Groundwater Depletion Signals in the Beqaa Plain, Lebanon: Evidence from GRACE and Sentinel-1 Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Beqaa Plain, Lebanon
2.2. GRACE Data
2.3. GLDAS Data
2.4. Qaraaoun Reservoir Data
2.5. Calculating Groundwater Storage
2.6. InSAR Estimates of Land Subsidence from Sentinel-1
2.7. Data from In-Situ Wells
3. Results—Hydrologic Variables in the Beqaa Plain, Lebanon
3.1. Total Water Storage from GRACE
3.2. GLDAS Outputs: Soil Moisture, Snow Water Equivalent, and Canopy Water
3.3. Surface Water—The Qaraaoun Reservoir
3.4. Groundwater Storage in the Beqaa Plain
4. Verifying Results with Other Observations, Sentinel-1, and In-Situ Wells
4.1. Sentinel-1 Interferometric Synthetic Aperture Radar (InSAR) Signals of Land Subsidence
4.2. Monitoring Wells
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McCallum, A.M.; Andersen, M.S.; Giambastiani, B.M.S.; Kelly, B.F.J.; Acworth, R.I. River-aquifer interactions in a semi-arid environment stressed by groundwater abstraction. Hydrol. Process. 2012, 27, 1072–1085. [Google Scholar] [CrossRef]
- Huang, J.; Ji, M.; Xie, Y.; Wang, S.; He, Y.; Ran, J. Global semi-arid climate change over last 60 years. Clim. Dyn. 2016, 46, 1131–1150. [Google Scholar] [CrossRef] [Green Version]
- Molle, F.; Marie-Hélène, N.; Bassam, J.; Alvar, C.; Safa, B. Groundwater Governance in Lebanon: The Case of Central Beqaa; A Policy White Paper. No. 615-2018-4008; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2017. [Google Scholar]
- Woodhouse, C.A.; Meko, D.M.; Macdonald, G.M.; Stahle, D.W.; Cook, E.R. A 1,200-year perspective of 21st century drought in southwestern North America. Proc. Natl. Acad. Sci. USA 2010, 107, 21283–21288. [Google Scholar] [CrossRef] [Green Version]
- Famiglietti, J.S.; Lo, M.-H.; Ho, S.L.; Bethune, J.; Anderson, K.J.; Syed, T.H.; Swenson, S.C.; De Linage, C.R.; Rodell, M. Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys. Res. Lett. 2011, 38, 471. [Google Scholar] [CrossRef] [Green Version]
- Famiglietti, J.S. The global groundwater crisis. Nat. Clim. Chang. 2014, 4, 945–948. [Google Scholar] [CrossRef]
- Massoud, E.; Espinoza, V.; Guan, B.; Waliser, D. Global Climate Model Ensemble Approaches for Future Projections of Atmospheric Rivers. Earth’s Future 2019, 7, 1136–1151. [Google Scholar] [CrossRef] [Green Version]
- Massoud, E.C.; Lee, H.; Gibson, P.B.; Loikith, P.; Waliser, D.E. Bayesian Model Averaging of Climate Model Projections Constrained by Precipitation Observations over the Contiguous United States. J. Hydrometeorol. 2020, 21, 2401–2418. [Google Scholar] [CrossRef]
- Wootten, A.M.; Massoud, E.C.; Sengupta, A.; Waliser, D.E.; Lee, H. The Effect of Statistical Downscaling on the Weighting of Multi-Model Ensembles of Precipitation. Climate 2020, 8, 138. [Google Scholar] [CrossRef]
- Massoud, E.C.; Purdy, A.J.; Miro, M.E.; Famiglietti, J.S. Projecting groundwater storage changes in California’s Central Valley. Sci. Rep. 2018, 8, 12917. [Google Scholar] [CrossRef] [PubMed]
- Massoud, E.; Turmon, M.; Reager, J.; Hobbs, J.; Liu, Z.; David, C.H. Cascading Dynamics of the Hydrologic Cycle in California Explored through Observations and Model Simulations. Geosciences 2020, 10, 71. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Liu, P.-W.; Massoud, E.; Farr, T.G.; Lundgren, P.; Famiglietti, J.S. Monitoring Groundwater Change in California’s Central Valley Using Sentinel-1 and GRACE Observations. Geoscience 2019, 9, 436. [Google Scholar] [CrossRef] [Green Version]
- Scanlon, B.R.; Longuevergne, L.; Long, D. Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA. Water Resour. Res. 2012, 48, 04520. [Google Scholar] [CrossRef] [Green Version]
- Harbaugh, A.W.; Banta, E.R.; Hill, M.C.; McDonald, M.G. Modflow-2000, The U.S. Geological Survey Modular Ground—Water Model—User Guide to Modularization Concepts and the Ground-Water Flow Process; US Geological Survey: Reston, VA, USA, 2000. [Google Scholar]
- Margulis, S.A.; Cortés, G.; Girotto, M.; Durand, M. A Landsat-Era Sierra Nevada Snow Reanalysis (1985–2015). J. Hydrometeorol. 2016, 17, 1203–1221. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.-L.; Niu, G.-Y.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Longuevergne, L.; Manning, K.; Niyogi, D.; Tewari, M.; et al. The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. J. Geophys. Res. Space Phys. 2011, 116. [Google Scholar] [CrossRef]
- He, X.; Wada, Y.; Wanders, N.; Sheffield, J. Intensification of hydrological drought in California by human water management. Geophys. Res. Lett. 2017, 44, 1777–1785. [Google Scholar] [CrossRef] [Green Version]
- Zaitchik, B.F.; Rodell, M.; Reichle, R.H. Assimilation of GRACE Terrestrial Water Storage Data into a Land Surface Model: Results for the Mississippi River Basin. J. Hydrometeorol. 2008, 9, 535–548. [Google Scholar] [CrossRef]
- Xia, Y.L.; Mitchell, K.; Ek, M.; Sheffield, J.; Cosgrove, B.; Wood, E.; Luo, L.F.; Alonge, C.; Wei, H.L.; Meng, J.; et al. Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res. Atmos. 2012, 117, D03110. [Google Scholar] [CrossRef]
- Lo, M.; Famiglietti, J.S. Irrigation in California’s Central Valley strengthens the southwestern U.S. water cycle. Geophys. Res. Lett. 2013, 40, 301–306. [Google Scholar] [CrossRef] [Green Version]
- Faunt, C.C.; Hanson, R.; Belitz, K. Groundwater Availability of the Central Valley Aquifer, California; Professional Paper 1766; U.S. Geological Survey: Reston, VA, USA, 2009.
- Alley, W.M. Flow and Storage in Groundwater Systems. Science 2002, 296, 1985–1990. [Google Scholar] [CrossRef] [Green Version]
- Purdy, A.J.; David, C.H.; Sikder, S.; Reager, J.T.; Chandanpurkar, H.A.; Jones, N.L.; Matin, M.A. An Open-Source Tool to Fa-cilitate the Processing of GRACE Observations and GLDAS Outputs: An Evaluation in Bangladesh. Front. Environ. Sci. 2019, 7, 155. [Google Scholar] [CrossRef]
- Tapley, B.D.; Bettadpur, S.; Ries, J.C.; Thompson, P.F.; Watkins, M.M. Grace Measurements of Mass Variability in the Earth System. Science 2004, 305, 503–505. [Google Scholar] [CrossRef] [Green Version]
- Reager, J.T.; Thomas, A.C.; Sproles, E.A.; Rodell, M.; Beaudoing, H.K.; Li, B.; Famiglietti, J.S. Assimilation of GRACE Terres-trial Water Storage Observations into a Land Surface Model for the Assessment of Regional Flood Potential. Remote. Sens. 2015, 7, 14663–14679. [Google Scholar] [CrossRef] [Green Version]
- Shaban, A. Water Resources of Lebanon; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; p. 229. [Google Scholar]
- El Hage, M.; Robinson, C.A.; El-Baz, F.; Shaban, A. Fracture-controlled groundwater seeps into the Mediterranean Sea along the coast of Lebanon. Arab. J. Geosci. 2020, 13, 1–14. [Google Scholar] [CrossRef]
- Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-based estimates of groundwater depletion in India. Nat. Cell Biol. 2009, 460, 999–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voss, K.A.; Famiglietti, J.S.; Lo, M.; De Linage, C.; Rodell, M.; Swenson, S.C. Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region. Water Resour. Res. 2013, 49, 904–914. [Google Scholar] [CrossRef] [Green Version]
- Forootan, E.; Rietbroek, R.; Kusche, J.; Sharifi, M.; Awange, J.L.; Schmidt, M.W.; Omondi, P.; Famiglietti, J.S. Separation of large scale water storage patterns over Iran using GRACE, altimetry and hydrological data. Remote. Sens. Environ. 2014, 140, 580–595. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, V.M.; Wahr, J.; Swenson, S. Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys. Res. Lett. 2009, 36, 18401. [Google Scholar] [CrossRef] [Green Version]
- Moiwo, J.; Yang, Y.; Li, H.; Han, S.; Hu, Y. Comparison of GRACE with in situ hydrological measurement data shows stor-age depletion in Hai River basin, Northern China. Water SA 2009, 35, 663–670. [Google Scholar] [CrossRef] [Green Version]
- Feng, W.; Zhong, M.; Lemoine, J.M.; Biancale, R.; Hsu, H.T.; Xia, J. Evaluation of groundwater de-pletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measure-ments. Water Resour. Res. 2013, 49, 2110–2118. [Google Scholar] [CrossRef]
- Watkins, M.M.; Wiese, D.N.; Yuan, D.-N.; Boening, C.; Landerer, F.W. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth 2015, 120, 2648–2671. [Google Scholar] [CrossRef]
- Wiese, D.N.; Yuan, D.-N.; Boening, C.; Landerer, F.W.; Watkins, M.M. JPL GRACE Mascon Ocean, Ice, and Hydrology Equivalent Water Height RL05M.1 CRI Filtered Version 2. PO.DAAC, CA, USA. Available online: http://dx.doi.org/10.5067/TEMSC-2LCR5 (accessed on 1 October 2018).
- Khaki, M.; Ait-El-Fquih, B.; Hoteit, I.; Forootan, E.; Awange, J.; Kuhn, M. A two-update en-semble Kalman filter for land hydrological data assimilation with an uncertain constraint. J. Hydrol. 2017, 555, 447–462. [Google Scholar] [CrossRef] [Green Version]
- Khaki, M.; Ait-El-Fquih, B.; Hoteit, I.; Forootan, E.; Awange, J.; Kuhn, M. Unsupervised ensemble Kalman filtering with an uncertain constraint for land hydrological data assimilation. J. Hydrol. 2018, 564, 175–190. [Google Scholar] [CrossRef]
- Levy, M.C.; Neely, W.R.; Borsa, A.A.; Burney, J.A. Fine-scale spatiotemporal variation in sub-sidence across California’s San Joaquin Valley explained by groundwater demand. Environ. Res. Lett. 2020, 15, 104083. [Google Scholar] [CrossRef]
- Mora, O.; Lanari, R.; Mallorqui, J.; Berardino, P.; Sansosti, E. A new algorithm for monitoring localized deformation phenomena based on small baseline differential SAR interferograms. IEEE Int. Geosci. Remote Sens. Symp. 2003, 2, 2375–2383. [Google Scholar] [CrossRef]
- Sansosti, E.; Casu, F.; Manzo, M.; Lanari, R. Space-borne radar interferometry techniques for the generation of deformation time series: An advanced tool for Earth’s surface displacement analysis. Geophys. Res. Lett. 2010, 37, 1–9. [Google Scholar] [CrossRef]
# | Name | Coordinates | Depth (m) | Estimated Depletion (m) from 2015–2017 | |
---|---|---|---|---|---|
1 | AREC | 33°55′32″ | 36°04′49″ | 50 | 1 |
2 | El-Forzoul | 33°50′59″ | 35°57′24″ | 26 | 2 |
3 | ICARDA | 33°48′21″ | 35°59′31″ | 51 | 3 |
4 | Aamiq | 33°43′49″ | 35°47′07″ | 30 | 2–3 |
5 | Rayak | 33°51′09″ | 36°42′00″ | 95 | 10 |
6 | Tell Amara-1 | 33°51′45″ | 35°59′31″ | 25 | 3 |
7 | Tell Amara-2 | 33°51′42″ | 35°59′28″ | 78 | 3–5 |
8 | Tell Amara-3 | 33°51′40″ | 35°59′25″ | 64 | 3–5 |
9 | El-Marj | 33°45′49″ | 35°52′50″ | 20 | 1 |
10 | Ksara | 33°49′23″ | 35°53′50″ | 82 | 12 |
11 | Ta’anayel-1 | 33°48′13″ | 35°51′53″ | 10 | 2 |
12 | Ta’anayel-2 | 33°48′04″ | 35°51′47″ | 9 | 2 |
13 | Ta’anayel-3 | 33°48′01″ | 35°51′45″ | 9 | 1.5 |
14 | Dalhamieh | 33°48′35″ | 35°57′59″ | 60 | 6 |
15 | Jedieta -1 | 33°49′47″ | 35°50′24″ | 70 | 15 |
16 | Jedieta -2 | 33°49′40″ | 35°50′18″ | 65 | 12 |
17 | Jedieta -3 | 33°49′34″ | 35°50′15″ | 45 | 12 |
18 | Jedieta -4 | 33°49′37″ | 35°50′15″ | 30 | 8 |
19 | Ta’albaya | 33°48′38″ | 35°52′14″ | 126 | 5 |
20 | Mansoura-1 | 33°41′11″ | 35°48′37″ | 118 | 10 |
21 | Mansoura-2 | 33°40′55″ | 35°48′52″ | 85 | 10–12 |
22 | Mansoura-3 | 33°40′53″ | 35°48′41″ | 110 | 5-7 |
23 | Mansoura-4 | 33°40′47″ | 35°48′57″ | 97 | 5 |
24 | Kfer Zabad | 33°47′05″ | 35°59′46″ | 112 | 10 |
25 | Joub Jannine-1 | 33°38′29″ | 35°47′11″ | 125 | 8 |
26 | Joub Jannine-2 | 33°38′07″ | 35°46′59″ | 142 | 8 |
27 | Qaraaoun | 33°34′41″ | 35°43′21″ | 31 | 3 |
28 | Zahle-1 | 33°50′39″ | 35°54′16″ | 82 | 8–10 |
29 | Zahle-2 | 33°50′34″ | 35°54′04″ | 103 | 5 |
30 | Nasarieh | 33°45′54″ | 35°51′45″ | 56 | 3 |
31 | Houch Aamiq | 33°42′50″ | 35°47′00″ | 42 | 5 |
32 | Tell Al-Akhdar-1 | 33°44′09″ | 35°49′47″ | 65 | 2 |
33 | Tell Al-Akhdar-2 | 33°44′32″ | 35°49′20″ | 61 | 7 |
34 | Al- Manara-1 | 33°39′04″ | 35°52′48″ | 128 | 9 |
35 | Al-Manara-2 | 33°39′26″ | 35°52′49″ | 132 | 10–12 |
36 | A’ana-1 | 33°41′28″ | 35°45′41″ | 88 | 3 |
37 | A’ana-2 | 33°41′23″ | 35°45′42″ | 103 | 7 |
38 | Kob Elias-1 | 33°47′21″ | 35°49′29″ | 112 | 16 |
39 | Kob Elias-2 | 33°47′11″ | 35°49′30″ | 106 | 15 |
40 | Al-Khiyara-1 | 33°41′23″ | 35°51′08″ | 110 | 8 |
41 | Al-Khiyara-2 | 33°41′45″ | 35°50′42″ | 98 | 8–10 |
42 | Al-Khiyara-3 | 33°41′30″ | 35°50′41″ | 105 | 4–6 |
43 | Sa’ad Nayel-1 | 33°49′01″ | 35°52′55″ | 86 | 10 |
44 | Sa’ad Nayel-2 | 33°48′56″ | 35°52′27″ | 92 | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massoud, E.C.; Liu, Z.; Shaban, A.; Hage, M.E. Groundwater Depletion Signals in the Beqaa Plain, Lebanon: Evidence from GRACE and Sentinel-1 Data. Remote Sens. 2021, 13, 915. https://doi.org/10.3390/rs13050915
Massoud EC, Liu Z, Shaban A, Hage ME. Groundwater Depletion Signals in the Beqaa Plain, Lebanon: Evidence from GRACE and Sentinel-1 Data. Remote Sensing. 2021; 13(5):915. https://doi.org/10.3390/rs13050915
Chicago/Turabian StyleMassoud, Elias C., Zhen Liu, Amin Shaban, and Mhamad El Hage. 2021. "Groundwater Depletion Signals in the Beqaa Plain, Lebanon: Evidence from GRACE and Sentinel-1 Data" Remote Sensing 13, no. 5: 915. https://doi.org/10.3390/rs13050915
APA StyleMassoud, E. C., Liu, Z., Shaban, A., & Hage, M. E. (2021). Groundwater Depletion Signals in the Beqaa Plain, Lebanon: Evidence from GRACE and Sentinel-1 Data. Remote Sensing, 13(5), 915. https://doi.org/10.3390/rs13050915