Hydroclimatic Extremes Evaluation Using GRACE/GRACE-FO and Multidecadal Climatic Variables over the Nile River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. GRACE/GRACE-FO Data
2.2.2. Rainfall and Temperature Data
2.2.3. Soil Moisture Data
2.2.4. Drought Indices Data
2.3. Methods
2.3.1. Soil Moisture Changes
2.3.2. Time Series Decomposition and Trend Analysis
2.3.3. GRACE/GRACE-FO Derived Water Storage Deficit (WSD)
2.3.4. Combined Climatologic Deviation Index (CCDI)
2.3.5. GRACE Groundwater Drought Index (GGDI)
2.3.6. Multivariate Standardized Drought Index (MSDI)
2.3.7. Hydroclimatic Extreme Event Indices Severity Categorization
3. Results
3.1. Hydroclimatic Extreme Analysis Based on Standardized Indices
3.2. Evaluation of TWS Deficits and Surplus
3.3. Evaluation of Groundwater Drought and Surplus
3.4. GRACE Derived Drought Indices Feasibility for NRB Drought Identification
3.5. Analysis Hydroclimatic Extreme Event Severity Levels
3.6. Hydroclimatic Extremes Impact on Livelihood
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abtew, W.; Melesse, A.M. Climate Teleconnections, and Water Management. In Nile River Basin: Ecohydrological Challenges, Climate Change, and Hydropolitics; Melesse, A.M., Abtew, W., Setegn, S.G., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 685–705. ISBN 978-3-319-02720-3. [Google Scholar]
- Multsch, S.; Elshamy, M.E.; Batarseh, S.; Seid, A.H.; Frede, H.-G.; Breuer, L. Improving Irrigation Efficiency will be Insufficient to Meet Future Water Demand in the Nile Basin. J. Hydrol. Reg. Stud. 2017, 12, 315–330. [Google Scholar] [CrossRef]
- Ahmed, M.; Abdelmohsen, K. Quantifying Modern Recharge and Depletion Rates of the Nubian Aquifer in Egypt. Surv. Geophys. 2018, 39, 729–751. [Google Scholar] [CrossRef]
- Hasan, E.; Tarhule, A.; Kirstetter, P.-E.; Clark, R.; Hong, Y. Runoff Sensitivity to Climate Change in the Nile River Basin. J. Hydrol. 2018, 561, 312–321. [Google Scholar] [CrossRef]
- Siam, M.S.; Eltahir, E.A.B. Climate Change Enhances Interannual Variability of the Nile River Flow. Nat. Clim. Chang. 2017, 7, 350–354. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A Review of Drought Concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Du, L.; Tian, Q.; Yu, T.; Meng, Q.; Jancso, T.; Udvardy, P.; Huang, Y. A Comprehensive Drought Monitoring Method Integrating MODIS and TRMM Data. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 245–253. [Google Scholar] [CrossRef]
- Sillmann, J.; Kharin, V.V.; Zwiers, F.W.; Zhang, X.; Bronaugh, D. Climate Extremes Indices in the CMIP5 Multimodel Ensemble: Part 2. Future Climate Projections. J. Geophys. Res. Atmos. 2013, 118, 2473–2493. [Google Scholar] [CrossRef]
- Sinha, D.; Syed, T.H.; Famiglietti, J.S.; Reager, J.T.; Thomas, R.C. Characterizing Drought in India Using GRACE Observations of Terrestrial Water Storage Deficit. J. Hydrometeorol. 2017, 18, 381–396. [Google Scholar] [CrossRef]
- Zhao, M.; Velicogna, I.; Kimball, J.S. A Global Gridded Dataset of GRACE Drought Severity Index for 2002–14: Comparison with PDSI and SPEI and a Case Study of the Australia Millennium Drought. J. Hydrometeorol. 2017, 18, 2117–2129. [Google Scholar] [CrossRef] [Green Version]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the Eighth Conference on Applied Climatology, American Meteorological Society, Anaheim, CA, USA, 17–22 January 1993; pp. 179–184. [Google Scholar]
- Wang, H.; Rogers, J.C.; Munroe, D.K. Commonly Used Drought Indices as Indicators of Soil Moisture in China. J. Hydrometeorol. 2015, 16, 1397–1408. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Palmer, W.C. Meteorological Droughts; 30 US Department of Commerce, Weather Bureau: Washington, DC, USA, 1965.
- Wells, N.; Goddard, S.; Hayes, M.J. A Self-Calibrating Palmer Drought Severity Index. J. Clim. 2004, 17, 2335–2351. [Google Scholar] [CrossRef]
- Hao, Z.; Aghakouchak, A. A Nonparametric Multivariate Multi-Index Drought Monitoring Framework. J. Hydrometeorol. 2014, 15, 89–101. [Google Scholar] [CrossRef]
- Landerer, F.W.; Flechtner, F.M.; Save, H.; Webb, F.H.; Bandikova, T.; Bertiger, W.I.; Bettadpur, S.V.; Byun, S.H.; Dahle, C.; Dobslaw, H.; et al. Extending the Global Mass Change Data Record: GRACE Follow-On Instrument and Science Data Performance. Geophys. Res. Lett. 2020, 47, e2020GL088306. [Google Scholar] [CrossRef]
- Kornfeld, R.P.; Arnold, B.W.; Gross, M.A.; Dahya, N.T.; Klipstein, W.M.; Gath, P.F.; Bettadpur, S. GRACE-FO: The Gravity Recovery and Climate Experiment Follow-On mission. J. Spacecr. Rocket. 2019, 56, 931–951. [Google Scholar] [CrossRef]
- Flechtner, F.; Neumayer, K.-H.; Dahle, C.; Dobslaw, H.; Fagiolini, E.; Raimondo, J.-C.; Güntner, A. What Can Be Expected from the GRACE-FO Laser Ranging Interferometer for Earth Science Applications? Surv. Geophys. 2016, 37, 453–470. [Google Scholar] [CrossRef] [Green Version]
- Nigatu, Z.M.; Fan, D.; You, W. GRACE Products and Land Surface Models for Estimating the Changes in Key Water Storage Components in the Nile River Basin. Adv. Space Res. 2021. [Google Scholar] [CrossRef]
- Landerer, F.W.; Swenson, S.C. Accuracy of Scaled GRACE Terrestrial Water Storage Estimates. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Zhang, Z.; Save, H.; Wiese, D.N.; Landerer, F.W.; Long, D.; Longuevergne, L.; Chen, J. Global Evaluation of New GRACE Mascon Products for Hydrologic Applications. Water Resour. Res. 2016, 52, 9412–9429. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Z.; Yang, H.; Di, D.; Zhao, Y.; Liang, Q. Utilizing GRACE-Based Groundwater Drought Index for Drought Characterization and Teleconnection Factors Analysis in the North China Plain. J. Hydrol. 2020, 585, 124849. [Google Scholar] [CrossRef]
- Save, H.; Bettadpur, S.; Tapley, B.D. High-Resolution CSR GRACE RL05 Mascons. J. Geophys. Res. Solid Earth 2016, 121, 7547–7569. [Google Scholar] [CrossRef]
- Thomas, A.C.; Reager, J.T.; Famiglietti, J.S.; Rodell, M. A GRACE-Based Water Storage Deficit Approach for Hydrological Drought Characterization. Geophys. Res. Lett. 2014, 41, 1537–1545. [Google Scholar] [CrossRef] [Green Version]
- Sinha, D.; Syed, T.H.; Reager, J.T. Utilizing Combined Deviations of Precipitation and GRACE-Based Terrestrial Water Storage as a Metric for Drought Characterization: A Case Study over Major Indian River Basins. J. Hydrol. 2019, 572, 294–307. [Google Scholar] [CrossRef]
- Sun, Z.; Zhu, X.; Pan, Y.; Zhang, J.; Liu, X. Drought Evaluation Using the GRACE Terrestrial Water Storage Deficit over the Yangtze River Basin, China. Sci. Total Environ. 2018, 634, 727–738. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Feng, X.; Ciais, P.; Fu, B.; Hu, B.; Sun, Z. GRACE Satellite-Based Drought Index Indicating Increased Impact of Drought over Major Basins in China during 2002–2017. Agric. For. Meteorol. 2020, 291, 108057. [Google Scholar] [CrossRef]
- Li, B.; Rodell, M. Evaluation of a Model-Based Groundwater Drought Indicator in the Conterminous U.S. J. Hydrol. 2015, 526, 78–88. [Google Scholar] [CrossRef] [Green Version]
- Shamsudduha, M.; Taylor, R.G.; Jones, D.; Longuevergne, L.; Owor, M.; Tindimugaya, C. Recent Changes in Terrestrial Water Storage in the Upper Nile Basin: An Evaluation of Commonly Used Gridded GRACE Products. Hydrol. Earth Syst. Sci. 2017, 21, 4533–4549. [Google Scholar] [CrossRef] [Green Version]
- Melesse, A.M.; Loukas, A.G.; Senay, G.; Yitayew, M. Climate Change, Land-Cover Dynamics and Ecohydrology of the Nile River Basin. Hydrol. Process. 2009, 23, 3651–3652. [Google Scholar] [CrossRef]
- Setegn, S.G.; Srinivasan, R.; Dargahi, B.; Melesse, A.M. Spatial Delineation of Soil Erosion Vulnerability in the Lake Tana Basin, Ethiopia. Hydrol. Process. 2009, 23, 3738–3750. [Google Scholar] [CrossRef]
- Setegn, S.G.; Dargahi, B.; Srinivasan, R.; Melesse, A.M. Modeling of Sediment Yield From Anjeni-Gauged Watershed, Ethiopia Using SWAT Model1. JAWRA J. Am. Water Resour. Assoc. 2010, 46, 514–526. [Google Scholar] [CrossRef]
- Abtew, W.; Melesse, A.M.; Dessalegne, T. El Niño Southern Oscillation Link to the Blue Nile River Basin Hydrology. Hydrol. Process. 2009, 23, 3653–3660. [Google Scholar] [CrossRef]
- Melesse, A.; Abtew, W.; Dessalegne, T.; Wang, X. Low and High Flow Analyses and Wavelet Application for Characterization of the Blue Nile River System. Hydrol. Process. 2010, 24, 241–252. [Google Scholar] [CrossRef]
- Moges, S.A.; Taye, M.T. Regional Flood Frequency Curves for Remote Rural Areas of the Nile River Basin: The Case of Baro-Akobo Drainage Basin, Ethiopia. In Extreme Hydrology and Climate Variability: Monitoring, Modelling, Adaptation, and Mitigation; Melesse, A.M., Abtew, W., Senay, G.B., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 385–393. ISBN 978-0-12-815998-9. [Google Scholar]
- Dessu, S.B.; Melesse, A.M. Modelling the Rainfall-Runoff Process of the Mara River Basin Using the Soil and Water Assessment Tool. Hydrol. Process. 2012, 26, 4038–4049. [Google Scholar] [CrossRef]
- Nigatu, Z.; Rientjes, T.; Haile, A. Hydrological Impact Assessment of Climate Change on Lake Tana’s Water Balance, Ethiopia. Am. J. Clim. Chang. 2016, 5, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Melesse, A.M.; Abtew, W.; Setegn, S.G.; Dessalegne, T. Hydrological Variability and Climate of the Upper Blue Nile River Basin. In Nile River Basin: Hydrology, Climate, and Water Use; Melesse, A.M., Ed.; Springer: Dordrecht, The Netherlands, 2011; pp. 3–37. ISBN 978-94-007-0689-7. [Google Scholar]
- Mamo, S.; Berhanu, B.; Melesse, A.M. Historical Flood Events and Hydrological Extremes in Ethiopia. In Extreme Hydrology and Climate Variability: Monitoring, Modelling, Adaptation, and Mitigation; Melesse, A.M., Abtew, W., Senay, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 379–384. ISBN 978-0-12-815998-9. [Google Scholar]
- Dessu, S.B.; Melesse, A.M. Impact and Uncertainties of Climate Change on the Hydrology of the Mara River Basin, Kenya/Tanzania. Hydrol. Process. 2013, 27, 2973–2986. [Google Scholar] [CrossRef]
- Chebud, Y.; Melesse, A. Stage Level, Volume and Time-Frequency Information Content of Lake Tana Using Stochastic and Wavelet Analysis Methods. Hydrol. Process. 2013, 27, 1475–1483. [Google Scholar] [CrossRef]
- Setegn, S.G.; Srinivasan, R.; Melesse, A.M.; Dargahi, B. SWAT Model Application and Prediction Uncertainty Analysis in the Lake Tana Basin, Ethiopia. Hydrol. Process. 2010, 24, 357–367. [Google Scholar] [CrossRef]
- Chebud, Y.A.; Melesse, A.M. Modelling Lake Stage and Water Balance of Lake Tana, Ethiopia. Hydrol. Process. 2009, 23, 3534–3544. [Google Scholar] [CrossRef]
- Yitayew, M.; Melesse, A.M. Critical Water Resources Issues in the Nile River Basin. In Nile River Basin: Hydrology, Climate, and Water Use; Melesse, A.M., Ed.; Springer: Dordrecht, The Netherlands, 2011; pp. 401–416. ISBN 978-94-007-0689-7. [Google Scholar]
- Abtew, W.; Melesse, A.M. Transboundary Rivers and the Nile. In Nile River Basin: Ecohydrological Challenges, Climate Change, and Hydropolitics; Melesse, A.M., Abtew, W., Setegn, S.G., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 565–579. ISBN 978-3-319-02720-3. [Google Scholar]
- Dessu, S.B.; Melesse, A.M.; Bhat, M.G.; McClain, M.E. Assessment of Water Resources Availability and Demand in the Mara River Basin. Catena 2014, 115, 104–114. [Google Scholar] [CrossRef]
- Chebud, Y.A.; Melesse, A.M. Numerical Modeling of the Groundwater Flow System of the Gumera Sub-Basin in Lake Tana Basin, Ethiopia. Hydrol. Process. 2009, 23, 3694–3704. [Google Scholar] [CrossRef]
- Abtew, W.; Melesse, A.M. The Nile River Basin. In Nile River Basin: Ecohydrological Challenges, Climate Change, and Hydropolitics; Melesse, A.M., Abtew, W., Setegn, S.G., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 7–21. ISBN 978-3-319-02720-3. [Google Scholar]
- Save, H. CSR GRACE and GRACE-FO RL06 Mascon Solutions v02. Available online: http://www2.csr.utexas.edu/grace/RL06_mascons.html (accessed on 20 September 2020).
- Boergens, E.; Dobslaw, H.; Dill, R.; Thomas, M.; Dahle, C.; Murböck, M.; Flechtner, F. Modelling Spatial Covariances for Terrestrial Water Storage Variations Verified with Synthetic GRACE-FO Data. GEM Int. J. Geomath. 2020, 11, 24. [Google Scholar] [CrossRef]
- Sakumura, C.; Bettadpur, S.; Bruinsma, S. Ensemble Prediction and Intercomparison Analysis of GRACE Time-Variable Gravity Field Models. Geophys. Res. Lett. 2014, 41, 1389–1397. [Google Scholar] [CrossRef]
- Tamaddun, K.A.; Kalra, A.; Kumar, S.; Ahmad, S. CMIP5 Models’ Ability to Capture Observed Trends under the Influence of Shifts and Persistence: An In-Depth Study on the Colorado River Basin. J. Appl. Meteorol. Climatol. 2019, 58, 1677–1688. [Google Scholar] [CrossRef]
- Spennemann, P.C.; Rivera, J.A.; Saulo, A.C.; Penalba, O.C. A Comparison of GLDAS Soil Moisture Anomalies against Standardized Precipitation Index and Multisatellite Estimations over South America. J. Hydrometeorol. 2015, 16, 158–171. [Google Scholar] [CrossRef]
- Li, M.; Wu, P.; Ma, Z. A Comprehensive Evaluation of Soil Moisture and Soil Temperature from Third-Generation Atmospheric and Land Reanalysis Data Sets. Int. J. Climatol. 2020, 40, 5744–5766. [Google Scholar] [CrossRef]
- Muñoz Sabater, J. ERA5-Land Monthly Averaged Data from 1981 to Present. Available online: https://confluence.ecmwf.int/display/CKB/ERA5-Land (accessed on 1 September 2020).
- Stoffelen, A. Toward the True Near-Surface Wind Speed: Error Modeling and Calibration Using Triple Collocation. J. Geophys. Res. Ocean. 1998, 103, 7755–7766. [Google Scholar] [CrossRef]
- Gruber, A.; Dorigo, W.A.; Crow, W.; Wagner, W. Triple Collocation-Based Merging of Satellite Soil Moisture Retrievals. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6780–6792. [Google Scholar] [CrossRef]
- Yilmaz, M.T.; Crow, W.T.; Ryu, D. Impact of Model Relative Accuracy in Framework of Rescaling Observations in Hydrological Data Assimilation Studies. J. Hydrometeorol. 2016, 17, 2245–2257. [Google Scholar] [CrossRef]
- Bonsor, H.; Shamsudduha, M.; Marchant, B.; MacDonald, A.; Taylor, R. Seasonal and Decadal Groundwater Changes in African Sedimentary Aquifers Estimated Using GRACE Products and LSMs. Remote Sens. 2018, 10, 904. [Google Scholar] [CrossRef] [Green Version]
- Hafen, R. stlplus: Enhanced Seasonal Decomposition of Time Series by Loess. 2016. Available online: https://rdrr.io/cran/stlplus/ (accessed on 15 September 2019).
- Cleveland, R.B.; Cleveland, W.S.; McRae, J.E.; Terpenning, I. STL: A Seasonal-Trend Decomposition. J. Off. Stat. 1990, 6, 3–73. [Google Scholar]
- Humphrey, V.; Gudmundsson, L.; Seneviratne, S.I. Assessing Global Water Storage Variability from GRACE: Trends, Seasonal Cycle, Subseasonal Anomalies and Extremes. Surv. Geophys. 2016, 37, 357–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, H.; Raupach, M.R.; McVicar, T.R.; Barrett, D.J. Decomposition of Vegetation Cover into Woody and Herbaceous Components Using AVHRR NDVI Time Series. Remote Sens. Environ. 2003, 86, 1–18. [Google Scholar] [CrossRef]
- Thomas, B.F.; Famiglietti, J.S.; Landerer, F.W.; Wiese, D.N.; Molotch, N.P.; Argus, D.F. GRACE Groundwater Drought Index: Evaluation of California Central Valley Groundwater Drought. Remote Sens. Environ. 2017, 198, 384–392. [Google Scholar] [CrossRef]
- AghaKouchak, A. A Multivariate Approach for Persistence-Based Drought Prediction: Application to the 2010–2011 East Africa Drought. J. Hydrol. 2015, 526, 127–135. [Google Scholar] [CrossRef]
- Hao, Z.; AghaKouchak, A. Multivariate Standardized Drought Index: A Parametric Multi-Index Model. Adv. Water Resour. 2013, 57, 12–18. [Google Scholar] [CrossRef] [Green Version]
- Farahmand, A.; AghaKouchak, A. A Generalized Framework for Deriving Nonparametric Standardized Drought Indicators. Adv. Water Resour. 2015, 76, 140–145. [Google Scholar] [CrossRef]
- Svoboda, M.; LeComte, D.; Hayes, M.; Heim, R.; Gleason, K.; Angel, J.; Rippey, B.; Tinker, R.; Palecki, M.; Stooksbury, D.; et al. The Drought Monitor. Bull. Am. Meteorol. Soc. 2002, 83, 1181–1190. [Google Scholar] [CrossRef] [Green Version]
- Mika, J.; Horváth, S.; Makra, L.; Dunkel, Z. The Palmer Drought Severity Index (PDSI) as an Indicator of Soil Moisture. Phys. Chem. Earth, Parts A/B/C 2005, 30, 223–230. [Google Scholar] [CrossRef]
- Joshi, M.K.; Pandey, A.C. Trend and Spectral Analysis of Rainfall over India during 1901–2000. J. Geophys. Res. Atmos. 2011, 116, D06104. [Google Scholar] [CrossRef]
- Mohorji, A.M.; Şen, Z.; Almazroui, M. Trend Analyses Revision, and Global Monthly Temperature Innovative Multi-Duration Analysis. Earth Syst. Environ. 2017, 1, 9. [Google Scholar] [CrossRef] [Green Version]
- Sheffield, J.; Wood, E.F. Global Trends and Variability in Soil Moisture and Drought Characteristics, 1950–2000, from Observation-Driven Simulations of the Terrestrial Hydrologic Cycle. J. Clim. 2008, 21, 432–458. [Google Scholar] [CrossRef] [Green Version]
- Vanderkelen, I.; van Lipzig, N.P.M.; Thiery, W. Modelling the Water Balance of Lake Victoria (East Africa)—Part 1: Observational Analysis. Hydrol. Earth Syst. Sci. 2018, 22, 5509–5525. [Google Scholar] [CrossRef] [Green Version]
- Awange, J.L.; Sharifi, M.A.; Ogonda, G.; Wickert, J.; Grafarend, E.W.; Omulo, M.A. The Falling Lake Victoria Water Level: GRACE, TRIMM, and CHAMP Satellite Analysis of the Lake Basin. Water Resour. Manag. 2008, 22, 775–796. [Google Scholar] [CrossRef]
- Richey, A.S.; Thomas, B.F.; Lo, M.-H.; Reager, J.T.; Famiglietti, J.S.; Voss, K.; Swenson, S.; Rodell, M. Quantifying Renewable Groundwater Stress with GRACE. Water Resour. Res. 2015, 51, 5217–5238. [Google Scholar] [CrossRef] [PubMed]
- Wada, Y.; van Beek, L.P.H.; Wanders, N.; Bierkens, M.F.P. Human Water Consumption Intensifies Hydrological Drought Worldwide. Environ. Res. Lett. 2013, 8, 34036. [Google Scholar] [CrossRef] [Green Version]
- Owor, M.; Taylor, R.; Mukwaya, C.; Tindimugaya, C. Groundwater/Surface-Water Interactions on Deeply Weathered Surfaces of Low Relief: Evidence from Lakes Victoria and Kyoga, Uganda. Hydrogeol. J. 2011, 19, 1403–1420. [Google Scholar] [CrossRef]
- Awange, J.L.; Forootan, E.; Kuhn, M.; Kusche, J.; Heck, B. Water Storage Changes and Climate Variability within the Nile Basin between 2002 and 2011. Adv. Water Resour. 2014, 73, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Lott, F.C.; Christidis, N.; Stott, P.A. Can the 2011 East African Drought Be Attributed to Human-Induced Climate Change? Geophys. Res. Lett. 2013, 40, 1177–1181. [Google Scholar] [CrossRef]
- Rowell, D.P.; Booth, B.B.B.; Nicholson, S.E.; Good, P. Reconciling Past and Future Rainfall Trends over East Africa. J. Clim. 2015, 28, 9768–9788. [Google Scholar] [CrossRef]
- Van Loon, A.F.; Stahl, K.; Di Baldassarre, G.; Clark, J.; Rangecroft, S.; Wanders, N.; Gleeson, T.; Van Dijk, A.I.J.M.; Tallaksen, L.M.; Hannaford, J.; et al. Drought in a Human-Modified World: Reframing Drought Definitions, Understanding, and Analysis Approaches. Hydrol. Earth Syst. Sci. 2016, 20, 3631–3650. [Google Scholar] [CrossRef] [Green Version]
- Van Loon, A.F. Hydrological Drought Explained. WIREs Water 2015, 2, 359–392. [Google Scholar] [CrossRef]
- van der Schrier, G.; Barichivich, J.; Briffa, K.R.; Jones, P.D. A ScPDSI-Based Global Data Set of Dry and Wet Spells for 1901–2009. J. Geophys. Res. Atmos. 2013, 118, 4025–4048. [Google Scholar] [CrossRef]
- FAO. The State of Food Security and Nutrition in the World. Building Resilience for Peace and Food Security; FAO: Rome, Italy, 2017. Available online: http://www.fao.org/publications/sofi/2020/en/ (accessed on 10 September 2020).
- Nicholson, S.E. Climate and Climatic Variability of Rainfall over Eastern Africa. Rev. Geophys. 2017, 55, 590–635. [Google Scholar] [CrossRef] [Green Version]
- EM-DAT. The Emergency Events Database; EM-DAT: Brussels, Belgium, 2020; Available online: https://emdat.be (accessed on 10 September 2020).
- Viste, E.; Korecha, D.; Sorteberg, A. Recent Drought and Precipitation Tendencies in Ethiopia. Theor. Appl. Climatol. 2013, 112, 535–551. [Google Scholar] [CrossRef] [Green Version]
- NBI. Reducing Flood Devastation in the Nile Basin; Nile Basin Initiative: Entebbe, Uganda, 2019.
- Osima, S.; Indasi, V.S.; Zaroug, M.; Endris, H.S.; Gudoshava, M.; Misiani, H.O.; Nimusiima, A.; Anyah, R.O.; Otieno, G.; Ogwang, B.A.; et al. Projected Climate over the Greater Horn of Africa under 1.5 °C and 2 °C Global Warming. Environ. Res. Lett. 2018, 13, 065004. [Google Scholar] [CrossRef]
- Touma, D.; Ashfaq, M.; Nayak, M.A.; Kao, S.-C.; Diffenbaugh, N.S. A Multi-Model and Multi-Index Evaluation of Drought Characteristics in the 21st Century. J. Hydrol. 2015, 526, 196–207. [Google Scholar] [CrossRef] [Green Version]
- Longuevergne, L.; Wilson, C.R.; Scanlon, B.R.; Crétaux, J.F. GRACE Water Storage Estimates for the Middle East and Other Regions with Significant Reservoir and Lake Storage. Hydrol. Earth Syst. Sci. 2013, 17, 4817–4830. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Pozdniakov, S.P. A Statistical Approach to Estimating Evapotranspiration from Diurnal Groundwater Level Fluctuations. Water Resour. Res. 2014, 50, 2276–2292. [Google Scholar] [CrossRef]
- Emerton, R.E.; Stephens, E.M.; Pappenberger, F.; Pagano, T.C.; Weerts, A.H.; Wood, A.W.; Salamon, P.; Brown, J.D.; Hjerdt, N.; Donnelly, C.; et al. Continental, and Global Scale Flood Forecasting Systems. WIREs Water 2016, 3, 391–418. [Google Scholar] [CrossRef] [Green Version]
- Scanlon, B.R.; Longuevergne, L.; Long, D. Ground Referencing GRACE Satellite Estimates of Groundwater Storage Changes in the California Central Valley, USA. Water Resour. Res. 2012, 48, 1–9. [Google Scholar] [CrossRef] [Green Version]
Categories | Data/Model | Time | Spatial Resolutions | Data Sources (Accessed on 31 December 2020) |
---|---|---|---|---|
GRACE/GRACE-FO TWS | CSR (RL06) | 2003–2019 | 0.5° × 0.5° | http://www2.csr.utexas.edu/grace |
JPL (RL06) | 2003–2019 | 0.5° × 0.5° | http://podaac.jpl.nasa.gov/grace | |
GFZ (RL06) | 2003–2019 | 1° × 1° | http://isdc.gfz-potsdam.de/grace | |
Soil moisture | GLDAS-NOAH (M2.0 and 2.1) MERRA-2 ERA5-Land | 1950–2019 1980–2019 1981–2019 | 1° × 1° 0.5° × 0.625° 0.1° × 0.1° | https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS https://disc.gsfc.nasa.gov/datasets?keywords=MERRA-2 https://cds.climate.copernicus.eu/#!/search?ERA5-land |
Rainfall | TRMM | 2003–2014 | 0.25° × 0.25° | https://pmm.nasa.gov/dataaccess/trmm |
CRU TS4.00 | 1901–2019 | 0.5° × 0.5° | https://climatedataguide.ucar.edu/climate-data/prec | |
Temperature | CRU TS4.00 | 1901–2019 | 0.5° × 0.5° | https://climatedataguide.ucar.edu/climate-data/temp |
Drought data | SPEI | 1950–2019 | 0.5° × 0.5° | https://spei.csic.es/map/maps.html |
scPDSI | 1901–2018 | 0.5° × 0.5° | https://crudata.uea.ac.uk/cru/data/drought/ |
Severity Level | Drought Severity Category | SSI/SPI/SPEI | PDSI | WSDI | CCDI | GGDI |
---|---|---|---|---|---|---|
W4 | Extreme wet | (∞, 2.5] | (∞, 4] | (∞, 2.0] | (∞, 1.45] | (∞, 2] |
W3 | Severe wet | [2.5, 2] | [3.99, 3] | [1.5, 2.0] | [1.44, 0.94] | [2, 1.5] |
W2 | Moderate wet | [2, 1.5] | [2.99, 2] | [1.0, 1.5] | [0.93, 0.46] | [1.5, 1] |
W1 | Mild wet | [1.5, 1] | [1.99, 1] | [0.5, 1.0] | [0.45, 0.28] | [1, 0.5] |
No | Normal | [1, −1] | [1, −1] | [1.0, −1.0] | [0.28, −0.44] | [0.5, −0.5] |
D1 | Mild drought | [−1, −0.5] | [−1.99,−1] | [−1, 0] | [−0.45,−0.28] | [−1, −0.5] |
D2 | Moderate drought | [−1, −1.5] | [−2.99,−2] | [−2, −1] | [−0.93, −0.46] | [−1.5, −1] |
D3 | Severe drought | [−1.5, −2] | [−3.99,−3] | [−3, −2] | [−1.44, −0.94] | [−2, −1.5] |
D4 | Extreme drought | [−2, −∞) | (−∞,−4] | [−3, −∞) | [−1.45, −∞) | [−2, −∞) |
NRB | CCDI | GGDI | WSDI | SPI | SSI | MSDIe | MSDIp | SPEI | PDSI |
---|---|---|---|---|---|---|---|---|---|
CCDI | 1 | ||||||||
GGDI | − | 1 | |||||||
WSDI | 0.53 | 0.56 | 1 | ||||||
SPI | 0.50 | 0.70 | 0.67 | 1 | |||||
SSI | − | 0.74 | 0.66 | 0.81 | 1 | ||||
MSDIe | − | 0.73 | 0.69 | 0.92 | 0.97 | 1 | |||
MSDIp | − | 0.73 | 0.69 | 0.94 | 0.96 | 0.99 | 1 | ||
SPEI | 0.50 | 0.72 | 0.51 | 0.91 | 0.72 | 0.82 | 0.83 | 1 | |
PDSI | 0.51 | 0.54 | 0.71 | 0.84 | 0.74 | 0.81 | 0.84 | 0.67 | 1 |
Event # | Time Period/Category | CCDI | WSDI | GGDI | SPEI | SSI | SPI | MSDI (e and p) | PDSI | Range |
---|---|---|---|---|---|---|---|---|---|---|
1 | 11/2006–02/2007 | +1.76 (W4) | +1.20 (W2) | +2.79 (W4) | +0.91 (W1) | +2.25 (W3) | +2.25 (W3) | +2.25 (W3) | +1.90 (W1) | W2/W4 |
2 | 09/2012–01/2013 | +1.72 (W4) | +1.27 (W2) | +0.15 (No) | +0.35 (No) | +0.27 (No) | +1.30 (W1) | +0.27 (No) | +0.85 (No) | No/W4 |
3 | 11/2015–06/2015 | +1.72 (W4) | +0.71 (W1) | +0.82 (W1) | +0.96 (W1) | +0.45 (No) | +0.82 (W1) | +0.49 (No) | +1.86 (W1) | No/W4 |
4 | 09/2019–12/2019 | +1.92 (W4) | +2.79 (W4) | +0.94 (W1) | +1.68 (W2) | −2.15 (D4) | +2.15 (W4) | −2.12 (D4) | +2.65 (W2) | W2/W4 |
5 | 01/2003–05/2003 | −0.85 (D2) | −1.17 (D1) | −1.92 (D3) | −1.16 (D2) | −0.22 (No) | −0.51 (D1) | −0.95 (D1) | −1.75 (D1) | No/D3 |
6 | 02/2004–03/2007 | −2.54 (D4) | −2.89 (D3) | −0.94 (D1) | −1.25 (D2) | −0.51 (D1) | −0.85 (D1) | −1.45 (D2) | −1.15 (D1) | D1/D4 |
7 | 07/2009–12/2009 | −0.89 (D2) | −0.63 (D2) | −0.82 (D1) | −1.61 (D3) | −1.12 (D2) | −1.32 (D2) | −2.12 (D4) | −2.52 (D2) | D1/D4 |
8 | 04/2010–09/2011 | −1.76 (D4) | −1.61 (D2) | −1.08 (D2) | −1.67 (D3) | −1.10 (D2) | −1.02 (D2) | −1.53 (D3) | −2.56 (D2) | D2/D4 |
9 | 12/2014–11/2015 | −1.13 (D3) | −1.43 (D2) | −1.05 (D2) | −1.23 (D2) | −2.25 (D4) | −0.75 (D1) | −2.25 (D4) | −3.25 (D3) | D1/D4 |
10 | 09/2016–01/2017 | −2.08 (D4) | −1.55 (D2) | −1.52 (D3) | −0.95 (D1) | −1.51 (D3) | −0.49 (No) | −1.75 (D3) | −2.35 (D2) | No/D4 |
11 | 11/2018–03/2019 | −0.68 (D2) | −0.53 (D1) | −1.69 (D3) | −1.07 (D2) | −2.15 (D4) | −0.28 (No) | −2.24 (D4) | −2.85 (D2) | No/D4 |
S.N | Time Period | NRB-Affected Countries | Duration (No of Months) | Deficit/Surplus Peak (PDSI * and WSDI ** in Cm) and Date | Severity Level | # Affected People |
---|---|---|---|---|---|---|
Flood | ||||||
1 | 1962 | KEN | 18 | +4.1 (09/1964) | Extreme | 15,000 |
2 | 1978/1979 | SDN, EGY, ETH | 11 | +3.6 (12/1978) | Severe | 167,000 |
3 | 1988 | SDN, RWA, ETH | 12 | +2.2 (06/1988) | Moderate | 2,568,918 |
4 | 1998/1999 | SDN, KEN, ETH | 6 | +2.4 (10/1999) | Moderate | 1,421,041 |
5 | 2007 | SDN, ETH, KEN, RWA | 6 | +2.2 (04/2007) | Severe | 857,872 |
6 | 2012/2013 | SSD, SDN, ETH, KEN, RWA | 11 | +1.1 (06/2012) | Moderate | 1,832,398 |
7 | 2015/2016 | SSD, SDN, ETH, KEN, RWA | 5 | +1.7 (08/2015) | Severe | 974,814 |
8 | 2019 | SSD, SDN, ETH, KEN, RWA | 3 | +2.2 (01/2019) | Severe | 1,726,595 |
Drought | ||||||
9 | 1983–1984 | TZA, RWA, ETH, KEN, SDN | 8 | −4.3 (05/1984) | Extreme | 19,070,000 |
10 | 1987/1988 | TZA, UGA, ETH, RWA, SDN | 11 | −3.8 (04/1987) | Severe | 11,160,000 |
11 | 1997/1999 | TZA, UGA, ETH, RWA, KEN | 28 | −2.9 (09/1998) | Moderate | 23,000,000 |
12 | 12/2002–5/2003 | TZA, UGA, ETH, RWA | 6 | −1.2 (04/2005) | Slight | 12,600,000 |
13 | 01/2004–06/2005 | SSD, KEN, ETH, UGA | 18 | −2.8 (02/2006) | Severe | 12,954,000 |
14 | 01/2007–05/2007 | Widespread | 5 | −0.6 (02/2010) | Moderate | No data |
15 | 1/2009–06/2011 | SSD, KEN, ETH, UGA | 24 | −1.6 (02/2011) | Moderate | 20,274,679 |
16 | 11/2011–05/2012 | SDN, KEN, ETH, TZA | 6 | −1.4 (04/2012) | Moderate | 8,950,000 |
17 | 2014–2015 | SDN, KEN, ETH | 7 | −1.4 (10/2015) | Moderate | 12,600,000 |
18 | 2/2018–5/2018 | Widespread | 4 | −1.1 (04/2018) | Slight | No data |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nigatu, Z.M.; Fan, D.; You, W.; Melesse, A.M. Hydroclimatic Extremes Evaluation Using GRACE/GRACE-FO and Multidecadal Climatic Variables over the Nile River Basin. Remote Sens. 2021, 13, 651. https://doi.org/10.3390/rs13040651
Nigatu ZM, Fan D, You W, Melesse AM. Hydroclimatic Extremes Evaluation Using GRACE/GRACE-FO and Multidecadal Climatic Variables over the Nile River Basin. Remote Sensing. 2021; 13(4):651. https://doi.org/10.3390/rs13040651
Chicago/Turabian StyleNigatu, Zemede M., Dongming Fan, Wei You, and Assefa M. Melesse. 2021. "Hydroclimatic Extremes Evaluation Using GRACE/GRACE-FO and Multidecadal Climatic Variables over the Nile River Basin" Remote Sensing 13, no. 4: 651. https://doi.org/10.3390/rs13040651
APA StyleNigatu, Z. M., Fan, D., You, W., & Melesse, A. M. (2021). Hydroclimatic Extremes Evaluation Using GRACE/GRACE-FO and Multidecadal Climatic Variables over the Nile River Basin. Remote Sensing, 13(4), 651. https://doi.org/10.3390/rs13040651