Evaluations of Surface PM10 Concentration and Chemical Compositions in MERRA-2 Aerosol Reanalysis over Central and Eastern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Observation Sites and PM10 Sample Analysis
2.2. PM10 Reconstruction and Evaluation Methods
3. Results
3.1. Evaluation of Aerosol Species
3.2. Improvement of PM10 Reconstruction with Including Nitrate
3.3. Bias Analysis and Discussion
4. Conclusions
- (a)
- Overall, the MERRAero provides the overall good analysis products of [PM10], [SO42−], [OC] and [BC] in two regional sites in central and eastern China. The average bias, IOA and, most importantly, the rigorous index FAC2 presented favorable results.
- (b)
- The evaluation of MERRAero [SO42−] is relatively more encouraging in LA site than JS site, with a small average bias of 0.05 μg m−3. MERRAero consistently overestimated [BC] by a factor of 1.35 on average but contributed relatively little to total PM10 concentration. Underestimations of MERRAero [PM10] and [OC] are most substantial in wintertime than summertime.
- (c)
- Compared with the first period 2011–2013, MERRAero performance on PM10 and components is less favorable with larger discrepancy during the second period 2016–2017, even though the decreasing trend of PM10 since 2013 is reproduced by MERRAero. The possible reasons may come from the uncertainty in sulfate and soil aerosol emissions.
- (d)
- By introducing nitrate based on the ratio of observed [NO3−] to [SO42−] from three different timescales (yearly, monthly and daily), the PM10 from the MERRAero were improved substantially. The yearly ratio of [NO3−] to [SO42−] observation has the similar improvement in the MERRAero’s applicability in central and eastern China with the daily ratio of [NO3−] to [SO42−]. It is essential to include the nitrate for MERRAero PM10 and PM2.5 reconstruction for further long-term aerosol analysis in China region.
- (e)
- The MERRAero performances of PM10 components of [SO42−], [OC] and [BC] varied temporally in central and eastern China, thus emission inventories of MERRAero need to be updated timely in order to keep up with the recent emission mitigation nowadays, especially in China region.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Randles, C.A.; Silva, A.M.d.; Buchard, V.; Colarco, P.R.; Darmenov, A.; Govindaraju, R.; Smirnov, A.; Holben, B.; Ferrare, R.; Hair, J.; et al. The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part I: System Description and Data Assimilation Evaluation. J. Clim. 2017, 30, 6823–6850. [Google Scholar] [CrossRef] [PubMed]
- Suarez, M.J.; Rienecker, M.M.; Todling, R.; Bacmeister, J.; Takacs, L.; Liu, H.C.; Gu, W.; Sienkiewicz, M.; Koster, R.D.; Gelaro, R. The GEOS-5 Data Assimilation System; Documentation of Versions 5.0.1, 5.1.0, and 5.2.0; National Aeronautics and Space Administration, Goddard Space Flight Center: Greenbelt, MD, USA, 2008. [Google Scholar] [CrossRef]
- Molod, A.; Takacs, L.; Suarez, M.; Bacmeister, J. Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model. Dev. 2015, 7, 1339–1356. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.S.; Purser, R.J.; Parrish, D.F. Three-Dimensional Variational Analysis with Spatially Inhomogeneous Covariances. Mon. Weather Rev. 2002, 130, 2905. [Google Scholar] [CrossRef] [Green Version]
- Kleist, D.T.; Parrish, D.F.; Derber, J.C.; Treadon, R.; Wu, W.S.; Lord, S. Introduction of the GSI into the NCEP Global Data Assimilation system. Weather Forecast. 2009, 24, 1691–1705. [Google Scholar] [CrossRef] [Green Version]
- Remer, L.A.; Kaufman, Y.J.; Tanre, D.; Mattoo, S.; Chu, D.A.; Martins, J.V.; Li, R.R.; Ichoku, C.; Levy, R.C.; Kleidman, R.G. The MODIS Aerosol Algorithm, Products, and Validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef] [Green Version]
- Chin, M.; Ginoux, P.; Kinne, S.; Torres, O.; Holben, B.N.; Duncan, B.N.; Martin, R.V.; Logan, J.A.; Higurashi, A. Tropospheric Aerosol Optical Thickness from the GOCART Model and Comparisons with Satellite and Sun Photometer Measurements. J. Atmos. Sci 2002, 59, 461–483. [Google Scholar] [CrossRef]
- Colarco, P.; Silva, A.D.; Chin, M.; Diehl, T. Online simulations of global aerosol distributions in the NASA GEOS4 model and comparisons to satellite and ground-based aerosol optical depth. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, A.M.; Randles, C.A.; Buchard, V.; Darmenov, A.; Colarco, P.R.; Govindaraju, R. File Specification for the MERRA Aerosol Reanalysis (MERRAero); GMAO Office: Greenbelt, MD, USA, 2015; p. 30. [Google Scholar]
- Colarco, P.R.; Nowottnick, E.P.; Randles, C.A.; Yi, B.; Ping, Y.; Kim, K.M.; Smith, J.A.; Bardeen, C.G. Impact of Radiatively Interactive Dust Aerosols in the NASA GEOS-5 Climate Model: Sensitivity to Dust Particle Shape and Refractive Index. J. Geophys. Res. Atmos. 2014, 119, 753–786. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Buchard, V.; Silva, A.D.; Colarco, P.; Darmenov, A.; Randles, C.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R. Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis. Atmos. Chem. Phys. 2015, 15, 5743–5760. [Google Scholar] [CrossRef] [Green Version]
- Randles, C.A.; da Silva, A.M.; Buchard, V.; Colarco, P.R.; Darmenov, A.; Govindaraju, R.; Smirnov, A.; Holben, B.; Ferrare, R.; Hair, J.; et al. The MERRA-2 Aerosol Assimilation. Technical Report Series on Global Modeling and Data Assimilation; GMAO Office: Greenbelt, MD, USA, 2017; p. 143. [Google Scholar]
- Provençal, S.; Buchard, V.; Da, S.A.; Leduc, R.; Barrette, N.; Elhacham, E.; Wang, S.H. Evaluation of PM2.5 surface concentration simulated by Version 1 of the NASA’s MERRA Aerosol Reanalysis over Israel and Taiwan. Aerosol. Air. Qual. 2017, 17, 253. [Google Scholar] [CrossRef]
- Provençal, S.; Buchard, V.; da Silva, A.M.; Leduc, R.; Barrette, N. Evaluation of PM surface concentrations simulated by Version 1 of NASA’s MERRA Aerosol Reanalysis over Europe. Atmos. Pollut. Res. 2017, 8, 374–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchard, V.; da Silva, A.M.; Randles, C.A.; Colarco, P.; Ferrare, R.; Hair, J.; Hostetler, C.; Tackett, J.; Winker, D. Evaluation of the surface PM2.5 in Version 1 of the NASA MERRA Aerosol Reanalysis over the United States. Atmos. Environ. 2016, 125, 100–111. [Google Scholar] [CrossRef]
- Mahesh, B.; Rama, B.V.; Spandana, B.; Sarma, M.S.S.R.K.N.; Niranjan, K.; Sreekanth, V. Evaluation of MERRAero PM2.5 over Indian cities. Adv. Space Res. 2019, 64, 328–334. [Google Scholar] [CrossRef]
- Song, Z.; Fu, D.; Zhang, X.; Wu, Y.; Xia, X.; He, J.; Han, X.; Zhang, R.; Che, H. Diurnal and seasonal variability of PM 2.5 and AOD in North China plain: Comparison of MERRA-2 products and ground measurements. Atmos. Environ. 2018, 191. [Google Scholar] [CrossRef]
- He, L.; Lin, A.; Chen, X.; Hao, Z.; Zhou, Z.; He, P. Assessment of MERRA-2 Surface PM2.5 over the Yangtze River Basin: Ground-based Verification, Spatiotemporal Distribution and Meteorological Dependence. Remote Sens. Basel 2019, 11, 460. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Xu, J.; Qu, Y. Evaluation on the surface PM2.5 concentration over China mainland from NASA’s MERRA-2. Atmos. Environ. 2020, 237, 117666. [Google Scholar] [CrossRef]
- Zhang, T.; Zang, L.; Mao, F.; Wan, Y.; Zhu, Y. Evaluation of Himawari-8/AHI, MERRA-2, and CAMS Aerosol Products over China. Remote Sens. 2020, 12, 1684. [Google Scholar] [CrossRef]
- Yan, P.; Zhang, R.; Huan, N.; Zhou, X.; Zhang, Y.; Zhou, H.; Zhang, L. Characteristics of aerosols and mass closure study at two WMO GAW regional background stations in eastern China. Atmos. Environ. 2012, 60, 121–131. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Wang, Y.Q.; Niu, T.; Zhang, X.C.; Gong, S.L.; Zhang, Y.M.; Sun, J.Y. Atmospheric aerosol compositions in China: Spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmos. Chem. Phys. 2012, 12, 26571–26615. [Google Scholar] [CrossRef] [Green Version]
- Chow, J.C.; Lowenthal, D.H.; Chen, L.W.A.; Wang, X.; Watson, J.G. Mass reconstruction methods for PM 2.5: A review. Air. Qual. Atmos. Health 2015, 8, 243. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Y.; Cao, Y.; Qiao, X.; Seyler, B.C.; Tang, Y. Air pollution reduction in China: Recent success but great challenge for the future. Sci. Total Environ. 2019, 663, 329–337. [Google Scholar] [CrossRef]
- Jian, J.; Xiaofang, J.; Peng, Y.; Cao, F.; Fang, D.; Ma, Q.; Yu, D.; Zhu, J. Chemical characteristics of PM10 at background stations of Eastern China in 2016-2017. J. Appl. Meteor. Sci. 2021, 32, 65–77. [Google Scholar] [CrossRef]
- Willmott, C.J. Some Comments on the Evaluation of Model Performance. B Am. Meteorol. Soc. 1982, 63, 1309–1313. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.C.; Hanna, S.R. Air quality model performance evaluation. Meteorol. Atmos. Phys. 2004, 87, 167–196. [Google Scholar] [CrossRef]
- Li, G.; Bei, N.; Cao, J.; Wu, J.; Long, X.; Feng, T.; Dai, W.; Liu, S.; Zhang, Q.; Tie, X. Widespread and persistent ozone pollution in eastern China during the non-winter season of 2015: Observations and source attributions. Atmos. Chem. Phys. 2017, 17, 1–39. [Google Scholar] [CrossRef] [Green Version]
- Yumimoto, K.; Tanaka, T.Y.; Oshima, N.; Maki, T. JRAero: The Japanese Reanalysis for Aerosol v1.0. Geosci. Model Dev. 2017, 10, 1–52. [Google Scholar] [CrossRef] [Green Version]
- Willmott, C.J. On the validation of models. Phys. Geogr. 1981, 2, 184–194. [Google Scholar] [CrossRef]
- Lin, W.; Xu, X.; Sun, J.; Liu, Y.; Meng, Z. Characteristics of gaseous pollutants at Jinsha, a remote mountain site in Central China (in Chinese). Sci. China Chim. 2011, 41, 136. [Google Scholar] [CrossRef]
- Lin, W.; Xu, X.; Sun, J.; Liu, X.; Wang, Y. Background concentrations of reactive gases and the impacts of long-range transport at the Jinsha regional atmospheric background station. Sci. China-Earth Sci. 2011, 54, 1604–1613. [Google Scholar] [CrossRef]
- Diehl, T.; Heil, A.; Chin, M.; Pan, X.; Streets, D.; Schultz, M.; Kinne, S. Anthropogenic, biomass burning, and volcanic emissions of black carbon, organic carbon, and SO2 from 1980 to 2010 for hindcast model experiments. Atmos. Chem. Phys. Discuss. 2012, 12, 24895–24954. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Gong, S.; Gong, W.; Makar, P.; Moran, M.; Zhang, J.; Stroud, C. Relative impact of windblown dust versus anthropogenic fugitive dust in PM2.5 on air quality in North America. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Marticorena, B.; Bergametti, G. Modeling the atmospheric dust cycle. Part 1: Design of a soil-derived dust emission scheme. J. Geophys. Res. Atmos. 1995, 100, 16415–16430. [Google Scholar] [CrossRef] [Green Version]
Aerosol Samples | Measurement | Instrument |
---|---|---|
PM10 | Gravimetric analysis | MiniVol™ air sampler and the 47 mm Whatman quartz microfibre filters |
Inorganic ions (F−, Cl−, NO3−, SO42−, NH4+, K+, Na+, Ca2+, Mg2+) | Ion chromatography | Dionex 3000 IC and atomic absorption spectrophotometry |
The elemental carbon (EC) and organic carbon (OC) | Thermal/Optical method | DRI 2001A EC/OC analyzer |
LA | JS | |||||||
---|---|---|---|---|---|---|---|---|
OC | BC | SO42− | PM10 | OC | BC | SO42− | PM10 | |
n | 302 | 302 | 291 | 295 | 156 | 156 | 156 | 156 |
AOC * (μg m−3) | 11.38 | 3.16 | 16.78 | 94.81 | 8.81 | 2.24 | 20.89 | 85.33 |
0.88 | 1.36 | 1.00 | 0.64 | 1.12 | 1.63 | 0.87 | 0.73 | |
(μg m−3) | −1.38 | 1.12 | 0.05 | −33.97 | 1.06 | 1.42 | −2.81 | −23.29 |
SD-B (μg m−3) | 6.06 | 2.22 | 9.52 | 54.71 | 5.86 | 1.98 | 10.33 | 45.44 |
R | 0.41 | 0.48 | 0.53 | 0.45 | 0.45 | 0.56 | 0.62 | 0.55 |
IOA | 0.62 | 0.64 | 0.72 | 0.58 | 0.63 | 0.62 | 0.76 | 0.63 |
FAC2 | 0.81 | 0.69 | 0.82 | 0.66 | 0.79 | 0.62 | 0.81 | 0.81 |
LA | JS | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OC | BC | SO42− | PM10 | DS10 | SS10 | OC | BC | SO42− | PM10 | DS10 | SS10 | |
n | 197 | 186 | 197 | 197 | 197 | 193 | 161 | 161 | 161 | 161 | 161 | 157 |
AOC * (μg m−3) | 6.64 | 3.09 | 9.57 | 61.37 | 20.03 | 0.50 | 4.71 | 2.30 | 10.27 | 58.44 | 18.28 | 0.55 |
0.61 | 0.64 | 0.81 | 0.52 | 0.58 | 0.54 | 1.79 | 1.49 | 1.39 | 0.93 | 0.83 | 1.90 | |
(μg m−3) | −2.61 | −1.11 | −1.77 | −29.53 | −8.45 | −0.23 | 3.72 | 1.12 | 3.99 | −4.00 | −3.09 | 0.49 |
SD−B (μg m−3) | 6.02 | 2.65 | 13.33 | 54.50 | 18.96 | 0.50 | 4.76 | 2.37 | 7.58 | 31.12 | 23.17 | 1.04 |
R | −0.12 | 0.02 | −0.15 | −0.03 | 0.22 | −0.05 | 0.55 | 0.36 | 0.46 | 0.45 | 0.17 | −0.08 |
IOA | 0.34 | 0.41 | 0.24 | 0.40 | 0.49 | 0.39 | 0.58 | 0.53 | 0.61 | 0.66 | 0.37 | 0.17 |
FAC2 | 0.43 | 0.42 | 0.24 | 0.37 | 0.40 | 0.28 | 0.58 | 0.64 | 0.74 | 0.83 | 0.45 | 0.34 |
LA | JS | |||||||
---|---|---|---|---|---|---|---|---|
PM10 (No Nitrate) | PM10 (Day) | PM10 (Month) | PM10 (Year) | PM10 (No Nitrate) | PM10 (Day) | PM10 (Month) | PM10 (Year) | |
n | 295 | 285 | 295 | 295 | 156 | 156 | 156 | 156 |
AMC * (μg m−3) | 60.80 | 69.83 | 70.63 | 70.02 | 64.32 | 71.42 | 73.16 | 73.89 |
0.64 | 0.735 | 0.744 | 0.738 | 0.73 | 0.834 | 0.826 | 0.831 | |
(μg m−3) | −33.97 | −25.26 | −24.26 | −24.79 | −23.29 | −14.27 | −14.80 | −14.42 |
SD-B (μg m−3) | 54.71 | 48.39 | 49.49 | 50.22 | 45.44 | 42.89 | 41.26 | 41.00 |
R | 0.45 | 0.53 | 0.48 | 0.46 | 0.55 | 0.53 | 0.57 | 0.57 |
IOA | 0.58 | 0.67 | 0.64 | 0.62 | 0.63 | 0.68 | 0.69 | 0.69 |
FAC2 | 0.66 | 0.79 | 0.76 | 0.75 | 0.81 | 0.87 | 0.86 | 0.88 |
Observation (LA) | MERRAero (LA) | Observation (JS) | MERRAero (JS) | |||||
---|---|---|---|---|---|---|---|---|
Con. | Pro | Con. | Pro | Con. | Pro | Con. | Pro | |
PM10 | 94.81 | 69.83 | 85.33 | 71.42 | ||||
(NH4)2SO4 | 23.06 | 24% | 23.38 | 33% | 28.71 | 34% | 26.85 | 38% |
NH4NO3 | 10.16 | 11% | 9.03 | 13% | 9.04 | 10% | 7.10 | 10% |
POM | 20.49 | 22% | 18.05 | 26% | 15.86 | 19% | 18.46 | 26% |
BC | 3.16 | 3% | 4.33 | 6% | 2.24 | 3% | 3.83 | 5% |
DS10 | 12.01 | 17% | 14.03 | 20% | ||||
SS10 | 3.03 | 4% | 1.14 | 2% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Yan, P.; Zhao, T.; Jia, X.; Jiao, J.; Ma, Q.; Wu, D.; Shu, Z.; Sun, X.; Habtemicheal, B.A. Evaluations of Surface PM10 Concentration and Chemical Compositions in MERRA-2 Aerosol Reanalysis over Central and Eastern China. Remote Sens. 2021, 13, 1317. https://doi.org/10.3390/rs13071317
Ma X, Yan P, Zhao T, Jia X, Jiao J, Ma Q, Wu D, Shu Z, Sun X, Habtemicheal BA. Evaluations of Surface PM10 Concentration and Chemical Compositions in MERRA-2 Aerosol Reanalysis over Central and Eastern China. Remote Sensing. 2021; 13(7):1317. https://doi.org/10.3390/rs13071317
Chicago/Turabian StyleMa, Xiaodan, Peng Yan, Tianliang Zhao, Xiaofang Jia, Jian Jiao, Qianli Ma, Dongqiao Wu, Zhuozhi Shu, Xiaoyun Sun, and Birhanu Asmerom Habtemicheal. 2021. "Evaluations of Surface PM10 Concentration and Chemical Compositions in MERRA-2 Aerosol Reanalysis over Central and Eastern China" Remote Sensing 13, no. 7: 1317. https://doi.org/10.3390/rs13071317
APA StyleMa, X., Yan, P., Zhao, T., Jia, X., Jiao, J., Ma, Q., Wu, D., Shu, Z., Sun, X., & Habtemicheal, B. A. (2021). Evaluations of Surface PM10 Concentration and Chemical Compositions in MERRA-2 Aerosol Reanalysis over Central and Eastern China. Remote Sensing, 13(7), 1317. https://doi.org/10.3390/rs13071317