CDOM Optical Properties and DOC Content in the Largest Mixing Zones of the Siberian Shelf Seas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Flow Measurements
2.3. DOC
2.4. Optical Measurements and Spectroscopic Indices
3. Results
3.1. Subsurface Water Temperature and Salinity
3.2. Vertical Sensing of Hydrophysical Parameters
3.2.1. Kara Sea
3.2.2. Laptev Sea
3.2.3. East Siberian Sea
3.3. DOC
3.4. Optical indices
3.4.1. Kara Sea
3.4.2. Laptev Sea
3.4.3. East Siberian Sea
4. Discussion
4.1. Conservative DOC Behavior in the Kara and Laptev Seas
4.2. Nonconservative DOC Behavior in the East Siberian Sea
4.3. CDOM Sources
4.4. CDOM Absorption at 350 nm and 440 nm
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hansell, D.A.; Carlson, C.A.; Repeta, D.J.; Schlitzer, R. Dissolved organic matter in the ocean: A controversy stimulates new insights. Oceanography 2009, 22, 202–211. [Google Scholar] [CrossRef]
- Wagner, S.; Schubotz, F.; Kaiser, K.; Hallmann, C.; Waska, H.; Rossel, P.E.; Galy, V. Soothsaying DOM: A current perspective on the future of oceanic dissolved organic carbon. Front. Mar. Sci. 2020, 7, 341. [Google Scholar] [CrossRef]
- Romankevich, E.A.; Vetrov, A.A.; Peresypkin, V.I. Organic matter of the World Ocean. Russ. Geol. Geophys. 2009, 50, 299–307. [Google Scholar] [CrossRef]
- Stein, R.; Stein, R.; MacDonald, R.W. The Organic Carbon Cycle in the Arctic Ocean; Springer: Berlin, Germany, 2004. [Google Scholar]
- Opsahl, S.; Benner, R.; Amon, R.M.W. Major flux of terrigenous dissolved organic matter through the Arctic Ocean. Limnol. Oceanogr. 1999, 44, 2017–2023. [Google Scholar] [CrossRef] [Green Version]
- McClelland, J.W.; Holmes, R.M.; Dunton, K.H.; Macdonald, R.W. The Arctic Ocean Estuary. Chesap. Sci. 2012, 35, 353–368. [Google Scholar] [CrossRef] [Green Version]
- Stein, R.; Fahl, K.; Fütterer, D.; Galimov, E.M.; Stepanets, O.V. Siberian River Run-off in the Kara Sea: Characterisation, Quantification, Variability, and Environmental Significance; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Yentsch, C.S. The influence of phytoplankton pigments on the colour of sea water. Deep. Sea Res. (1953) 1960, 7, 1–9. [Google Scholar] [CrossRef]
- Coble, P.G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar. Chem. 1996, 51, 325–346. [Google Scholar] [CrossRef]
- Arrigo, K.; Brown, C. Impact of chromophoric dissolved organic matter on UV inhibition of primary productivity in the sea. Mar. Ecol. Prog. Ser. 1996, 140, 207–216. [Google Scholar] [CrossRef] [Green Version]
- Siegel, D.A.; Maritorena, S.; Nelson, N.B.; Hansell, D.A.; Lorenzi-Kayser, M. Global distribution and dynamics of colored dissolved and detrital organic materials. J. Geophys. Res. Space Phys. 2002, 107, 21-1–21-14. [Google Scholar] [CrossRef]
- Stedmon, C.A.; Nelson, N.B. The Optical Properties of DOM in the Ocean. In Biogeochemistry of Marine Dissolved Organic Matter; Elsevier BV: Amsterdam, The Netherlands, 2015; pp. 481–508. [Google Scholar]
- Kowalczuk, P.; Olszewski, J.; Darecki, M.; Kaczmarek, S. Empirical relationships between coloured dissolved organic matter (CDOM) absorption and apparent optical properties in Baltic Sea waters. Int. J. Remote. Sens. 2005, 26, 345–370. [Google Scholar] [CrossRef]
- Siegel, D.A.; Maritorena, S.; Nelson, N.B.; Behrenfeld, M.J.; McClain, C.R. Colored dissolved organic matter and its influence on the satellite-based characterization of the ocean biosphere. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- D’Ortenzio, F.; Marullo, S.; Ragni, M.; d’Alcalà, M.R.; Santoleri, R. Validation of empirical SeaWiFS algorithms for chlorophyll-a retrieval in the Mediterranean Sea: A case study for oligotrophic seas. Remote Sens. Environ. 2002, 82, 79–94. [Google Scholar] [CrossRef]
- Palmer, S.C.; Pelevin, V.V.; Goncharenko, I.; Kovács, A.W.; Zlinszky, A.; Présing, M.; Tóth, V.R. Ultraviolet fluorescence LiDAR (UFL) as a measurement tool for water quality parameters in turbid lake conditions. Remote Sens. 2013, 5, 4405–4422. [Google Scholar] [CrossRef]
- Bailly, J.-S.; Montes-Hugo, M.; Pastol, Y.; Baghdadi, N. LiDAR Measurements and Applications in Coastal and Continental Waters. In Land Surface Remote Sensing in Urban and Coastal Areas; Elsevier BV: Amsterdam, The Netherlands, 2016; pp. 185–229. [Google Scholar]
- Romankevich, E.A.; Vetrov, A.A. Carbon Cycle in the Arctic Seas of Russia; Nauka Publishers: Moscow, Russia, 2001. [Google Scholar]
- Amon, R.M.W. The Role of Dissolved Organic Matter for the Organic Carbon Cycle in the Arctic Ocean. In The Organic Carbon Cycle in the Arctic Ocean; Springer International Publishing: New York, NY, USA, 2004; pp. 83–99. [Google Scholar]
- Hansell Dennis, A.; Craig, A. Carlson. Biogeochemistry of Marine Dissolved Organic Matter; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Mann, P.J.; Spencer, R.G.M.; Hernes, P.J.; Esix, J.; Aiken, G.R.; Tank, S.E.; McClelland, J.W.; Butler, K.D.; Dyda, R.Y.; Holmes, R.M. Pan-Arctic Trends in Terrestrial Dissolved Organic Matter from Optical Measurements. Front. Earth Sci. 2016, 4, 25. [Google Scholar] [CrossRef]
- Dai, M.; Yin, Z.; Meng, F.; Liu, Q.; Cai, W.-J. Spatial distribution of riverine DOC inputs to the ocean: An updated global synthesis. Curr. Opin. Environ. Sustain. 2012, 4, 170–178. [Google Scholar] [CrossRef]
- Nihoul, J. Influence of Climate Change on the Changing Arctic and Sub-Arctic Conditions; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- McGuire, A.D.; Anderson, L.G.; Christensen, T.R.; Dallimore, S.; Guo, L.; Hayes, D.J.; Heimann, M.; Lorenson, T.D.; Macdonald, R.W.; Roulet, N. Sensitivity of the carbon cycle in the Arctic to climate change. Ecol. Monogr. 2009, 79, 523–555. [Google Scholar] [CrossRef] [Green Version]
- Meier, W.N.; Hovelsrud, G.K.; Van Oort, B.E.; Key, J.R.; Kovacs, K.M.; Michel, C.; Haas, C.; Granskog, M.A.; Gerland, S.; Perovich, D.K.; et al. Arctic sea ice in transformation: A review of recent observed changes and impacts on biology and human activity. Rev. Geophys. 2014, 52, 185–217. [Google Scholar] [CrossRef]
- Stedmon, C.; Amon, R.; Rinehart, A.; Walker, S. The supply and characteristics of colored dissolved organic matter (CDOM) in the Arctic Ocean: Pan Arctic trends and differences. Mar. Chem. 2011, 124, 108–118. [Google Scholar] [CrossRef]
- Jaffé, R.; McKnight, D.; Maie, N.; Cory, R.; McDowell, W.H.; Campbell, J.L. Spatial and temporal variations in DOM composition in ecosystems: The importance of long-term monitoring of optical properties. J. Geophys. Res. Space Phys. 2008, 113. [Google Scholar] [CrossRef]
- Harrison, J.A.; Caraco, N.; Seitzinger, S.P. Global patterns and sources of dissolved organic matter export to the coastal zone: Results from a spatially explicit, global model. Glob. Biogeochem. Cycles 2005, 19, GB4S04. [Google Scholar] [CrossRef]
- Griffin, C.; McClelland, J.; Frey, K.; Fiske, G.; Holmes, R. Quantifying CDOM and DOC in major Arctic rivers during ice-free conditions using Landsat TM and ETM+ data. Remote. Sens. Environ. 2018, 209, 395–409. [Google Scholar] [CrossRef]
- Gonçalves-Araujo, R.; Rabe, B.; Peeken, I.; Bracher, A. High colored dissolved organic matter (CDOM) absorption in surface waters of the central-eastern Arctic Ocean: Implications for biogeochemistry and ocean color algorithms. PLoS ONE 2018, 13, e0190838. [Google Scholar] [CrossRef]
- Glukhovets, D.; Kopelevich, O.; Yushmanova, A.; Vazyulya, S.; Sheberstov, S.; Karalli, P.; Sahling, I. Evaluation of the CDOM Absorption Coefficient in the Arctic Seas Based on Sentinel-3 OLCI Data. Remote. Sens. 2020, 12, 3210. [Google Scholar] [CrossRef]
- Drozdova, A.N.; Puiman, M.S.; Krylov, I.N.; Patsaeva, S.V.; Shatravin, A.V. Dataset on optical characteristics and spectroscopic indices of dissolved organic matter of the Kara, Laptev, and East Siberian seas in August–September. Data Brief 2019, 26, 104562. [Google Scholar] [CrossRef]
- Wheeler, P.; Watkins, J.; Hansing, R. Nutrients, organic carbon and organic nitrogen in the upper water column of the Arctic Ocean: Implications for the sources of dissolved organic carbon. Deep. Sea Res. Part II Top. Stud. Oceanogr. 1997, 44, 1571–1592. [Google Scholar] [CrossRef]
- Gordeev, V.V.; Martin, J.M.; Sidorov, I.S.; Sidorova, M.V. A reassessment of the Eurasian river input of water, sediment, major elements, and nutrients to the Arctic Ocean. Am. J. Sci. 1996, 296, 664–691. [Google Scholar] [CrossRef]
- Drozdova, A.N.; Patsaeva, S.V.; Khundzhua, D.A. Fluorescence of dissolved organic matter as a marker for distribution of desalinated waters in the Kara Sea and bays of Novaya Zemlya archipelago. Oceanology 2017, 57, 41–47. [Google Scholar] [CrossRef]
- Amante, C.; Eakins, B.W. ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24. Natl. Geophys. Data Cent. 2009, 10, V5C8276M. [Google Scholar]
- Helms, J.R.; Stubbins, A.; Ritchie, J.D.; Minor, E.C.; Kieber, D.J.; Mopper, K. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol. Oceanogr. 2008, 53, 955–969. [Google Scholar] [CrossRef] [Green Version]
- Bricaud, A.; Morel, A.; Prieur, L. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains1. Limnol. Oceanogr. 1981, 26, 43–53. [Google Scholar] [CrossRef]
- Derrien, M.; Yang, L.; Hur, J. Lipid biomarkers and spectroscopic indices for identifying organic matter sources in aquatic environments: A review. Water Res. 2017, 112, 58–71. [Google Scholar] [CrossRef]
- Weishaar, J.L.; Aiken, G.R.; Bergamaschi, B.A.; Fram, M.S.; Fujii, R.; Mopper, K. Evaluation of Specific Ultraviolet Absorbance as an Indicator of the Chemical Composition and Reactivity of Dissolved Organic Carbon. Environ. Sci. Technol. 2003, 37, 4702–4708. [Google Scholar] [CrossRef] [PubMed]
- Drozdova, A.N.; Kravchishina, M.D.; Khundzhua, D.A.; Freidkin, M.P.; Patsaeva, S.V. Fluorescence quantum yield of CDOM in coastal zones of the Arctic seas. Int. J. Remote Sens. 2018, 39, 9356–9379. [Google Scholar] [CrossRef]
- Pavlov, V.K.; Pfirman, S.L. Hydrographic structure and variability of the Kara Sea: Implications for pollutant distribution. Deep Sea Res. Part Ii Top. Stud. Oceanogr. 1995, 42, 1369–1390. [Google Scholar] [CrossRef]
- Glukhovets, D.I.; Goldin, Y.A. Surface layer desalination of the bays on the east coast of Novaya Zemlya identified by shipboard and satellite data. Oceanology 2019, 61, 68–77. [Google Scholar] [CrossRef]
- Zatsepin, A.G.; Zavialov, P.O.; Kremenetskiy, V.V.; Poyarkov, S.G.; Soloviev, D.M. The upper desalinated layer in the Kara Sea. Oceanology 2010, 50, 657–667. [Google Scholar] [CrossRef]
- Olsson, K.; Anderson, L.G. Input and biogeochemical transformation of dissolved carbon in the Siberian shelf seas. Cont. Shelf Res. 1997, 17, 819–833. [Google Scholar] [CrossRef]
- Gonçalves-Araujo, R.; Stedmon, C.A.; Heim, B.; Dubinenkov, I.; Kraberg, A.; Moiseev, D.; Bracher, A. From Fresh to Marine Waters: Characterization and Fate of Dissolved Organic Matter in the Lena River Delta Region, Siberia. Front. Mar. Sci. 2015, 2, 108. [Google Scholar] [CrossRef] [Green Version]
- Bauch, D.; Dmitrenko, I.A.; Wegner, C.; Hölemann, J.; Kirillov, S.A.; Timokhov, L.A.; Kassens, H. Exchange of Laptev Sea and Arctic Ocean halocline waters in response to atmospheric forcing. J. Geophys. Res. Space Phys. 2009, 114, C05008. [Google Scholar] [CrossRef] [Green Version]
- Osadchiev, A.; Medvedev, I.; Shchuka, S.; Kulikov, M.; Spivak, E.; Pisareva, M.; Semiletov, I. Influence of estuarine tidal mixing on structure and spatial scales of large river plumes. Ocean Sci. 2020, 16, 781–798. [Google Scholar] [CrossRef]
- Vetrov, A.; Romankevich, E.; Romankevich, E.A. Carbon Cycle in the Russian Arctic Seas; Springer Science & Business Media: Berlin, Germany, 2004. [Google Scholar]
- Alling, V.; Sanchez-Garcia, L.; Porcelli, D.; Pugach, S.; Vonk, J.E.; Van Dongen, B.; Mörth, C.-M.; Anderson, L.G.; Sokolov, A.; Gustafsson, Ö.; et al. Nonconservative behavior of dissolved organic carbon across the Laptev and East Siberian seas. Glob. Biogeochem. Cycles 2010, 24. [Google Scholar] [CrossRef]
- Stedmon, C.; Markager, S.; Kaas, H. Optical Properties and Signatures of Chromophoric Dissolved Organic Matter (CDOM) in Danish Coastal Waters. Estuar. Coast. Shelf Sci. 2000, 51, 267–278. [Google Scholar] [CrossRef]
- Chin, Y.-P.; Aiken, G.; O’Loughlin, E. Molecular Weight, Polydispersity, and Spectroscopic Properties of Aquatic Humic Substances. Environ. Sci. Technol. 1994, 28, 1853–1858. [Google Scholar] [CrossRef]
- Lee, M.-H.; Osburn, C.L.; Shin, K.-H.; Hur, J. New insight into the applicability of spectroscopic indices for dissolved organic matter (DOM) source discrimination in aquatic systems affected by biogeochemical processes. Water Res. 2018, 147, 164–176. [Google Scholar] [CrossRef] [PubMed]
- Allard, B.; Borén, H.; Pettersson, C.; Zhang, G. Degradation of humic substances by UV irradiation. Environ. Int. 1994, 20, 97–101. [Google Scholar] [CrossRef]
- Pavlov, A.K.; Granskog, M.A.; Stedmon, C.A.; Ivanov, B.V.; Hudson, S.R.; Falk-Petersen, S. Contrasting optical properties of surface waters across the Fram Strait and its potential biological implications. J. Mar. Syst. 2015, 143, 62–72. [Google Scholar] [CrossRef] [Green Version]
- Granskog, M.A.; Pavlov, A.K.; Sagan, S.; Kowalczuk, P.; Raczkowska, A.; Stedmon, C.A. Effect of sea-ice melt on inherent optical properties and vertical distribution of solar radiant heating in Arctic surface waters. J. Geophys. Res. Ocean. 2015, 120, 7028–7039. [Google Scholar] [CrossRef] [Green Version]
- Pugach, S.P.; Pipko, I.I.; Shakhova, N.E.; Shirshin, E.A.; Perminova, I.V.; Gustafsson, Ö.; Bondur, V.G.; Ruban, A.S.; Semiletov, I.P. Dissolved organic matter and its optical characteristics in the Laptev and East Siberian seas: Spatial distribution and interannual variability (2003–2011). Ocean Sci. 2018, 14, 87–103. [Google Scholar] [CrossRef] [Green Version]
- Walker, S.A.; Amon, R.M.W.; Stedmon, C.A. Variations in high-latitude riverine fluorescent dissolved organic matter: A comparison of large Arctic rivers. J. Geophys. Res. Biogeosci. 2013, 118, 1689–1702. [Google Scholar] [CrossRef]
- Stedmon, C.A.; Markager, S. The optics of chromophoric dissolved organic matter (CDOM) in the Greenland Sea: An algorithm for differentiation between marine and terrestrially derived organic matter. Limnol. Oceanogr. 2001, 46, 2087–2093. [Google Scholar] [CrossRef]
- Kitidis, V.; Stubbins, A.P.; Uher, G.; Goddard, R.C.U.; Law, C.S.; Woodward, E.M.S. Variability of chromophoric organic matter in surface waters of the Atlantic Ocean. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2006, 53, 1666–1684. [Google Scholar] [CrossRef]
- Belyaev, N.A.; Peresypkin, V.I.; Ponyaev, M.S. The organic carbon in the water, the particulate matter, and the upper layer of the bottom sediments of the west Kara Sea. Oceanology 2010, 50, 706–715. [Google Scholar] [CrossRef]
- Belyaev, N.A.; Ponyaev, M.S.; Kiriutin, A.M. Organic carbon in water, particulate matter, and upper layer of bottom sediments of the central part of the Kara Sea. Oceanology 2015, 55, 508–520. [Google Scholar] [CrossRef]
- Meon, B.; Amon, R. Heterotrophic bacterial activity and fluxes of dissolved free amino acids and glucose in the Arctic rivers Ob, Yenisei and the adjacent Kara Sea. Aquat. Microb. Ecol. 2004, 37, 121–135. [Google Scholar] [CrossRef]
- Cauwet, G.; Sidorov, I. The biogeochemistry of Lena River: Organic carbon and nutrients distribution. Mar. Chem. 1996, 53, 211–227. [Google Scholar] [CrossRef]
- Fouest, V.L.; Babin, M.; Tremblay, J.É. The fate of riverine nutrients on Arctic shelves. Biogeosciences 2013, 10, 3661–3677. [Google Scholar] [CrossRef] [Green Version]
- Lara, R.J.; Rachold, V.; Kattner, G.; Hubberten, H.W.; Guggenberger, G.; Skoog, A.; Thomas, D.N. Dissolved organic matter and nutrients in the Lena River, Siberian Arctic: Characteristics and distribution. Mar. Chem. 1998, 59, 301–309. [Google Scholar] [CrossRef]
- Lobbes, J.M.; Fitznar, H.P.; Kattner, G. Biogeochemical characteristics of dissolved and particulate organic matter in Russian rivers entering the Arctic Ocean. Geochim. Et Cosmochim. Acta 2000, 64, 2973–2983. [Google Scholar] [CrossRef]
- Juhls, B.; Stedmon, C.A.; Morgenstern, A.; Meyer, H.; Hölemann, J.; Heim, B.; Povazhnyi, V.; Overduin, P.P. Identifying Drivers of Seasonality in Lena River Biogeochemistry and Dissolved Organic Matter Fluxes. Front. Environ. Sci. 2020, 8, 53. [Google Scholar] [CrossRef]
- Organelli, E.; Claustre, H. Small Phytoplankton Shapes Colored Dissolved Organic Matter Dynamics in the North Atlantic Subtropical Gyre. Geophys. Res. Lett. 2019, 46, 12183–12191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stedmon, C.A.; Markager, S. Tracing the production and degradation of autochthonous fractions of dissolved organic matter by fluorescence analysis. Limnol. Oceanogr. 2005, 50, 1415–1426. [Google Scholar] [CrossRef]
- Semiletov, I.; Dudarev, O.; Luchin, V.; Charkin, A.; Shin, K.H.; Tanaka, N. The East Siberian Sea as a transition zone between Pacific-derived waters and Arctic shelf waters. Geophys. Res. Lett. 2005, 32, L10614. [Google Scholar] [CrossRef]
- Spencer, R.G.; Aiken, G.R.; Butler, K.D.; Dornblaser, M.M.; Striegl, R.G.; Hernes, P.J. Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: A case study of the Yukon River, Alaska. Geophys. Res. Lett. 2009, 36, L06401. [Google Scholar] [CrossRef]
- Kowalczuk, P.; Sagan, S.; Makarewicz, A.; Meler, J.; Borzycka, K.; Zabłocka, M.; Pavlov, A.K. Bio-optical properties of surface waters in the Atlantic Water inflow region off Spitsbergen (Arctic Ocean). J. Geophys. Res. Ocean. 2019, 124, 1964–1987. [Google Scholar] [CrossRef]
- Bricaud, A.; Morel, A.; Babin, M.; Allali, K.; Claustre, H. Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models. J. Geophys. Res. Ocean. 1998, 103, 31033–31044. [Google Scholar] [CrossRef]
- Gonçalves-Araujo, R.; Röttgers, R.; Haraguchi, L.; Brandini, F.P. Hydrography-driven variability of optically active constituents of water in the South Brazilian Bight: Biogeochemical implications. Front. Mar. Sci. 2019, 6, 716. [Google Scholar] [CrossRef]
- Sukhanova, I.N.; Flint, M.V.; Fedorov, A.V.; Sakharova, E.G.; Artemyev, V.A.; Makkaveev, P.N.; Nedospasov, A.A. Phytoplankton of the Khatanga Bay, Shelf and Continental Slope of the Western Laptev Sea. Oceanology 2019, 59, 648–657. [Google Scholar] [CrossRef]
- Burenkov, V.I.; Goldin, Y.A.; Artem’Ev, V.A.; Sheberstov, S.V. Optical characteristics of the Kara Sea derived from shipborne and satellite data. Oceanology 2010, 50, 675–687. [Google Scholar] [CrossRef]
- Vazyulya, S.V.; Kopelevich, O.V.; Sheberstov, S.V.; Artemiev, V.A. Satellite estimation of the coefficients of CDOM absorption and diffuse attenuation in the White and Kara seas. Curr. Probl. Remote Sens. Earth Space 2014, 11, 31–41. [Google Scholar]
0–25 m | >25 m | Blagopoluchiya Bay | |
---|---|---|---|
DOC (μM) | 114.2–575.0 | 110.0–175.8 | 96.7–145.8 |
aCDOM(350) (m−1) | 0.22–5.73 | 0.27–1.07 | 0.32–0.75 |
aCDOM(375) (m−1) | 0.14–3.64 | 0.16–0.64 | 0.19–0.45 |
S275–295 (µm−1) | 17.78–26.46 | 22.79–29.32 | 16.65–18.63 |
SR | 0.98–3.08 | 0.92–1.08 | n/a |
SUVA (m2gC−1) | 0.48–2.30 | 0.39–0.79 | 0.65–0.76 |
0–10 m | >10 m | |
---|---|---|
Lena | ||
DOC (μM) | 242.5–886.7 | 125.0–337.5 |
aCDOM(350) (m−1) | 2.36–11.17 | 0.54–1.72 |
aCDOM(375) (m−1) | 1.44–7.20 | 0.34–1.48 |
S275–295 (µm−1) | 16.38–20.35 | 19.53–23.35 |
SR | 0.91–1.15 | 1.12–2.08 |
SUVA (m2 g C−1) | 1.72–2.52 | 0.38–1.28 |
Khatanga | ||
DOC (μM) | 145.8–727.5 | 158.3–678.3 |
aCDOM(350) (m−1) | 0.57–11.21 | 0.27–7.02 |
aCDOM(375) (m−1) | 0.31–7.21 | 0.15–4.68 |
S275–295 (µm−1) | 15.81–24.84 | 14.14–25.24 |
SR | 0.92–1.39 | 0.97–2.39 |
SUVA (m2 g C−1) | 0.59–2.48 | 0.24–3.35 |
Indigirka | ||
DOC (μM) | 195.8–526.7 | 165.0–319.17 |
aCDOM(350) (m−1) | 0.74–3.77 | 0.64–2.26 |
aCDOM(375) (m−1) | 0.42–2.41 | 0.38–1.38 |
S275–295 (µm−1) | 18.73–24.45 | 19.17–23.81 |
SR | 1.00–1.38 | 0.92–1.97 |
SUVA (m2 g C−1) | 0.35–2.6 | 0.1–2.0 |
Kolyma | ||
DOC (μM) | 125.83–505 | 129.0–425.0 |
aCDOM(350) (m−1) | 0.48–3.35 | 0.47–1.21 |
aCDOM(375) (m−1) | 0.43–3.07 | 0.27–0.73 |
S275–295 (µm−1) | 19.36–26.21 | 21.39–25.84 |
SR | 0.94–2.07 | 0.91–2.20 |
SUVA (m2 g C−1) | 0.32–1.71 | 0.12–1.19 |
A | B | R2 | |
---|---|---|---|
Kara Sea | 12.9 ± 0.6 | −0.365 ± 0.019 | 0.93 |
Lena | 12.3 ± 0.5 | −0.352 ± 0.017 | 0.96 |
Khatanga | 11.8 ± 0.4 | −0.327 ± 0.013 | 0.94 |
Indigirka | 6.2 ± 0.3 | −0.170 ± 0.011 | 0.87 |
Kolyma | 6.1 ± 0.7 | −0.188 ± 0.026 | 0.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drozdova, A.N.; Nedospasov, A.A.; Lobus, N.V.; Patsaeva, S.V.; Shchuka, S.A. CDOM Optical Properties and DOC Content in the Largest Mixing Zones of the Siberian Shelf Seas. Remote Sens. 2021, 13, 1145. https://doi.org/10.3390/rs13061145
Drozdova AN, Nedospasov AA, Lobus NV, Patsaeva SV, Shchuka SA. CDOM Optical Properties and DOC Content in the Largest Mixing Zones of the Siberian Shelf Seas. Remote Sensing. 2021; 13(6):1145. https://doi.org/10.3390/rs13061145
Chicago/Turabian StyleDrozdova, Anastasia N., Andrey A. Nedospasov, Nikolay V. Lobus, Svetlana V. Patsaeva, and Sergey A. Shchuka. 2021. "CDOM Optical Properties and DOC Content in the Largest Mixing Zones of the Siberian Shelf Seas" Remote Sensing 13, no. 6: 1145. https://doi.org/10.3390/rs13061145
APA StyleDrozdova, A. N., Nedospasov, A. A., Lobus, N. V., Patsaeva, S. V., & Shchuka, S. A. (2021). CDOM Optical Properties and DOC Content in the Largest Mixing Zones of the Siberian Shelf Seas. Remote Sensing, 13(6), 1145. https://doi.org/10.3390/rs13061145