.T.; Duan, H.T.; Qi, T.C.; Hu, Z.H.; Liu, S.D.; Zhang, M.; Lee, X. Environmental investments decreased partial pressure of CO2 in a small eutrophic urban lake: Evidence from long-term measurements. Environ. Pollut. 2020, 263, 114433. [Google Scholar] [CrossRef]
- Chen, S.; Hu, C.; Byrne, R.H.; Robbins, L.L.; Yang, B. Remote estimation of surface pCO(2) on the West Florida Shelf. Cont. Shelf Res. 2016, 128, 10–25. [Google Scholar] [CrossRef] [Green Version]
- Olsen, A.; Trinanes, J.A.; Wanninkhof, R. Sea-air flux of CO2 in the Caribbean Sea estimated using in situ and remote sensing data. Remote Sens. Environ. 2004, 89, 309–325. [Google Scholar] [CrossRef]
- Huang, W.-J.; Cai, W.-J.; Castelao, R.M.; Wang, Y.; Lohrenz, S.E. Effects of a wind-driven cross-shelf large river plume on biological production and CO2 uptake on the Gulf of Mexico during spring. Limnol. Oceanogr. 2013, 58, 1727–1735. [Google Scholar] [CrossRef]
- Robbins, L.L.; Daly, K.L.; Barbero, L.; Wanninkhof, R.; He, R.; Zong, H.; Lisle, J.T.; Cai, W.J.; Smith, C.G. Spatial and Temporal Variability of pCO(2), Carbon Fluxes, and Saturation State on the West Florida Shelf. J. Geophys. Res.-Ocean. 2018, 123, 6174–6188. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Hu, C.; Cai, W.-J.; Yang, B. Estimating surface pCO(2) in the northern Gulf of Mexico: Which remote sensing model to use? Cont. Shelf Res. 2017, 151, 94–110. [Google Scholar] [CrossRef]
- Chen, S.; Hu, C.; Barnes, B.B.; Wanninkhof, R.; Cai, W.-J.; Barbero, L.; Pierrot, D. A machine learning approach to estimate surface ocean pCO2 from satellite measurements. Remote Sens. Environ. 2019, 228, 203–226. [Google Scholar] [CrossRef]
- Lu, H.; Bai, Y.; Chen, X.; Gong, F.; Zhu, Q.; Wang, D. Satellite remote sensing of the aquatic pCO(2) in the basin of the South China Sea. In Proceedings of the Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2017, Warsaw, Poland, 11–14 September 2017; Volume 10422. [Google Scholar] [CrossRef]
- Bai, Y.; Cai, W.-J.; He, X.; Zhai, W.; Pan, D.; Dai, M.; Yu, P. A mechanistic semi-analytical method for remotely sensing sea surface pCO2 in river-dominated coastal oceans: A case study from the East China Sea. J. Geophys. Res. Ocean. 2015, 120, 2331–2349. [Google Scholar] [CrossRef]
- Le, C.; Gao, Y.; Cai, W.-J.; Lehrter, J.C.; Bai, Y.; Jiang, Z.-P. Estimating summer sea surface pCO(2) on a river-dominated continental shelf using a satellite-based semi-mechanistic model. Remote Sens. Environ. 2019, 225, 115–126. [Google Scholar] [CrossRef]
- Hales, B.; Strutton, P.G.; Saraceno, M.; Letelier, R.; Takahashi, T.; Feely, R.; Sabine, C.; Chavez, F. Satellite-based prediction of pCO2 in coastal waters of the eastern North Pacific. Prog. Oceanogr. 2012, 103, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, T.; Sutherland, S.C.; Wanninkhof, R.; Sweeney, C.; Feely, R.A.; Chipman, D.W.; Hales, B.; Friederich, G.; Chavez, F.; Sabine, C.; et al. Climatological mean and decadal change in surface ocean pCO(2), and net sea-air CO2 flux over the global oceans. Deep-Sea Res. Part II-Top. Stud. Oceanogr. 2009, 56, 554–577. [Google Scholar] [CrossRef]
- Dai, M.; Cao, Z.; Guo, X.; Zhai, W.; Liu, Z.; Yin, Z.; Xu, Y.; Gan, J.; Hu, J.; Du, C. Why are some marginal seas sources of atmospheric CO2? Geophys. Res. Lett. 2013, 40, 2154–2158. [Google Scholar] [CrossRef]
- Borges, A.V.; Delille, B.; Frankignoulle, M. Budgeting sinks and sources of CO2 in the coastal ocean: Diversity of ecosystems counts. Geophys. Res. Lett. 2005, 32, 422. [Google Scholar] [CrossRef] [Green Version]
- Martinsen, K.T.; Kragh, T.; Sand-Jensen, K. Carbon Dioxide Partial Pressure and Emission Throughout the Scandinavian Stream Network. Glob. Biogeochem. Cycles 2020, 34, 14. [Google Scholar] [CrossRef]
- Magin, K.; Somlai-Haase, C.; Schaefer, R.B.; Lorke, A. Regional-scale lateral carbon transport and CO2 evasion in temperate stream catchments. Biogeosciences 2017, 14, 5003–5014. [Google Scholar] [CrossRef] [Green Version]
- Valerio, A.M.; Kampel, M.; Ward, N.D.; Sawakuchi, H.O.; Cunha, A.C.; Richey, J.E. CO2 partial pressure and fluxes in the Amazon River plume using in situ and remote sensing data. Cont. Shelf Res. 2021, 215, 104348. [Google Scholar] [CrossRef]
- Yu, X.; Wang, Y.; Liu, X.; Liu, X. Remote sensing estimation of carbon fractions in the Chinese Yellow River estuary. Mar. Georesources Geotechnol. 2018, 36, 202–210. [Google Scholar] [CrossRef]
- Brandao, I.L.D.; Mannaerts, C.M.; Brandao, I.W.D.; Queiroz, J.C.B.; Verhoef, W.; Saraiva, A.C.F.; Dantas, H.A. Conjunctive use of in situ gas sampling and chromatography with geospatial analysis to estimate greenhouse gas emissions of a large Amazonian hydroelectric reservoir. Sci. Total Environ. 2019, 650, 394–407. [Google Scholar] [CrossRef] [PubMed]
- Sturtevant, C.S.; Oechel, W.C. Spatial variation in landscape-level CO2 and CH4 fluxes from arctic coastal tundra: Influence from vegetation, wetness, and the thaw lake cycle. Glob. Chang. Biol. 2013, 19, 2853–2866. [Google Scholar] [CrossRef]
Region | Water Type | CO2 Emission | Ref. |
---|---|---|---|
Global | Inland waters | 2100 Tg C y−1 | [3] |
Global | Inland waters | 3280 Tg y−1 | [82] |
Global | Inland waters | 750 Tg y−1 | [1] |
Global | Inland waters | 1400 Tg y−1 | [42] |
Global | Streams and rivers | 1800 ± 250 Tg y−1 | [3] |
Global | Streams and rivers | 560 Tg y−1 | [65] |
Global | Streams and rivers | 650 Tg y−1 | [44] |
Global | Lakes and reservoirs | 320 + 520, −260 Tg y−1 | [3] |
Global | Lakes and impoundments | 810 Tg y−1 | [42] |
Global | Lakes and impoundments | 245–527 Tg y−1 | [21] |
Global | Lakes and reservoirs | 640 Tg y−1 | [65] |
Global | Lakes | 530 Tg y−1 | [72] |
Global | Saline lakes | 110–150 Tg y−1 | [72] |
Global | Reservoirs | 280 Tg y−1 | [1] |
Global | Reservoirs | 273 Tg y−1 | [62] |
Global | Hydroelectric reservoirs | 48 Tg y−1 | [66] |
Boreal and arctic region | Inland waters | 150 Tg yr−1 | [65] |
Boreal region | Lakes | 189 Tg yr−1 | [13] |
Boreal and arctic region | Lakes and reservoirs | 110 Tg yr−1 | [65] |
Africa | Rivers | 270–370 Tg yr−1 | [78] |
Amazon | Reservoirs | 8 Tg yr−1 | [66] |
Boreal region | Reservoirs | 6 | [66] |
Temperate | Reservoirs | 5 | [66] |
Tropical | Reservoirs | 37 | [66] |
Amazon | The lower river | 480 Tg yr−1 | [83] |
Amazon | Streams, rivers, and wetlands | 500 Tg y−1 | [75,83] |
Germany | Drinking water reservoirs | 0.44 Tg y−1 | [74] |
United States | Streams and rivers | 97 ± 32 Tg y−1 | [77] |
Florida | Lakes and ponds | 2.0 Tg y−1 | [70] |
China | Inland waters | 66–136 Tg yr−1 | [11] |
China | Hydroelectric reservoirs | 29.6 Tg y−1 | [43] |
China | Streams and rivers | 19.4 Tg yr−1 | [11] |
China | Lakes and reservoirs | 12.1 Tg yr−1 | [11] |
China | Lakes and reservoirs | 25.15 Tg yr−1 | [12] |
India | Inland waters | 22.0 Tg y−1 | [73] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, Z.; Shang, Y.; Lyu, L.; Li, S.; Tao, H.; Song, K. A Review of Quantifying pCO2 in Inland Waters with a Global Perspective: Challenges and Prospects of Implementing Remote Sensing Technology. Remote Sens. 2021, 13, 4916. https://doi.org/10.3390/rs13234916
Wen Z, Shang Y, Lyu L, Li S, Tao H, Song K. A Review of Quantifying pCO2 in Inland Waters with a Global Perspective: Challenges and Prospects of Implementing Remote Sensing Technology. Remote Sensing. 2021; 13(23):4916. https://doi.org/10.3390/rs13234916
Chicago/Turabian StyleWen, Zhidan, Yingxin Shang, Lili Lyu, Sijia Li, Hui Tao, and Kaishan Song. 2021. "A Review of Quantifying pCO2 in Inland Waters with a Global Perspective: Challenges and Prospects of Implementing Remote Sensing Technology" Remote Sensing 13, no. 23: 4916. https://doi.org/10.3390/rs13234916
APA StyleWen, Z., Shang, Y., Lyu, L., Li, S., Tao, H., & Song, K. (2021). A Review of Quantifying pCO2 in Inland Waters with a Global Perspective: Challenges and Prospects of Implementing Remote Sensing Technology. Remote Sensing, 13(23), 4916. https://doi.org/10.3390/rs13234916