CubeSat Observation of the Radiation Field of the South Atlantic Anomaly
Abstract
:1. Introduction
2. Instrumentation and Methods
2.1. CubeSat
2.2. PiDOSE
2.3. Position of the Measurement
2.4. Position of the South Atlantic Anomaly (SAA)
2.5. Data Processing
- (a)
- Calculation of the position of the satellite in the middle of the radiation detector, counting time by the method presented in Section 2.3.
- (b)
- Resampling data to a one-degree grid.
- (c)
- Calculation of the position of the radiation maximum as a centroid of the measured data (Section 2.4).
- (d)
- Graphical presentation of the results.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Allen, J.A. The geomagnetically trapped corpuscular radiation. J. Geophys. Res. 1959, 64, 1683–1689. [Google Scholar] [CrossRef]
- Ye, Y.; Zou, H.; Zong, Q.; Chen, H.; Wang, Y.; Yu, X.; Shi, W. The Secular Variation of the Center of Geomagnetic South Atlantic Anomaly and Its Effect on the Distribution of Inner Radiation Belt Particles. Space Weather 2017, 15, 1548–1558. [Google Scholar] [CrossRef] [Green Version]
- Jones, A.D.; Kanekal, S.G.; Baker, D.N.; Klecker, B.; Looper, M.D.; Mazur, J.E.; Schiller, Q. SAMPEX observations of the South Atlantic anomaly secular drift during solar cycles 22–24. Space Weather 2017, 15, 44–52. [Google Scholar] [CrossRef]
- Kurnosova, L.V.; Kolobyanina, T.N.; Logachev, V.I.; Razorenov, L.A.; Sirotkin, I.A.; Fradkin, M.I. Discovery of radiation anomalies above the South Atlantic at heights of 310–340 km. Planet. Space Sci. 1962, 9. [Google Scholar] [CrossRef]
- Underwood, C.I. In-orbit radiation effects monitoring on the UoSAT satellites. In Proceedings of the Annual AIAA/Utah State University Conference on Small Satellites, Logan, UT, USA, 27–30 August 1990. [Google Scholar]
- Deme, S.; Reitz, G.; Apáthy, I.; Héjja, I.; Láng, E.; Fehér, I. Doses due to the South Atlantic anomaly during the Euromir’95 mission measured by an on-board TLD system. Radiat. Prot. Dosim. 1999, 85, 301–304. [Google Scholar] [CrossRef] [PubMed]
- Heirtzler, J.R. The future of the South Atlantic anomaly and implications for radiation damage in space. J. Atmos. Solar-Terr. Phys. 2002, 64, 1701–1708. [Google Scholar] [CrossRef] [Green Version]
- Heynderickx, D. Comparison between methods to compensate for the secular motion of the South Atlantic Anomaly. Radiat. Meas. 1996, 26, 369–373. [Google Scholar] [CrossRef]
- Hartmann, G.A.; Pacca, I.G. Time evolution of the South Atlantic Magnetic Anomaly. An. Acad. Bras. Cienc. 2009, 81, 243–255. [Google Scholar] [CrossRef]
- Schaefer, R.K.; Paxton, L.J.; Selby, C.; Ogorzalek, B.; Romeo, G.; Wolven, B.; Hsieh, S.Y. Observation and modeling of the South Atlantic Anomaly in low Earth orbit using photometric instrument data. Space Weather 2016, 14, 330–342. [Google Scholar] [CrossRef] [Green Version]
- Lanzerotti, L.J.; Gary, D.E.; Nita, G.M.; Thomson, D.J.; MacLennan, C.G. Noise in wireless systems from solar radio bursts. Adv. Space Res. 2005, 36, 2253–2257. [Google Scholar] [CrossRef]
- Anderson, P.C.; Rich, F.J.; Borisov, S. Mapping the South Atlantic Anomaly continuously over 27 years. J. Atmos. Solar-Terr. Phys. 2018, 177, 237–246. [Google Scholar] [CrossRef]
- Aubry, M.; Costes-Ori, V.; Standarovski, D.; Ecoffet, R. Analysis of the Drift of the South Atlantic Anomaly from ICARE and SEM-2 Flight Data. IEEE Trans. Nucl. Sci. 2020, 67, 1251–1255. [Google Scholar] [CrossRef]
- Konradi, A.; Badhwar, G.D.; Braby, L.A. Recent space shuttle observations of the South Atlantic anomaly and the radiation belt models. Adv. Space Res. 1994, 14, 911–921. [Google Scholar] [CrossRef]
- Badhwar, G.D. Drift rate of the South Atlantic Anomaly. J. Geophys. Res. Space Phys. 1997, 102, 2343–2349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bühler, P.; Zehnder, A.; Kruglanski, M.; Daly, E.; Adams, L. The high-energy proton fluxes in the SAA observed with REM aboard the MIR orbital station. Radiat. Meas. 2002, 35, 489–497. [Google Scholar] [CrossRef]
- Ginet, G.P.; Madden, D.; Dichter, B.K.; Brautigam, D.H. Energetic proton maps for the South Atlantic Anomaly. In Proceedings of the IEEE Radiation Effects Data Workshop, Honolulu, HI, USA, 23–27 July 2007. [Google Scholar]
- Grigoryan, O.R.; Romashova, V.V.; Petrov, A.N. SAA drift: Experimental results. Adv. Space Res. 2008, 41, 76–80. [Google Scholar] [CrossRef]
- Fürst, F.; Wilms, J.; Rothschild, R.E.; Pottschmidt, K.; Smith, D.M.; Lingenfelter, R. Temporal variations of strength and location of the South Atlantic Anomaly as measured by RXTE. Earth Planet. Sci. Lett. 2009, 281, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Casadio, S.; Arino, O. Monitoring the South Atlantic Anomaly using ATSR instrument series. Adv. Space Res. 2011, 48, 1056–1066. [Google Scholar] [CrossRef]
- Qin, M.; Zhang, X.; Ni, B.; Song, H.; Zou, H.; Sun, Y. Solar cycle variations of trapped proton flux in the inner radiation belt. J. Geophys. Res. Space Phys. 2014, 119, 9658–9669. [Google Scholar] [CrossRef]
- Olsen, N.; Mandea, M. Investigation of a secular variation impulse using satellite data: The 2003 geomagnetic jerk. Earth Planet. Sci. Lett. 2007, 255, 94–105. [Google Scholar] [CrossRef]
- Toorian, A.; Diaz, K.; Lee, S. The CubeSat approach to space access. In Proceedings of the IEEE Aerospace Conference Proceedings, Big Sky, MT, USA, 1–8 March 2008. [Google Scholar]
- Poghosyan, A.; Golkar, A. CubeSat evolution: Analyzing CubeSat capabilities for conducting science missions. Prog. Aerosp. Sci. 2017, 88, 59–83. [Google Scholar] [CrossRef]
- Blackwell, W.J.; Allan, G.; Allen, G.; Burianek, D.; Busse, F.; Elliott, D.; Galbraith, C.; Leslie, R.; Osaretin, I.; Shields, M.; et al. Microwave Radiometer Technology Acceleration Mission (MiRaTA): Advancing Weather Remote Sensing with Nanosatellites. In Proceedings of the 28th Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 4–7 August 2014. [Google Scholar]
- Westerhoff, J.; Earle, G.; Bishop, R.; Swenson, G.R.; Vadas, S.; Clemmons, J.; Davidson, R.; Fanelli, L.; Fish, C.; Garg, V.; et al. LAICE CubeSat mission for gravity wave studies. Adv. Space Res. 2015, 56, 1413–1427. [Google Scholar] [CrossRef] [Green Version]
- Weiss, W.W.; Rucinski, S.M.; Moffat, A.F.J.; Schwarzenberg-Czerny, A.; Koudelka, O.F.; Grant, C.C.; Zee, R.E.; Kuschnig, R.; Mochnacki, S.; Matthews, J.M.; et al. BRITE-Constellation: Nanosatellites for Precision Photometry of Bright Stars. Publ. Astron. Soc. Pacific 2014, 126, 573. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Schiller, Q.; Blum, L.; Califf, S.; Zhao, H.; Tu, W.; Turner, D.L.; Gerhardt, D.; Palo, S.; Kanekal, S.; et al. First results from CSSWE CubeSat: Characteristics of relativistic electrons in the near-Earth environment during the October 2012 magnetic storms. J. Geophys. Res. Space Phys. 2013, 118, 6489–6499. [Google Scholar] [CrossRef]
- Desai, M.I.; Allegrini, F.; Ebert, R.W.; Ogasawara, R.; Epperly, M.E.; George, D.E.; Christian, E.R.; Kanekal, S.G.; Murphy, N.; Randol, B. The CubeSat Mission to Study Solar Particles. IEEE Aerosp. Electron. Syst. Mag. 2019, 34, 16–28. [Google Scholar] [CrossRef]
- Gieseler, J.; Oleynik, P.; Hietala, H.; Vainio, R.; Hedman, H.P.; Peltonen, J.; Punkkinen, A.; Punkkinen, R.; Säntti, T.; Hæggström, E.; et al. Radiation monitor RADMON aboard Aalto-1 CubeSat: First results. Adv. Space Res. 2020, 66, 52–65. [Google Scholar] [CrossRef] [Green Version]
- Simms, L.M.; Jernigan, J.G.; Malphrus, B.K.; McNeil, R.; Brown, K.Z.; Rose, T.G.; Lim, H.S.; Anderson, S.; Kruth, J.A.; Doty, J.P.; et al. CXBN: A blueprint for an improved measurement of the cosmological x-ray background. In Proceedings of the Hard X-ray, Gamma-ray, and Neutron Detector Physics XIV, San Diego, CA, USA, 24 October 2012; Volume 8507, p. 19. [Google Scholar]
- Kovář, P. piNAV L1—GPS receiver for small satellites. Gyroscopy Navig. 2017, 8, 159–164. [Google Scholar] [CrossRef]
- Kovář, P. Start Acceleration of the Space GPS Receiver. Int. J. Electron. Telecommun. 2020, 66, 745–752. [Google Scholar]
- Kovar, P. Experiences with the GPS in Unstabilized CubeSat. Int. J. Aerosp. Eng. 2020, 2020, 1–20. [Google Scholar] [CrossRef]
- Laifr, J.; Kovář, P. High altitude balloon test flight of miniature low power dosimeter for small satellites. Slabop. Obz. 2018, 74, 1–3. [Google Scholar]
- Kovar, P.; Sommer, M.; Matthiae, D.; Reitz, G. Measurement of cosmic radiation in LEO by 1U CubeSat. Radiat. Meas. 2020, 139, 106471. [Google Scholar] [CrossRef]
- Perov, A.; Charisova, V. GLONASS, Principles, Architecture and Function; Radiotechnika: Moscow, Russia, 2010; ISBN 978-5-88070-251-0. [Google Scholar]
- Subirana, J.S.; Zornoza, J.M.; Hernández-Pajares, M. GNSS DATA PROCESSING Volume I: Fundamentals and Algorithms; ESA Communications; ESTEC: Noordwijk, The Netherlands, 2013; ISBN 978-92-9221-886-7. [Google Scholar]
- Galperin, G.A. A concept of the mass center of a system of material points in the constant curvature spaces. Commun. Math. Phys. 1993, 154, 63–84. [Google Scholar] [CrossRef]
Study | Westward Drift (°/Year) | Northward Drift (°/Year) | Altitude (km) | Inclination (°) | Time (Year) |
---|---|---|---|---|---|
Konradi 1994 [14] | 0.32 | - | 617 450 287 565 | 28.5 28.5 39 58 | 1990–1991 |
Badhwar 1997 [15] | 0.28 0.03 | 0.08 0.03 | 438 393 | 50 51.65 | 1973, 1995 |
Bühler 2002 [16] | 0.06 0.05 | 0.06 0.05 | 400 | 52 | 1994–1996 |
Ginet 2006 [17] | 0.43 0.13 | - | 410–1710 | 69 | 2000–2006 continuous measurement |
Grigorian 2008 [18] | 0.1–1.0 | 0.1 | 307–393 220 400 500–2500 400 450 | 65 81.6 51.6 81.3 51.6 51.6 | 1960–2003 |
Fürst 2009 [19] | 0.248 | - | 592 in 1996 488 in 2007 | 23 | 1996–2007 continuous measurement |
Casadio and Arino 2011 [20] | 0.24 | 0.08 | 782–785 780 800 | 98.52 98.5 98.55 | 1991–2010 continuous measurement |
Qin 2014 [21] | 0.3 | 0.09 | 813 833 804 833 | 98.7 98.6 98.5 98.7 | 1980–2010 Almost continuous measurement |
Schaefer 2016 [10] | 0.36 0.06 | 0.16 0.09 | 840–860 | 99 | 2004–2013 continuous measurement |
Jones 2017 [3] | 0.20 0.04 | –0.11 0.01 | 400–600 | 1993–2011 continuous measurement | |
Ye 2017 [2] | Various (depends on proton energy) | Various (depends on proton energy) | 512–687 | 81.7 | 1994–2007 continuous measurement |
Anderson 2018 [12] | 0.277 0.008 | 0.064 0.008 | DMSP F8–F18 | DMSP F8–F18 | 1987–2015 continuous measurement |
Aubry 2020 [13] | 0.639 0.329 0.256 | – – – | 715 1336 850 | 98 66 98 | 2000–2018 continuous measurement |
Measurement | Centroid Position Long. Lat. [°] | Max. Position Long. Lat. [°] |
---|---|---|
(a) 30 August 2019 | −25.8637 −48.6520 | −27 −49 |
(b) 30 September 2019 | −26.1674 −48.4611 | −24 −48 |
(c) 27 March 2020 | −26.2771 −49.1253 | −23 −50 |
(d) 10 October 2020 | −26.4505 −48.8551 | −29 −55 |
(e) 1 November 2020 | −26.4186 −49.2932 | −24 −53 |
(f) 17 November 2020 | −26.5828 −48.7944 | −26 −57 |
(g) 28 December 2020 | −26.1477 −48.5793 | −29 −53 |
(h) 2 January 2021 | −26.6111 −49.0591 | −30 −60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovář, P.; Sommer, M. CubeSat Observation of the Radiation Field of the South Atlantic Anomaly. Remote Sens. 2021, 13, 1274. https://doi.org/10.3390/rs13071274
Kovář P, Sommer M. CubeSat Observation of the Radiation Field of the South Atlantic Anomaly. Remote Sensing. 2021; 13(7):1274. https://doi.org/10.3390/rs13071274
Chicago/Turabian StyleKovář, Pavel, and Marek Sommer. 2021. "CubeSat Observation of the Radiation Field of the South Atlantic Anomaly" Remote Sensing 13, no. 7: 1274. https://doi.org/10.3390/rs13071274
APA StyleKovář, P., & Sommer, M. (2021). CubeSat Observation of the Radiation Field of the South Atlantic Anomaly. Remote Sensing, 13(7), 1274. https://doi.org/10.3390/rs13071274