Sub-Auroral, Mid-Latitude, and Low-Latitude Troughs during Severe Geomagnetic Storms
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Storm of 31 March–3 April 2001. Night Conditions
3.2. Storm of 31 March–1 April 2001. Day Conditions
3.3. Storm of 5–7 November 2001
3.4. Storm of 20–21 August 2002
3.5. Storm of 6–8 November 2000
4. Discussion
4.1. Trough Position Dependence on Kp-index
4.2. Trough Location Dependence on Longitude
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khorosheva, O.V. Magnetospheric disturbances and the associated dynamics of ionospheric electrojets, auroras, and plasmapause. Geomagn. Aeron. 1987, 27, 804–811. (In Russian) [Google Scholar]
- Khorosheva, O.V. Relation of geomagnetic disturbances to the dynamics of the magnetosphere and the parameters of the interplanetary medium. Geomagn. Aeron. 2007, 47, 543–547. [Google Scholar] [CrossRef]
- Gussenhofen, M.S.; Hardy, D.A.; Heinemann, N. Systematics of the equatorial diffuse auroral boundary. J. Geophys. Res. 1983, 88, 5692–5708. [Google Scholar] [CrossRef]
- Ahmed, M.; Sagalyn, R.C.; Wildman, P.J.L.; Burke, W.J. Topside ionospheric trough morphology: Occurrence frequency and diurnal, seasonal and altitude variations. J. Geophys. Res. 1979, 84, 489–498. [Google Scholar] [CrossRef]
- Yeh, H.-C.; Foster, J.C.; Rich, F.J.; Swider, W. Storm time electric field penetration observed at mid-latitude. J. Geophys. Res. 1991, 96, 5707–5721. [Google Scholar] [CrossRef]
- Hayakawa, M.; Tanaka, Y.; Ohtsu, J. Satellite and ground observations of magnetospheric VLF hiss associated with the severe magnetic storm on 25–27 May 1967. J. Geophys. Res. 1967, 80, 86–92. [Google Scholar] [CrossRef]
- Hikosaka, T. On the great enhancement of the line [OI] 6300 in the aurora at Niigata on 11 February 1958. Rep. Ionos. Res. Jpn. 1958, 12, 469–471. [Google Scholar]
- Shiokawa, K.; Ogawa, T.; Oya, H.; Rich, F.J.; Yumoto, K. A stable auroral red arc observed over Japan after an interval of very weak solar wind. J. Geophys. Res. 2001, 106, 26091–26101. [Google Scholar] [CrossRef]
- Hayakawa, H.; Ebihara, Y.; Hand, D.P.; Hayakawa, S.; Kumar, S.; Mukherjee, S.; Veenadhari, B. Low-latitude aurorae during the extreme space weather events in 1859. Astrophys. J. 2018. [Google Scholar] [CrossRef] [Green Version]
- Deminov, M.G.; Karpachev, A.T.; Morozova, L.P. Subauroral ionosphere in SUNDIAL period on June, 1987 on Cosmos-1809 satellite data. Geomagn. Aeron. 1992, 32, 54–58. (In Russian) [Google Scholar]
- Deminov, M.G.; Karpachev, A.T.; Afonin, V.V.; Annakuliev, S.K.; Shmilauer, Y. Dynamics of midlatitude ionospheric trough during storms 1. A qualitative picture. Geomagn. Aeron. 1995, 35, 54–59. [Google Scholar]
- Deminov, M.G.; Karpachev, A.T.; Annakuliev, S.K.; Afonin, V.V.; Smilauer, Y. Dynamics of the ionization troughs in the night-time subauroral F-region during geomagnetic storms. Adv. Space Res. 1996, 17, 141–145. [Google Scholar] [CrossRef]
- Deminov, M.G.; Karpachev, A.T.; Afonin, V.V.; Annakuliev, S.K. The dynamics of the mid-latitude trough during the storms: Recovery phase. Geomagn. Aeron. 1996, 35, 45–52. (In Russian) [Google Scholar]
- Karpachev, A.T.; Deminov, M.G.; Afonin, V.V. Model of the mid-latitude ionospheric trough on the base of Cosmos-900 and Intercosmos-19 satellites data. Adv. Space Res. 1996, 18, 221–230. [Google Scholar] [CrossRef]
- Karpachev, A.T. The characteristics of the ring ionospheric trough. Geomagn. Aeron. 2001, 41, 57–66. (In Russian) [Google Scholar]
- Karpachev, A.T. Dynamics of main and ring ionospheric troughs at the recovery phase of storms/substorms. J. Geophys. Res. 2020. [Google Scholar] [CrossRef]
- Pavlov, A.V. Mechanism of the electron density depletion in the SAR arc region. Ann. Geophys. 1996, 14, 211–221. [Google Scholar] [CrossRef]
- Norton, R.B.; Findlay, J.A. Electron density and temperature in the vicinity of the 29 September 1967 middle latitude red arc. Planet. Space Sci. 1969, 17, 1867–1877. [Google Scholar] [CrossRef]
- Hamilton, D.; Gloecler, G.; Ipavich, F.; Stüdemann, W.; Wilken, B.; Kremser, G. Ring current development during the great geomagnetic storm of February 1986. J. Geophys. Res. 1988, 93, 14343–14355. [Google Scholar] [CrossRef]
- Hultqvist, B. The ring current and particle precipitation near plasmapause. Ann. Geophys. 1975, 31, 111–126. [Google Scholar]
- Karpachev, A.T. Variations in the winter troughs’ position with local time, longitude, and solar activity in the Northern and Southern hemispheres. J. Geophys. Res. 2019, 124, 8039–8055. [Google Scholar] [CrossRef]
- Karpachev, A.T.; Klimenko, M.V.; Klimenko, V.V. Longitudinal variations of the ionospheric trough position. Adv. Space Res. 2018, 63, 950–966. [Google Scholar] [CrossRef]
- Grebowsky, J.M.; Tailor, H.A.; Lindsay, J.M. Location and source of ionospheric high latitude troughs. Planet. Space Sci. 1983, 31, 99–105. [Google Scholar] [CrossRef]
- Karpachev, A.T.; Gasilov, N.A.; Karpachev, O.A. Morphology and causes of the Weddell sea anomaly. Geomagn. Aeron. 2011, 51, 812–824. [Google Scholar] [CrossRef]
- Klimenko, V.V.; Klimenko, M.V.; Karpachev, A.T.; Ratovsky, K.G.; Stepanov, A.E. Spatial features of Weddell Sea and Yakutsk anomalies in foF2 diurnal variations during high solar activity periods: Interkosmos-19 satellite and ground-based ionosonde observations, IRI reproduction and GSM TIP model simulation. Adv. Space Res. 2015, 55, 2020–2032. [Google Scholar] [CrossRef]
- Horvath, I.; Lovell, B.C. Investigating the relationships among the South Atlantic Magnetic Anomaly, southern nighttime midlatitude trough, and nighttime Weddell Sea Anomaly during southern summer. J. Geophys. Res. 2009, 114, A02306. [Google Scholar] [CrossRef] [Green Version]
- Vorobjev, V.G.; Yagodkina, O.I. Seasonal and diurnal (UT) variation in the boundaries of the auroral precipitation and polar cup. Geomagn. Aeron. 2010, 50, 625–633. [Google Scholar] [CrossRef]
- Luan, X.; Wang, W.; Burns, A.; Solomon, S.; Zhang, Y.; Paxton, L.J.; Xu, J. Longitudinal variations of nighttime electron auroral precipitation in both the Northern and Southern hemispheres from the TIMED global ultraviolet imager. J. Geophys. Res. 2011, 116, A03302. [Google Scholar] [CrossRef] [Green Version]
- Berg, L.E.; Søraas, F. Observations suggesting weak pitch angle diffusion of protons. J. Geophys. Res. 1972, 77, 6708–6715. [Google Scholar] [CrossRef]
- Frank, L.A. On the extraterrestrial ring current during geomagnetic storms. J. Geophys. Res. 1967, 72, 3753–3767. [Google Scholar] [CrossRef]
- Dmitriev, A.V.; Yeh, H.-C. Storm-time ionization enhancements at the topside low-latitude ionosphere. Ann. Geophys. 2008, 26, 867–876. [Google Scholar] [CrossRef]
- Lazutin, L.L.; Logachev, Y.I.; Muravieva, E.A.; Petrov, V.L. Relaxation of electron and proton radiation belts of the Earth after strong magnetic storms. Cosm. Res. 2012, 50, 1–12. [Google Scholar] [CrossRef]
- Baker, D.N.; Erickson, P.J.; Fennell, J.F.; Foster, J.C.; Jaynes, A.N.; Verronen, P.T. Space weather effects in the Earth’s radiation belts. Space Sci. Rev. 2018, 214, 17. [Google Scholar] [CrossRef] [Green Version]
- Dmitriev, A.V.; Minaeva, Y.S.; Orlov, Y.V. Model of the slot region of Earth’s electron radiation belt depending on the heliospheric parameters. Adv. Space Res. 2000, 25, 2311–2314. [Google Scholar] [CrossRef]
- Panasyuk, M.I.; Kuznetsov, S.N.; Lazutin, L.L.; Avdyushin, S.I.; Alexeev, I.I.; Ammosov, P.P.; Antonova, A.E.; Baishev, D.G.; Belenkaya, E.S.; Beletsky, A.B.; et al. Magnetic storms in October 2003. Cosm. Res. 2004, 42, 489–534. [Google Scholar]
- Looper, M.D.; Blake, J.B.; Mewaldt, R.A. Response of the inner radiation belt to the violent Sun-Earth connection events of October–November 2003. Geophys. Res. Lett. 2005, 32, L03S06. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.S.; Yeh, H.C. Satellite observations of electric fields in the South Atlantic anomaly region during the July 2000 magnetic storm. J. Geophys. Res. 2005, 110, A03305. [Google Scholar] [CrossRef] [Green Version]
- Foster, J.C.; Coster, A.J. Conjugate localized enhancement of total electron content at low latitudes in the American sector. J. Atmos. Sol. Terr. Phys. 2007, 69, 1241–1252. [Google Scholar] [CrossRef]
- Nagata, K.; Kohno, T.; Murakami, H.; Nakamoto, A.; Hasebe, N.; Kikuchi, J.; Doke, T. Electron (0.19–3.2 MeV) and proton (0.58–35 MeV) precipitations observed by OHZORA satellite at low zones L = 1.6–1.8. Planet. Space Sci. 1988, 36, 591–606. [Google Scholar] [CrossRef]
- Grachev, E.A.; Grigoryan, O.R.; Klimov, S.I.; Kudela, K.; Petrov, A.N.; Schwingenschuh, K.; Sheveleva, V.N.; Stetiarova, J. Altitude distribution analysis of electron fluxes at L = 1.2–1.8. Adv. Space Res. 2005, 36, 1992–1996. [Google Scholar] [CrossRef]
- Bogomolov, A.V.; Denisov, Y.I.; Kolesov, G.Y.; Kudryavtsev, M.I.; Logachev, Y.I.; Morozov, O.V.; Svertilov, S.I. Fluxes of quasi-trapped electrons with energies > 0.08 MeV in the near-Earth space on drift shells L < 2. Cosm. Res. 2005, 43, 307–313. [Google Scholar]
- Dmitriev, A.V.; Yeh, H.-C.; Panasyuk, M.I.; Galkin, V.I.; Garipov, G.K.; Khrenov, B.A.; Klimov, P.A.; Lazutin, L.L.; Myagkova, I.N.; Svertilov, S.I. Latitudinal profile of UV nightglow and electron precipitation. Planet. Space Sci. 2011, 59, 733–740. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karpachev, A. Sub-Auroral, Mid-Latitude, and Low-Latitude Troughs during Severe Geomagnetic Storms. Remote Sens. 2021, 13, 534. https://doi.org/10.3390/rs13030534
Karpachev A. Sub-Auroral, Mid-Latitude, and Low-Latitude Troughs during Severe Geomagnetic Storms. Remote Sensing. 2021; 13(3):534. https://doi.org/10.3390/rs13030534
Chicago/Turabian StyleKarpachev, Alexander. 2021. "Sub-Auroral, Mid-Latitude, and Low-Latitude Troughs during Severe Geomagnetic Storms" Remote Sensing 13, no. 3: 534. https://doi.org/10.3390/rs13030534
APA StyleKarpachev, A. (2021). Sub-Auroral, Mid-Latitude, and Low-Latitude Troughs during Severe Geomagnetic Storms. Remote Sensing, 13(3), 534. https://doi.org/10.3390/rs13030534