NOAA-AVHRR Orbital Drift Correction: Validating Methods Using MSG-SEVIRI Data as a Benchmark Dataset
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wan, Z. New refinements and validation of the MODIS Land-Surface Temperature/Emissivity products. Remote Sens. Environ. 2008, 112, 59–74. [Google Scholar] [CrossRef]
- Hulley, G.C.; Hook, S.J. Generating Consistent Land Surface Temperature and Emissivity Products Between ASTER and MODIS Data for Earth Science Research. IEEE Trans. Geosci. Remote Sens. 2010, 49, 1304–1315. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Raissouni, N. Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco. Int. J. Remote Sens. 2000, 21, 353–366. [Google Scholar] [CrossRef]
- Price, J. Using spatial context in satellite data to infer regional scale evapotranspiration. IEEE Trans. Geosci. Remote Sens. 1990, 28, 940–948. [Google Scholar] [CrossRef] [Green Version]
- Sobrino, J.A.; Julien, Y.; Monteiro, G.S. Surface Temperature of the Planet Earth from Satellite Data. Remote Sens. 2020, 12, 218. [Google Scholar] [CrossRef] [Green Version]
- Sobrino, J.A.; Monteiro, G.S.; Julien, Y. Surface Temperature of the Planet Earth from Satellite Data over the Period 2003–2019. Remote Sens. 2020, 12, 2036. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Julien, Y. Exploring the Validity of the Long-Term Data Record V4 Database for Land Surface Monitoring. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3607–3614. [Google Scholar] [CrossRef]
- Susskind, J.; Piraino, P.; Rokke, L.; Iredell, L.; Mehta, A. Characteristics of the TOVS Pathfinder Path A Dataset. Bull. Am. Meteorol. Soc. 1997, 78, 1449–1472. [Google Scholar] [CrossRef]
- Gutman, G.G. On the monitoring of land surface temperatures with the NOAA/AVHRR: Removing the effect of satellite orbit drift. Int. J. Remote Sens. 1999, 20, 3407–3413. [Google Scholar] [CrossRef]
- Jin, M.; Treadon, R.E. Correcting the orbit drift effect on AVHRR land surface skin temperature measurements. Int. J. Remote Sens. 2003, 24, 4543–4558. [Google Scholar] [CrossRef]
- Pinheiro, A.; Privette, J.; Mahoney, R.; Tucker, C. Directional effects in a daily AVHRR land surface temperature dataset over Africa. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1941–1954. [Google Scholar] [CrossRef]
- Pinzon, J.; Brown, M.E.; Tucker, C.J.; Huang, N.E. Satellite Time Series Correction of Orbital Drift Artifacts Using Empirical Mode Decomposition. In EMD and Its Applications; Huang, N.E., Shen, S.S.P., Eds.; World Scientific: Singapore, Japan, 2005; pp. 285–295. [Google Scholar]
- Sobrino, J.A.; Julien, Y.; Atitar, M.; Nerry, F. NOAA-AVHRR Orbital Drift Correction from Solar Zenithal Angle Data. IEEE Trans. Geosci. Remote Sens. 2008, 46, 4014–4019. [Google Scholar] [CrossRef]
- Julien, Y.; Sobrino, J.A. Correcting AVHRR Long Term Data Record V3 estimated LST from orbital drift effects. Remote Sens. Environ. 2012, 123, 207–219. [Google Scholar] [CrossRef]
- Liu, X.; Tang, B.H.; Yan, G.; Li, Z.L.; Liang, S. Retrieval of Global Orbit Drift Corrected Land Surface Temperature from Long-term AVHRR Data. Remote Sens. 2019, 11, 2843. [Google Scholar] [CrossRef] [Green Version]
- Pinheiro, A.; Mahoney, R.; Privette, J.; Tucker, C. Development of a daily long term record of NOAA-14 AVHRR land surface temperature over Africa. Remote Sens. Environ. 2006, 103, 153–164. [Google Scholar] [CrossRef]
- Pedelty, J.; Devadiga, S.; Masuoka, E.; Brown, M.; Pinzon, J.; Tucker, C.; Vermote, E.; Prince, S.; Nagol, J.; Justice, C.; et al. Generating a long-term land data record from the AVHRR and MODIS Instruments. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 1021–1025. [Google Scholar] [CrossRef]
- Julien, Y.; Sobrino, J.A.; Sòria, G. Retrieving and broadcasting near-real-time biophysical parameters from MODIS and SEVIRI receiving stations at the global change unit of the University of Valencia. Int. J. Remote Sens. 2015, 36, 5273–5288. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Julien, Y.; Muñoz, J.J.C.; Skokovic, D.; Sòria, G. Near real-time estimation of Sea and Land surface temperature for MSG SEVIRI sensors. Int. J. Appl. Earth Obs. Geoinf. 2020, 89, 2096. [Google Scholar] [CrossRef]
- Derrien, M.; Le Gléau, H. MSG/SEVIRI cloud mask and type from SAFNWC. Int. J. Remote Sens. 2005, 26, 4707–4732. [Google Scholar] [CrossRef]
- Baret, F.; Morissette, J.; Fernandes, R.; Champeaux, J.L.; Myneni, R.; Chen, J.; Plummer, S.; Weiss, M.; Bacour, C.; Garrigues, S.; et al. Evaluation of the representativeness of networks of sites for the validation and inter-comparison of land bio-physical products proposition of the CEOS-BELMANIP. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1794–1803. [Google Scholar] [CrossRef]
- Ignatov, A.; Laszlo, I.; Harrod, E.D.; Kidwell, K.B.; Goodrum, G.P. Equator crossing times for NOAA, ERS and EOS sun-synchronous satellites. Int. J. Remote Sens. 2004, 25, 5255–5266. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Skoković, D.; Muñoz, J.J.C. Spatial analysis of the homogeneity of the land surface temperature in three Spanish test sites. Int. J. Remote Sens. 2015, 36, 4793–4807. [Google Scholar] [CrossRef]
Satellite/Instrument | Temporal Coverage | Temporal Resolution | Spatial Resolution | Instrument Swath (km) |
---|---|---|---|---|
NOAA/AVHRR | 1981–present | 1 day | 1 km to 0.05° | 2500 |
Aqua-Terra/MODIS | 2000–present | 1 day | 1 km to 0.05° | 2330 |
NPP-JPSS1/VIIRS | 2011–present | 1 day | 750 m to 0.05° | 3060 |
MSG/SEVIRI | 2007–present | 15 min | >3 km | Full disk |
Sentinel–3/SLSTR | 2016–present | 4 days | 1 km | 1420 |
ECOSTRESS | 2018–present | 1 day | 70 m | ~384 |
LSTM | 2029 | 3 days | 50 m | 400 |
Statistics (in K) | Drifted | C0 | C1 | C2 |
---|---|---|---|---|
RMSE | 3.9 | 1.8 | 3.9 | 2.1 |
Bias | –3.3 | –1.2 | –3.3 | –1.6 |
STDV | 2.1 | 1.4 | 2.1 | 1.4 |
Statistics (in K) | Drifted | C0 | C1 | C2 |
---|---|---|---|---|
RMSE | 3.1 | 2.4 | 2.8 | 2.8 |
Bias | –1.4 | –0.4 | –0.1 | –1.1 |
STDV | 2.5 | 2.2 | 2.4 | 2.4 |
Statistics (in K) | Drifted | C0 | C1 | C2 |
---|---|---|---|---|
RMSE | 0.24 | 0.11 | 0.12 | 0.15 |
Bias | −0.36 | −0.18 | −0.12 | −0.24 |
STDV | 0.19 | 0.10 | 0.10 | 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Julien, Y.; Sobrino, J.A. NOAA-AVHRR Orbital Drift Correction: Validating Methods Using MSG-SEVIRI Data as a Benchmark Dataset. Remote Sens. 2021, 13, 925. https://doi.org/10.3390/rs13050925
Julien Y, Sobrino JA. NOAA-AVHRR Orbital Drift Correction: Validating Methods Using MSG-SEVIRI Data as a Benchmark Dataset. Remote Sensing. 2021; 13(5):925. https://doi.org/10.3390/rs13050925
Chicago/Turabian StyleJulien, Yves, and José A. Sobrino. 2021. "NOAA-AVHRR Orbital Drift Correction: Validating Methods Using MSG-SEVIRI Data as a Benchmark Dataset" Remote Sensing 13, no. 5: 925. https://doi.org/10.3390/rs13050925
APA StyleJulien, Y., & Sobrino, J. A. (2021). NOAA-AVHRR Orbital Drift Correction: Validating Methods Using MSG-SEVIRI Data as a Benchmark Dataset. Remote Sensing, 13(5), 925. https://doi.org/10.3390/rs13050925