Potentialities and Limitations of Research on VHRS Data: Alexander the Great’s Military Camp at Gaugamela on the Navkur Plain in Kurdish Iraq as a Test Case
Abstract
:1. Introduction
1.1. Historical Framework
1.2. Potentials and Problems of the Earth Observation Imagery
2. Materials and Methods
2.1. Data
2.2. Data Processing for Image Enhancement: Methodology
- The development of different color composites (CC)
- Image data fusion/spatial enhancement: increasing the spatial resolution through the integration of multispectral and panchromatic images
- Use of principle component analysis (PCA) transformation
- Use of decorrelation stretch
- Use of vegetation indices
2.2.1. Development of Different Color Composites
- CC235 (equivalent of TM123, natural colors, TC—true color)
- FCC357 (equivalent of TM234, CIR—color infrared: color composite: G + B + NIR)
- FCC478 (high positions in ranking the OIF, presence of unusual bands—yellow and red edge)
- FCC158 (high positions in ranking the MOIK)
2.2.2. Image Data Fusion/Spatial Enhancement
2.2.3. Use of Principle Component Analysis (PCA) Transformation
- Pleiades: CC (PC1, PC2 PC3), CC (PC1, PC2, PC4)
- WorldView-2: CC (PC1, PC2, PC3), CC (PC1, PC4, PC5), CC (PC2, PC4, PC7), CC (PC6, PC7, PC8)
2.2.4. Use of Decorrelation Stretch
2.2.5. Use of Vegetation Indices
2.3. Interpretation of Imagery Data
- Self-correction was carried out on other sets of image data, which led to the confirmation of anomalies/features or the deciphering of their origin as not being related to the conducted research, and thus a reduction of identifications from the initial list.
- After positive verification, the documentation was sufficient to find a feature/prospective area in the field for final classification/verification.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hackmann, F. Die Schlacht bei Gaugamela: Eine Untersuchung zur Geschichte Alexanders D. Gr. und Ihren Quellen Nebst Einer Beilage; Buchdruckerei von Heinrich John: Haale an der Saale, Germany, 1902. [Google Scholar]
- Sushko, S. Gaugamela, the Modern Qaraqosh; The Ukrainian Academy of Sciences of America: Chicago, IL, USA, 1936. [Google Scholar]
- Marsden, E.W. The Campaign of Gaugamela; Liverpool University Press: Liverpool, UK, 1964. [Google Scholar]
- Devine, A.M. The Battle of Gaugamela: A Tactical and Source—Critical Study. Anc. World 1986, 13, 87–115. [Google Scholar]
- Badian, E. Gaugamela. Encycl. Iran. 2000, 10, 332–333. [Google Scholar]
- Holt, F.L. Alexander the Great and the Mystery of the Elephant Medallions; University of California Press: Berkley, CA, USA, 2003. [Google Scholar]
- Pietrykowski, J. Great Battles of the Hellenistic World; Pen and Sword Books: Barnsley, UK, 2012. [Google Scholar]
- Roisman, J. Alexander the Great: Ancient and Modern Perspectives; University of California Press: Berkley, CA, USA, 1995. [Google Scholar]
- Baynham, E. The ancient evidence for Alexander the Great. In Brill’s Companion to Alexander the Great; Roisman, J., Ed.; Brill: Leiden, The Netherlands; Boston, MA, USA, 2003; pp. 3–29. [Google Scholar]
- Heckel, W.; Yardley, J.C. Alexander the Great. Historical Sources in Translation; Blackwell Publishing: Malden, MA, USA, 2005. [Google Scholar]
- Worthington, I. Alexander the Great: A Reader; Psychology Press: London, UK, 2005. [Google Scholar]
- Cartledge, P. Alexander the Great. The Hunt for a New Past; McMillan: London, UK, 2005. [Google Scholar]
- Zambrini, A. The Historians of Alexander the Great. In A Companion to Greek and Roman Historiography; Marincola, J., Ed.; Blackwell: Malden, MA, USA, 2007; pp. 210–220. [Google Scholar]
- Briant, P. The Empire of Darius III in Perspective. In Alexander the Great: A New History; Heckel, W., Trittle, L., Eds.; Wiley-Blackwell: Chichester, UK; Malden, MA, USA, 2009; pp. 141–170. [Google Scholar]
- Niebuhr, C. Carsten Niebuhrs Reisebeschreibung nach Arabien und Andern Umliegenden Ländern; (Band 2); N. Müller: Kopenhagen, Denmark, 1776. [Google Scholar]
- Spiegel, F. Die Alexandersage bei den Orientalen; Verlag von Wilhelm Engelmann: Leipzig, Germany, 1851. [Google Scholar]
- Schweiger-Lerchenfeld, A. Ingenieur Josef Černik’s Technische Studien-Expedition Durch Die Gebiete Des Euphrat Und Tigris Nebst Ein-Und Ausgangs-Routen Durch Nord-Syrien, 2. H.; Justus Perthes: Gotha, Germany, 1876. [Google Scholar]
- Hoffmann, G. Auszüge aus Syrischen Akten Persischer Märtyrer; Brockhaus: Leipzig, Germany, 1880. [Google Scholar]
- Sachau, E. Reise in Syrien und Mesopotamien; Brockhaus: Leipzig, Germany, 1883. [Google Scholar]
- Von Oppenheim, M. Vom Mittelmeer zum Persischen Golf durch den Haurän, die Syrische Wuüste und Mesopotamien; D. Reimer: Berlin, Germany, 1900. [Google Scholar]
- Zouboulakis, K. “Carrying the Glory of the Great Battle.” The Gaugamela battlefield: Ancient sources, modern views and topographical problems. In The Archaeology of the Kurdistan Region of Iraq and Adjacent Regions; Kopanias, K., McGinnis, J., Eds.; Archaeopress: Cambridge, UK, 2016; pp. 437–455. [Google Scholar]
- Stein, A. Notes on Alexander’s crossing of the Tigris and the battle of Arbela. Geogr. J. 1942, 100, 155–164. [Google Scholar] [CrossRef]
- Kennedy, D.L.; Gregory, S. Sir Aurel Stein’s Limes Report: The Full Text of M.A. Stein’s Unpublished Limes Report (His Aerial and Ground Reconnaissances in Iraq and Transjordan in 1938–39). Edited and with a Commentary and Bibliography by Shelagh Gregory and David Kennedy; with Maps and Figures Drawn by Julie Kennedy; B.A.R.: Oxford, UK, 1985. [Google Scholar]
- Markwart, J. Untersuchungen zur Geschichte von Eran, B. 10, H. 1; Dieterich’sche Verlagsbuchhandlung Theodor Weicher: Göttingen, Germany, 1905. [Google Scholar]
- Herzfeld, E. Untersuchungen über die historische Topographie der Landschaft am Tigris, kleinen Zab und Gebel Ḥamrîn. Memnon 1907, 1, 89–143, 217–238. [Google Scholar]
- Streck, M. Gaugamela. In Paulys Realenencyclopädie der ClassischenAlterturmswissenschaft; J. B. Metzler: Stuttgart, Germany, 1910; Volume 13, pp. 862–865. [Google Scholar]
- Judeich, W. Gaugamela. In Antike Schlachtfelder IV; Kromayer, J., Veith, G., Eds.; Weidmann: Berlin, Germany, 1931; pp. 372–384. [Google Scholar]
- Schachermeyr, F. Alexander der Grosse: Das Problem seiner Persönlichkeit und Seines Wirkens; Verlag der Österreichischen Akademie der Wissenschaften: Wien, Austria, 1973. [Google Scholar]
- Fiey, J.M. Assyrie chrétienne. Contribution à L’Etude de L’Histoire et de la Géographie Ecclésiastiques et Monastiques du Nord de l’Iraq; Institut des lettres orientales de Beyrouth: Beirut, Lebanon, 1965. [Google Scholar]
- Bosworth, A.B. A Historical Commentary on Arrian’s History of Alexander; Clarendon Press: Oxford, UK, 1980. [Google Scholar]
- Lane Fox, R. Alexander the Great; Penguin: London, UK, 1986. [Google Scholar]
- Dąbrowa, E. Gaugamela 331 p.n.e.; Bellona: Warszawa, Poland, 1988. [Google Scholar]
- Bernard, P. Nouvelle contribution de l’épigraphie cunéiforme à l’histoire Hellénistique. Bull. Corresp. Hellénique 1990, 114, 513–541. [Google Scholar] [CrossRef]
- Reade, J.E. Greco-Parthian Nineveh. Iraq 1998, 60, 65–83. [Google Scholar] [CrossRef]
- Nawotka, K. Alexander the Great; Scholars Publishing: Cambridge, UK, 2010. [Google Scholar]
- Reade, J.E.; Anderson, J.R. Gunduk, Khanes, Gaugamela, Gali Zardak—Notes on Navkur and nearby rock-cut sculptures in Kurdistan. Z. Assyriol. 2013, 103, 69–123. [Google Scholar]
- Droysen, J.G. Geschichte des Hellenismus, Vol. I, 1–2, Geschicthe Alexanders des Grossen; F.A. Perthes: Gotha, Germany, 1877. [Google Scholar]
- Tarn, W. Hellenistic Civilization; Arnold: London, UK, 1952. [Google Scholar]
- Fuller, J.F.C. The Generalship of Alexander the Great; Eyre & Spottiswoode: London, UK, 1958. [Google Scholar]
- Zouboulakis, K. The Topography of the Battle of Gaugamela: Contributing to an Old Controversy. Pharos 2015, 21, 31–62. [Google Scholar]
- MacGinnis, J. Kurdistan: A new dawn breaks for Near eastern archaeology. Curr. World Archaeol. 2014, 67, 30–33. [Google Scholar]
- Kopanias, K.; MacGinnis, J. (Eds.) Archaeological Research in the Kurdistan and Adjacent Regions; Archaeopress: Oxford, UK, 2016. [Google Scholar]
- Ur, J. The Archaeological Renaissance in the Kurdistan Region of Iraq. Near East. Archaeol. 2017, 80, 176–187. [Google Scholar] [CrossRef] [Green Version]
- Morandi Bonacossi, D.; Iamoni, M. Landscape and settlement in the eastern Upper Iraqi Tigris and Navkur plains: The Land of Nineveh archaeological project, seasons 2012–2013. Iraq 2015, 77, 9–39. [Google Scholar] [CrossRef]
- Morandi Bonacossi, D. The Land of Nineveh Archaeological Project. Assyrian Settlement in the Nineveh Hinterland: A View from the Centre. In The Provincial Archaeology of the Assyrian Empire; MacGinnis, J., Wicke, D., Greenfield, T., Eds.; McDonald Institute for Archaeological Research: Cambridge, UK, 2016; pp. 141–150. [Google Scholar]
- Palermo, R. Filling the Gap: The Upper Tigris region from the fall of Nineveh to the Sasanians. Historical and Archaeological reconstruction through the data from The Land of Nineveh Archaeological Project. In Archaeological Research in the Kurdistan and Adjacent Regions; Kopanias, K., MacGinnis, J., Eds.; Archaeopress: Oxford, UK, 2016; pp. 266–276. [Google Scholar]
- Whatley, N. On the Possibility of Reconstructing Marathon and Other Ancient Battles. J. Hell. Stud. 1964, 84, 121–139. [Google Scholar] [CrossRef]
- Fromherz, P. The Battlefield of Marathon: The Tropaion, Herodotos, and E. Curtius. Hist. Z. Gesch. 2011, 60, 383–412. [Google Scholar]
- Marciak, M.; Sobiech, M.; Pirowski, T. Alexander the Great’s Route to Gaugamela and Arbela. Klio 2020, 102, 536–559. [Google Scholar] [CrossRef]
- Engels, D. Alexander and the Logistic of the Macedonian Army; University of California Press: Berkeley, CA, USA, 1978. [Google Scholar]
- Gabriel, R.A. Philip II of Macedonia: Greater than Alexander; Potomac Books: Washington, DC, USA, 2010. [Google Scholar]
- Karunanithy, D. The Macedonian War Machine 359-281 BC; Pen and Sword: London, UK, 2013. [Google Scholar]
- Anderson, J. Military Theory and Practice in the Age of Xenophon; University of California Press: Berkeley, CA, USA; London, UK, 1970. [Google Scholar]
- Pritchett, W.K. The Greek State at War; University of California Press: Berkeley/Los Angeles, CA, USA; London, UK, 1974. [Google Scholar]
- Krentz, P. War. In The Cambridge History of Greek and Roman Warfare; Sabin, P., van Wees, H., Whitby, M., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 147–185. [Google Scholar]
- Lévêque, P.; Pyrrhos, E. De Boccard: Paris, France, 1957.
- Champion, J. Pyrrhus of Epirus; Pen and Sword Books: Barnsley, UK, 2009. [Google Scholar]
- Roth, J. The Logistics of the Roman Army at War (264 BC-AD 235); Brill: Leiden, The Netherlands; Boston, MA, USA, 1999. [Google Scholar]
- Hanel, N. Military Camps, Canabae, and Vici: The Archaeological Evidence. In Companion to the Roman Army; Erdkamp, P.A., Ed.; Willey: Oxford, UK, 2007; pp. 395–416. [Google Scholar]
- Bishop, M.C. Handbook to Roman Legionary Fortresses; Pen and Sword Books: Barnsley, UK, 2012. [Google Scholar]
- Küßner, M.; Schüler, T. Truppen in Thüringen. Nordöstlichste römische Militäranlage entdeckt. Archäologie Dtschl. 2014, 3, 6. [Google Scholar]
- Richardson, A. The Numerical Basis of Roman Camps. Oxf. J. Archaeol. 2000, 19, 425–437. [Google Scholar] [CrossRef]
- Richardson, A. The Order of Battle in the Roman Army: Evidence from Marching Camps. Oxf. J. Archaeol. 2001, 20, 171–185. [Google Scholar] [CrossRef]
- Kayes, S. Roman Marching Camps in Britain: GIS, Statistical Analysis and Hydrological Examination of Known Marching Camps, Resulting in the Prediction of Possible Camp Sites. 2013. Available online: http://www.bandaarcgeophysics.co.uk/arch/roman_marching_camps_uk.html (accessed on 25 February 2021).
- Tucker, D.J.; Hauser, S. Beyond the World Heritage Site: A Huge Enclosure Revealed at Hatra. Iraq 2006, 68, 183–190. [Google Scholar] [CrossRef]
- Hauser, S.; Tucker, D. The Final Onslaught: The Sasanian Siege of Hatra. Z. Orient-Archäologie 2009, 2, 106–139. [Google Scholar]
- James, S. Of Colossal Camps and a New Roman Battlefield: Remote Sensing, Archival Archaeology and the “Conflict Landscape” of Dura-Europos, Syria. In Understanding Roman Frontiers: A Celebration for Professor Bill Hanson; Breeze, D.J., Jones, R.H., Oltean, I.A., Hanson, W.S., Eds.; John Donald: Edinburgh, UK, 2015; pp. 328–345. [Google Scholar]
- Ur, J.A. Google Earth and Archaeology. SAA Archaeol. Rec. 2006, 6, 35–38. [Google Scholar]
- Parcak, S.H. Satellite remote sensing for Archaeology; Routledge: London, UK, 2009. [Google Scholar]
- Kalayci, T.; Lasaponara, R.; Wainwright, J.; Masini, N. Multispectral Contrast of Archaeological Features: A Quantitative Evaluation. Remote Sens. 2019, 11, 913. [Google Scholar] [CrossRef] [Green Version]
- Ur, J.A. Spying on the Past: Declassified Intelligence Satellite Photographs and Near Eastern Landscapes. Near East. Archaeol. 2013, 76, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Ur, J.A. CORONA Satellite Photography and Ancient Road Networks: A Northern Mesopotamian Case Study. Antiquity 2003, 77, 102–115. [Google Scholar] [CrossRef] [Green Version]
- Casana, J.; Cothren, J.; Kalayci, T. Swords into Ploughshares: Archaeological Applications of CORONA Satellite Imagery in the Near East. Internet Archaeol. 2012, 32. [Google Scholar] [CrossRef]
- Cavalli, R.M.; Pascucci, S.; Pignatti, S. Optimal Spectral Domain Selection for Maximizing Archaeological Signatures: Italy Case Studies. Sensors 2009, 9, 1754–1767. Available online: https://www.mdpi.com/2072-4292/11/6/725/htm (accessed on 25 February 2021). [CrossRef] [Green Version]
- Jensen, J.R. Remote Sensing of the Environment: An Earth Resource Perspective; Prentice Hall: Upper Saddle River, NJ, USA, 2000. [Google Scholar]
- Lillesand, T.; Kiefer, R.W.; Chipman, J. Remote Sensing and Image Interpretation; Wiley: New York, NY, USA, 2015. [Google Scholar]
- Mather, P.M. Computer Processing of Remotely-Sensed Images: An Introduction; Wiley: New York, NY, USA, 2005. [Google Scholar]
- Richards, J.A. Remote Sensing Digital Image Analysis. An Introduction; Springer: Berlin, Germany, 2013. [Google Scholar]
- Schowengerdt, R.A. Remote Sensing: Models and Methods for Image Processing; Academic Press: London, UK, 2007. [Google Scholar]
- Evans, L.; Mourad, A.L. DStretch® and Egyptian tomb paintings: A case study from Beni Hassan. J. Archaeol. Sci. Rep. 2018, 18, 78–84. [Google Scholar] [CrossRef]
- Peppa, M.V.; Mills, J.P.; Fieber, K.D.; Haynes, I.; Turner, S.; Turner, A.; Douglas, M.; Bryan, P.G. Archaeological Feature Detection From Archive Aerial Photography with a Sfm-Mvs and Image Enhancement Pipeline. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, Riva del Garda, Italy, 4–7 June 2018; Volume XLII-2. [Google Scholar]
- Luo, L.; Wang, X.; Guo, H.; Lasaponara, R.; Zong, X.; Masini, N.; Wang, G.; Shi, P.; Khatteli, H.; Chen, F.; et al. Airborne and spaceborne remote sensing for archaeological and cultural heritage applications: A review of the century (1907–2017). Remote Sens. Environ. 2019, 232, 111280. [Google Scholar] [CrossRef]
- Banning, E.B. Archaeological Survey; Kluwer Academic; Plenum Publishers: London, UK, 2002. [Google Scholar]
- Batayneh, A. Archaeogeophysics–archaeological prospection—A mini review. J. King Saud Univ. Sci. 2011, 23, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Fuldain González, J.J.; Varón Hernández, F.R. NDVI Identification and Survey of a Roman Road in the Northern Spanish Province of Álava. Remote Sens. 2019, 11, 725. [Google Scholar] [CrossRef] [Green Version]
- Lasaponara, R.; Masini, N. Satellite Synthetic Aperture Radar in Archaeology and Cultural Landscape: An Overview. Archaeol. Prospect. 2013, 20, 71–78. [Google Scholar] [CrossRef]
- Monterroso Checa, A.; Martínez Reche, T. COSMO SkyMed X-Band SAR application—Combined with thermal and RGB images—In the archaeological landscape of Roman Mellaria (Fuente Obejuna-Córdoba, Spain). Archaeol. Prospect. 2018, 25, 301–314. [Google Scholar] [CrossRef]
- Linck, R.; Busche, T.; Buckreuss, S.; Fassbinder, J.W.E.; Seren, S. Possibilities of Archaeological Prospection by High-resolution X-band Satellite Radar—A Case Study from Syria. Archaeol. Prospect. 2013, 20, 97–108. [Google Scholar] [CrossRef]
- Stewart, C. Detection of Archaeological Residues in Vegetated Areas Using Satellite Synthetic Aperture Radar. Remote Sens. 2017, 9, 118. [Google Scholar] [CrossRef] [Green Version]
- Stewart, C.; Montanaro, R.; Sala, M.; Riccardi, P. Feature extraction in the north sinai desert using spaceborne Synthetic Aperture Radar: Potential archaeological applications. Remote Sens. 2016, 8, 825. [Google Scholar] [CrossRef] [Green Version]
- Cavalli, R.M.; Colosi, F.; Palombo, A.; Pignatti, S.; Poscolieri, M. Remote hyperspectral imagery as a support to archaeological prospection. J. Cult. Herit. 2007, 8, 272–283. [Google Scholar] [CrossRef]
- Aqdus, S.A.; Hanson, W.S.; Drummond, J. The potential of hyperspectral and multi-spectral imagery to enhance archaeological cropmark detection: A comparative study. J. Archaeol. Sci. 2012, 39, 1915–1924. [Google Scholar] [CrossRef]
- Doneus, M.; Verhoeven, G.; Atzberger, C.; Wess, M.; Ruš, M. New ways to extract archaeological information from hyperspectral pixels. J. Archaeol. Sci. 2014, 52, 84–96. [Google Scholar] [CrossRef] [Green Version]
- Agapiou, A.; Hadjimitsis, D.G.; Alexakis, D.D. Evaluation of Broadband and Narrowband Vegetation Indices for the Identification of Archaeological Crop Marks. Remote Sens. 2012, 4, 3892–3919. [Google Scholar] [CrossRef] [Green Version]
- Fisher, C.T.; Cohen, A.S.; Fernández-Diaz, J.C.; Leisz, S.J. The application of airborne mapping LiDAR for the documentation of ancient cities and regions in tropical regions. Quat. Int. 2017, 448, 129–138. [Google Scholar] [CrossRef]
- Doneus, M.; Miholjek, I.; Mandlburger, G.; Doneus, N.; Verhoeven, G.; Briese, C.; Pregesbauer, M. Airborne laser bathymetry for documentation of submerged archaeological sites in shallow water, ISPRS—International Archives of the Photogrammetry. Remote Sens. Spat. Inf. Sci. 2015, XL-5/W5, 99–107. [Google Scholar]
- Menéndez Blanco, A.; García Sánchez, J.; Costa-García, J.M.; Fonte, J.; González-Álvarez, D.; Vicente García, V. Following the Roman Army between the Southern Foothills of the Cantabrian Mountains and the Northern Plains of Castile and León (North of Spain): Archaeological Applications of Remote Sensing and Geospatial Tools. Geosciences 2020, 10, 485. [Google Scholar] [CrossRef]
- Lasaponara, R.; Masini, N. Detection of archaeological crop marks by using satellite QuickBird multispectral imagery. J. Archaeol. Sci. 2007, 34, 214–221. [Google Scholar] [CrossRef]
- Wilkinson, T.J.; Tucker, D.J. Settlement Development in the North Jazira, Iraq: A Study of the Archaeological Landscape; David Brook Company: Oakville, CT, USA, 1995. [Google Scholar]
- Wilkinson, T.J. Archaeological Landscapes of the Near East; University of Arizona Press: Tucson, AZ, USA, 2003. [Google Scholar]
- Ur, J.A. Urbanism and Cultural Landscapes in Northeastern Syria: The Tell Hamoukar Survey, 1999–2001; Oriental Institute Publication: Chicago, IL, USA, 2010. [Google Scholar]
- Ur, J.A. Landscapes of Movement in the Ancient Near East. In Proceedings of the 7th International Congress on the Archaeology of the Ancient Near East, 12–16 April 2010, British Museum and UCL, London, UK; Matthews, R., Curtis, J., Eds.; Harrassowitz: Wiesbaden, Germany, 2012; pp. 521–538. [Google Scholar]
- Beauchemin, M.; Fung, K.B. On Statistical Band Selection for Image Visualization. Photogramm. Eng. Remote Sens. 2001, 67, 571–574. [Google Scholar]
- Moik, J.G. Digital Processing of Remotely Sensed Images; NASA Government Printing Office: Washington, DC, USA, 1980. [Google Scholar]
- Chavez, P.S.; Guptill, S.C.; Bowell, J.A. Image Processing techniques for Thematic Mapper data. In Proceedings of the 50th American Society of Photogrammetry Annual Meeting, Washington, DC, USA, 11–16 March 1984; Volume 2, pp. 728–743. [Google Scholar]
- Schowengerdt, R.A. Reconstruction of multispatial, multispectral image data using spatial frequency content. Photogramm. Eng. Remote Sens. 1980, 46, 1325–1344. [Google Scholar]
- Chavez, P.S.; Anderson, J.A.; Sides, S.C. Comparison of Three Different Methods to Merge Multiresolution and Multispectral Data: Landsat TM and SPOT Panchromatic. Photogramm. Eng. Remote Sens. 1991, 57, 265–303. [Google Scholar]
- Pirowski, T. Ranking metod integracji obrazów teledetekcyjnych o różnej rozdzielczości—Ocena formalna scalenia danych Landsat TM i IRS-PAN. Arch. Fotogram. Kartogr. Teledetekcji 2009, 20, 343–358. [Google Scholar]
- Campbell, N.A. The decorrelation stretch transformation. Int. J. Remote Sens. 1996, 17, 1939–1949. [Google Scholar] [CrossRef]
- O’Leary, D.W.; Friedman, J.D.; Pohn, H.A. Lineament, Linear, Lineation: Some Proposed New Standards for Old Terms. Geol. Soc. Am. Bull. 1976, 87, 1463–1469. [Google Scholar] [CrossRef]
- Miller, V.C.; Miller, C.F. Photogeology; McGraw-Hill Book Company: New York, NY, USA, 1961. [Google Scholar]
- Jacobsen, T.; Lloyd, S. Sennacherib’s Aqueduct at Jerwan; The University of Chicago Press: Chicago, IL, USA, 1935. [Google Scholar]
- Reade, J.E. Studies in Assyrian Geography. Part 1: Sennacherib and the Waters of Nineveh; II: Notes on the inner provinces. Rev. Assyriol. 1978, 72, 47–72, 157–180. [Google Scholar]
- Bagg, A.M. Assyrische Wasserbauten: Landwirtschaftliche Wasserbauten im Kernland Assyriens Zwischen der 2. Hälfte des 2. und der 1. Hälfte des 1. Jahrtausends v. Chr.; P. von Zabern: Mainz am Rhein, Germany, 2000. [Google Scholar]
- Bagg, A.M. Irrigation in Northern Mesopotamia: Water for the Assyrian capitals (12th–7th centuries BC). Irrig. Drain. Syst. 2000, 14, 301–324. [Google Scholar] [CrossRef]
- Ur, J.A. Sennacherib’s Northern Assyrian Canals: New Insights from Satellite Imagery and Aerial Photography. Iraq 2005, 67, 317–345. [Google Scholar] [CrossRef]
- Reade, J. Xenophon’s route through Babylonia and Assyria. Iraq 2015, 77, 173–202. [Google Scholar] [CrossRef] [Green Version]
- McGrath, C.N.; Scott, C.; Cowley, D.; Macdonald, M. Towards a Satellite System for Archaeology? Simulation of an Optical Satellite Mission with Ideal Spatial and Temporal Resolution, Illustrated by a Case Study in Scotland. Remote Sens. 2020, 12, 4100. [Google Scholar] [CrossRef]
- Hauser, S. Where is the man of Hadr, who once built it and taxed the land by the Tigris and Chaboras? On the significance of the final siege of Hatra. In Hatra: Politics, Culture and Religion between Parthia and Rome; Dirven, L., Ed.; Franz Steiner: Stuttgart, Germany, 2013; pp. 119–142. [Google Scholar]
- Koliński, R. Insights into the Settlement History of Iraqi Kurdistan from the Upper Greater Zab Archaeological Reconnaissance Project. In The Archaeology of the Kurdistan Region of Iraq and Adjacent Regions; Kopanias, K., McGinnis, J., Eds.; Archaeopress: Oxford, UK, 2016; pp. 170–172. [Google Scholar]
Satellite | Pleiades 1A, 1B © CNES (2013, 2015), Distribution Airbus DS | WorldView-2 DigitalGlobe |
Repository | 11 April 2013 DS_PHR1A_201304110806519 12.12+24.12.2015 DS_PHR1B_201512120807314 DS_PHR1B_201512240814454 | 28 September 2014 ID10300100388F8C00 |
Panchromatic (PAN) (micrometers) | 0.47–0.83 | 0.45–0.80 |
Multispectral (MS) (micrometers) | 0.43–0.55 0.50–0.62 0.59–0.71 0.74–0.94 | 0.40–0.45 (coastal) 0.45–0.51 0.51–0.58 0.58–0.62 (yellow) 0.63–0.69 0.70–0.75 (red edge) 0.77–0.90 near-infrared (NIR 1) 0.86–1.05 (NIR 2) |
Resolution PAN/MS | 0.5 m/2 m | 0.5 m/2 m |
Radiometric resolution | 12 bits | 11 bits |
Possible Current State | Photointerpretation Features, Associations, Indicators | Abbreviations in Figures |
---|---|---|
Partly leveled rampart and trench through erosion and/or human activities (agriculture). Geographic Information System (GIS) encoding linear vector Linear exist (LE) | Direct features:
| c (contour) s (spectral) t (texture) sh (shadow) v (vegetation) g (geomorphology) p (paths) w (watercourses) |
Completely leveled rampart, silted up with natural processes and/or a trench covered by human activity (agriculture, urbanization) GIS encoding linear vector Linear non-exist (LNE) | Direct features:
| s (spectral) t (texture) m (moisture) v (vegetation) g (geomorphology), p (paths) w (watercourses) b (border) |
Possible Current State | Photointerpretation Features, Associations, Indicators | Abbreviations in Figures |
Agricultural activity, natural vegetation, local anomaly Geometrized remains of small features GIS encoding polygon vector P | Direct features:
| c (contour) sa (spectral anomaly) ta (texture anomaly) va (varied anomaly) paofr (prospective areas of research) |
Correlation | Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | Band 6 | Band 7 | Band 8 |
---|---|---|---|---|---|---|---|---|
Band 1 | 1 | 0.9340 | 0.8825 | 0.8623 | 0.8356 | 0.7703 | 0.6717 | 0.6653 |
Band 2 | 1 | 0.9845 2 | 0.9715 2 | 0.9639 2 | 0.9128 2 | 0.8255 | 0.8236 | |
Band 3 | 1 | 0.9916 1 | 0.9885 2 | 0.9620 2 | 0.8921 | 0.8902 | ||
Band 4 | 1 | 0.9937 1 | 0.9645 2 | 0.8825 | 0.8863 | |||
Band 5 | 1 | 0.9588 2 | 0.8814 | 0.8835 | ||||
Band 6 | 1 | 0.9695 2 | 0.9719 2 | |||||
Band 7 | 1 | 0.9939 1 | ||||||
Variance | 497.3 | 2006.2 | 11136.2 | 22750.1 | 14316.8 | 25889.6 | 20833.5 | 16444.3 |
(a) Position | Triplet of Bands | OIF | MOIK | (b) Position | Triplet of Bands | MOIK | OIF |
---|---|---|---|---|---|---|---|
1 | 467 | 161,927 | 2.81649 | 1 | 178 | 2.16059 | 136,477 |
2 | 468 | 155,867 | 2.82268 | 2 | 158 | 2.38432 1 | 113,316 |
3 | 478 | 153,252 1 | 2.76278 | 3 | 157 | 2.38862 | 119,853 |
4 | 567 | 151,225 | 2.80962 | 4 | 167 | 2.41145 | 135,825 |
5 | 457 | 150,427 | 2.75759 | 5 | 148 | 2.41391 | 124,845 |
6 | 456 | 147,887 | 2.91693 | 6 | 147 | 2.41655 | 131,372 |
7 | 678 | 147,676 | 2.93527 | 7 | 128 | 2.42287 | 80,617 |
8 | 367 | 145,477 | 2.82357 | 8 | 168 | 2.42944 | 128,191 |
9 | 568 | 145,260 | 2.81414 | 9 | 127 | 2.43113 | 86,966 |
10 | 347 | 144,850 | 2.76627 | 10 | 138 | 2.43791 | 105,033 |
Satellite | Pleiades | Pleiades | WorldView-2 |
---|---|---|---|
Date of registration | 11 April 2013 | 12.12+24.12.15 | 28 September 2014 |
PAN image with enhanced contrast (resolution 0.5 m) | No | No | Yes |
Spectral bands with enhanced contrast black-and-white (BW) (resolution 2 m) | No | No | Yes, 8 bands |
Spectral bands with enhanced contrast after merging (BW, resolution 0.5 m) | Yes, 4 bands | Yes, 4 bands | Yes, 8 bands (HPF and IHS) |
CCs (RGB 24 bit; 0.5 m) | 123, 234 | 123, 234 | 235, 357, 158, 478 (HPF and IHS) |
Color composites with decorrelation stretch (RGB 24 bit; 0. 5 m) | 123 | 123 | 235, 478 (HPF and IHS) |
Principal components of the PCA (BW, resolution 0.5 m) | 4 components | 4 components | 8 components (HPF and IHS) |
Color composites containing principal components (RGB 24 bit; 0.5 m) | PC1, PC2, PC3 PC1, PC4, PC2 | PC1, PC2, PC3 PC1, PC4, PC2 | PC1, PC2, PC3; PC1, PC4, PC5 PC2, PC4, PC7; PC6, PC7, PC8 (HPF and IHS) |
Vegetation indices Normalized Difference Vegetation Index (NDVI) and Perpendicular Vegetation Index (PVI) (8 bit) | Yes | Yes | Yes, (bands 5, 7 and 5, 8) (HPF and IHS) |
Ranking | Season | Unique Weight = 4 | Primary Weight = 2 | Secondary Weight = 1 | Score ∑ = U + P + S |
---|---|---|---|---|---|
1 | IV (autumn) | 4 | 6 | 4 | 32 |
2 | II (spring) | 2 | 2 | 9 | 21 |
3 | I (winter) | 0 | 5 | 4 | 14 |
Ranking | Photointerpretation Feature According to Table 2 | Unique Weight = 4 | Primary Weight = 2 | Secondary Weight = 1 | Score ∑ = U+P+S |
---|---|---|---|---|---|
1 | Moisture | 1 | 5 | 7 | 21 |
2 | Spectral | 1 | 4 | 1 | 13 |
3 | Texture | 0 | 1 | 8 | 10 |
4 | Geomorphology | 0 | 3 | 2 | 8 |
5 | Paths | 0 | 2 | 4 | 8 |
6 | Vegetation | 0 | 1 | 2 | 4 |
7 | Border | 0 | 1 | 1 | 3 |
Ranking | Materials | Primary Weight = 2 | Secondary Weight = 1 | Score ∑ = U + P + S |
---|---|---|---|---|
1 | CC color infrared (CIR) | 6 | 5 | 17 |
2 | CC WV2 158 | 2 | 12 | 16 |
3 | CC Pleiades PC1, PC2, PC3 | 3 | 10 | 16 |
4 | CC WV2 478 | 2 | 10 | 14 |
5 | CC WV2 PC1, PC2, PC3 | 2 | 9 | 13 |
6 | DS WV-2 478 | 2 | 6 | 10 |
7 | DS TC | 1 | 7 | 9 |
8 | CC TC | 1 | 6 | 8 |
9 | CC Pleiades PC1, PC4, PC2 | 1 | 5 | 7 |
10 | Vegetation indices | 0 | 5 | 5 |
11 | CC WV2 PC1, PC4, PC5 | 0 | 3 | 3 |
12 | CC WV2 PC2, PC4, PC5 | 0 | 3 | 3 |
13 | CC WV2 PC6, PC7, PC8 | 0 | 2 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pirowski, T.; Marciak, M.; Sobiech, M. Potentialities and Limitations of Research on VHRS Data: Alexander the Great’s Military Camp at Gaugamela on the Navkur Plain in Kurdish Iraq as a Test Case. Remote Sens. 2021, 13, 904. https://doi.org/10.3390/rs13050904
Pirowski T, Marciak M, Sobiech M. Potentialities and Limitations of Research on VHRS Data: Alexander the Great’s Military Camp at Gaugamela on the Navkur Plain in Kurdish Iraq as a Test Case. Remote Sensing. 2021; 13(5):904. https://doi.org/10.3390/rs13050904
Chicago/Turabian StylePirowski, Tomasz, Michał Marciak, and Marcin Sobiech. 2021. "Potentialities and Limitations of Research on VHRS Data: Alexander the Great’s Military Camp at Gaugamela on the Navkur Plain in Kurdish Iraq as a Test Case" Remote Sensing 13, no. 5: 904. https://doi.org/10.3390/rs13050904
APA StylePirowski, T., Marciak, M., & Sobiech, M. (2021). Potentialities and Limitations of Research on VHRS Data: Alexander the Great’s Military Camp at Gaugamela on the Navkur Plain in Kurdish Iraq as a Test Case. Remote Sensing, 13(5), 904. https://doi.org/10.3390/rs13050904