Assessing Accuracy of Land Cover Change Maps Derived from Automated Digital Processing and Visual Interpretation in Tropical Forests in Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Approach and Study Area
2.2. Developing Automated Digital Land Cover Maps for 2000–2018
2.3. Assessment of the Land Cover Change Map Accuracy
- Commercial high-resolution SPOT 6/7 images (1.5 m resolution) from 2014 to 2019. Nearly a full coverage of SPOT 6/7 images was obtained for the year 2018. Whilst for the years before 2018, the availability of the SPOT 6/7 images was limited due to cloud cover. The SPOT 6/7 images were provided by LAPAN (https://inderaja-catalog.lapan.go.id/dd4/) data acquired in 2019.
- High-resolution images for the years 2000–2018 from the open-source platform Open Foris Collect Earth, developed by the Food and Agriculture Organization (FAO) of the United Nations [28]. Images with spatial resolution finer than 5 m were obtained from Google Earth and Microsoft Bing Maps, such as Quickbird, GeoEye-1, and Worldview-1 and -2 imagery [29,30].
2.3.1. Validation Data Selection
2.3.2. Confusion Matrix Accuracy Assessment
2.3.3. Land Cover Class Area and Uncertainty
3. Results
3.1. Landcover Change 2000–2018
3.2. Map Accuracy
3.3. Estimating the Area and Uncertainty of Mapped Land Cover Change Classes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Map | Reference | c) User’s Accuracy with SE in Parentheses | c) Producer’s Accuracy with SE in Parentheses | Number of SSU for Map d) | Number of SSU for Reference d) | Over/Under Estimate d) (in SSU) | c) Estimation Area with SE in Parentheses (Hectares) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Stable Non-Forest | Stable Forest | Forest Loss | Forest Regrowth | Total | ||||||||
Stable Non-forest | a) P. data | 75 | 2 | 2 | 0 | 79 | 0.95 (±0.049) | 0.52(±0.021) | 1,550,344 | 2,825,944 | −1,275,600 | 387,586 (±3609) |
b) Map. pr | 0.191 | 0.005 | 0.005 | 0 | 0.202 | |||||||
Stable forest | P. data | 47 | 195 | 14 | 0 | 256 | 0.76 (±0.052) | 0.95 (±0.069) | 5,023,901 | 4,023,046 | 1,000,855 | 1,255,975 (±33,469) |
Map. pr | 0.120 | 0.497 | 0.036 | 0 | 0.653 | |||||||
Forest loss | P. data | 19 | 6 | 27 | 0 | 52 | 0.52 (±0.137) | 0.63 (±0.107) | 1,020,480 | 843,858 | 176,622 | 255,119 (±2932) |
Map. pr | 0.048 | 0.015 | 0.069 | 0 | 0.133 | |||||||
Forest regrowth | P. data | 3 | 2 | 0 | 0 | 5 | 0 | 0 | 98,123 | 0 | 98,123 | 24,530 (±108) |
Map. pr | 0.008 | 0.005 | 0 | 0 | 0.013 | |||||||
Total | P. data | 144 | 205 | 43 | 0 | 392 | Overall 0.76 (±0.056) | 7,692,848 | 7,692,848 | 1,923,212 | ||
Map. pr | 0.367 | 0.523 | 0.110 | 0 | 1 |
Map | Reference | c) User’s Accuracy with SE in Parentheses | c) Producer’s Accuracy with SE in Parentheses | Number of SSU for Map d) | Number of SSU for Reference d) | Over/Under Estimate d) (in SSU) | c) Estimation Area with SE in Parentheses (Hectares) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Stable Non-Forest | Stable Forest | Forest Loss | Forest Regrowth | Total | ||||||||
Stable Non-forest | a) P. data | 138 | 37 | 23 | 0 | 198 | 0.70 (±0.064) | 0.96 (±0.088) | 3,885,673 | 2,825,944 | 1,059,729 | 971,418 (±22,651) |
b) Map. pr | 0.352 | 0.094 | 0.059 | 0 | 0.505 | |||||||
Stable forest | P. data | 3 | 165 | 0 | 0 | 168 | 0.98 (±0.020) | 0.80 (±0.019) | 3,296,935 | 4,023,046 | −726,111 | 824,234 (±6970) |
Map. pr | 0.008 | 0.421 | 0 | 0 | 0.429 | |||||||
Forest loss | P. data | 3 | 3 | 20 | 0 | 26 | 0.77 (±0.166) | 0.47 (±0.067) | 510,240 | 843,858 | −333,618 | 127,560 (±1089) |
Map. pr | 0.008 | 0.008 | 0.051 | 0 | 0.066 | |||||||
Forest regrowth | P. data | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Map. pr | 0 | 0 | 0 | 0 | 0 | |||||||
Total | P. data | 144 | 205 | 43 | 0 | 392 | Overall 0.82 (±0.055) | 7,692,848 | 7,692,848 | 1,923,212 | ||
Map. pr | 0.368 | 0.523 | 0.110 | 0 | 1 |
Map | Reference | c) User’s Accuracy with SE in Parentheses | c) Producer’s Accuracy with SE in Parentheses | Number of SSU for Map d) | Number of SSU for Reference d) | Over/Under Estimate d) (in SSU) | c) Estimation Area with SE in Parentheses (Hectares) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Stable Non-Forest | Stable Forest | Forest Loss | Forest Regrowth | Total | ||||||||
Stable Non-forest | a) P. data | 101 | 5 | 5 | 0 | 111 | 0.91 (±0.053) | 0.60 (±0.029) | 2,168,520 | 3,306,747 | −1,138,228 | 542,130 (±7343) |
b) Map. pr | 0.258 | 0.013 | 0.011 | 0 | 0.282 | |||||||
Stable forest | P. data | 30 | 172 | 7 | 0 | 209 | 0.82 (±0.052) | 0.93 (±0.065) | 4,101,544 | 3,630,553 | 470,991 | 1,025,386 (±23,640) |
Map. pr | 0.077 | 0.439 | 0.018 | 0 | 0.533 | |||||||
Forest loss | P. data | 16 | 2 | 27 | 0 | 45 | 0.60 (±0.145) | 0.70 (±0.117) | 883,108 | 755,548 | 127,560 | 220,777 (±2545) |
Map. pr | 0.041 | 0.005 | 0.069 | 0 | 0.115 | |||||||
Forest regrowth | P. data | 22 | 6 | 0 | 0 | 28 | 0 | 0 | 539,677 | 0 | 539,677 | 134,919 (±1208) |
Map. pr | 0.055 | 0.015 | 0 | 0 | 0.070 | |||||||
Total | P. data | 169 | 185 | 39 | 0 | 392 | Overall 0.77 (±0.058) | 7,692,848 | 7,692,848 | 1,923,212 | ||
Map. pr | 0.430 | 0.472 | 0.098 | 0 | 1 |
Map | Reference | c) User’s Accuracy with SE in Parentheses | c) Producer’s Accuracy with SE in Parentheses | Number of SSU for Map d) | Number of SSU for Reference d) | Over/Under Estimate d) (in SSU) | c) Estimation Area with SE in Parentheses (Hectares) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Stable Non-Forest | Stable Forest | Forest Loss | Forest Regrowth | Total | ||||||||
Stable Non-forest | a) P. data | 157 | 45 | 11 | 0 | 213 | 0.74 (±0.059) | 0.94 (±0.076) | 4,170,230 | 3,277,310 | 892,920 | 1,042,558 (±25,591) |
b) Map. pr | 0.399 | 0.115 | 0.028 | 0 | 0.542 | |||||||
Stable forest | P. data | 8 | 135 | 8 | 0 | 151 | 0.90 (±0.049) | 0.73 (±0.038) | 2,953,504 | 3,630,553 | −677,049 | 738,376 (±12,411) |
Map. pr | 0.019 | 0.344 | 0.020 | 0 | 0.384 | |||||||
Forest loss | P. data | 3 | 4 | 21 | 0 | 28 | 0.76 (±0.162) | 0.53 (±0.079) | 539,677 | 784,984 | −245,308 | 134,919 (±1185) |
Map. pr | 0.008 | 0.009 | 0.054 | 0 | 0.070 | |||||||
Forest regrowth | P. data | 0 | 2 | 0 | 0 | 2 | 0 | 0 | 29,437 | 0 | 29,437 | 7,359 (±28) |
Map. pr | 0 | 0.004 | 0 | 0 | 0.004 | |||||||
Total | P. data | 167 | 185 | 40 | 0 | 392 | Overall 0.80 (±0.060) | 7,692,848 | 7,692,848 | 1,923,212 | ||
Map. pr | 0.426 | 0.472 | 0.102 | 0 | 1 |
Map | Reference | c) User’s Accuracy with SE in Parentheses | c) Producer’s Accuracy with SE in Parentheses | Number of SSU for Map d) | Number of SSU for Reference d) | Over/Under Estimate d) (in SSU) | c) Estimation Area with SE in Parentheses (Hectares) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Stable Non-Forest | Stable Forest | Forest Loss | Forest Regrowth | Total | ||||||||
Stable Non-forest | a) P. data | 124 | 4 | 1 | 0 | 129 | 0.96 (±0.033) | 0.61 (±0.019) | 2,531,575 | 4,003,421 | −1,471,846 | 632,894 (±6697) |
b) Map. pr | 0.316 | 0.010 | 0.003 | 0 | 0.329 | |||||||
Stable forest | P. data | 26 | 149 | 2 | 0 | 177 | 0.84 (±0.054) | 0.87 (±0.059) | 3,473,556 | 3,355,809 | 117,748 | 868,389 (±18,049) |
Map. pr | 0.066 | 0.380 | 0.005 | 0 | 0.452 | |||||||
Forest loss | P. data | 35 | 7 | 14 | 0 | 56 | 0.25 (±0.114) | 0.82 (±0.180) | 1,098,978 | 333,618 | 765,360 | 274,745 (±3361) |
Map. pr | 0.089 | 0.018 | 0.036 | 0 | 0.143 | |||||||
Forest regrowth | P. data | 19 | 11 | 0 | 0 | 30 | 0 | 0 | 588,738 | 0 | 588,738 | 147,185 (±1446) |
Map. pr | 0.048 | 0.028 | 0 | 0 | 0.077 | |||||||
Total | P. data | 204 | 171 | 17 | 0 | 392 | Overall 0.73 (±0.044) | 7,692,848 | 7,692,848 | 1,923,212 | ||
Map. pr | 0.520 | 0.436 | 0.043 | 0 | 1 |
Map | Reference | c) User’s Accuracy with SE in Parentheses | c) Producer’s Accuracy with SE in Parentheses | Number of SSU for Map d) | Number of SSU for Reference d) | Over/Under Estimate d) (in SSU) | c) Estimation Area with SE in Parentheses (Hectares) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Stable Non-Forest | Stable Forest | Forest Loss | Forest Regrowth | Total | ||||||||
Stable Non-forest | a) P. data | 184 | 40 | 1 | 0 | 225 | 0.82 (±0.051) | 0.92 (±0.061) | 4,415,538 | 3,924,922 | 490,615 | 1,103,884 (±26,795) |
b) Map. pr | 0.469 | 0.102 | 0.003 | 0 | 0.574 | |||||||
Stable forest | P. data | 11 | 137 | 2 | 0 | 150 | 0.91 (±0.045) | 0.75 (±0.037) | 2,943,692 | 3,571,679 | −627,988 | 735,923 (±11,651) |
Map. pr | 0.028 | 0.349 | 0.005 | 0 | 0.383 | |||||||
Forest loss | P. data | 5 | 5 | 7 | 0 | 17 | 0.41 (±0.241) | 0.70 (±0.255) | 333,618 | 196,246 | 137,372 | 83,405 (±492) |
Map. pr | 0.013 | 0.013 | 0.018 | 0 | 0.043 | |||||||
Forest regrowth | P. data | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Map. pr | 0 | 0 | 0 | 0 | 0 | |||||||
Total | P. data | 200 | 182 | 10 | 0 | 392 | Overall 0.84 (±0.054) | 7,692,848 | 7,692,848 | 1,923,212 | ||
Map. pr | 0.510 | 0.464 | 0.026 | 0 | 1 |
References
- Achard, F.; Beuchle, R.; Mayaux, P.; Stibig, H.-J.; Bodart, C.; Brink, A.; Carboni, S.; Desclée, B.; Donnay, F.; Eva, H.D.; et al. Determination of tropical deforestation rates and related carbon losses from 1990 to 2010. Glob. Chang. Biol. 2014, 20, 2540–2554. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [Green Version]
- Tropek, R.; Sedláček, O.; Beck, J.; Keil, P.; Musilová, Z.; Šímová, I.; Storch, D. Comment on “High-resolution global maps of 21st-century forest cover change”. Science 2014, 344, 981. [Google Scholar] [CrossRef] [Green Version]
- Tsujino, R.; Yumoto, T.; Kitamura, S.; Djamaluddin, I.; Darnaedi, D. History of forest loss and degradation in Indonesia. Land Use Pol. 2016, 57, 335–347. [Google Scholar] [CrossRef]
- Keenan, R.J.; Reams, G.A.; Achard, F.; de Freitas, J.V.; Grainger, A.; Lindquist, E. Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015. For. Ecol. Manag. 2015, 352, 9–20. [Google Scholar] [CrossRef]
- Pusat Data dan Informasi Sekretariat Jenderal Kementerian Lingkungan Hidup dan Kehutanan. Statistik Lingkungan Hidup dan Kehutanan Tahun 2016 (Environment and Forestry Statistics, 2016); Ministry of Environment and Forestry: Jakarta, Indonesia, 2017; pp. 89–93. Available online: https://docplayer.info/69556286-Statistik-lingkungan-hidup-dan-kehutanan-tahun-2016.html (accessed on 23 May 2020).
- Austin, K.G.; Schwantes, A.; Gu, Y.F.; Kasibhatla, P.S. What causes deforestation in Indonesia? Environ. Res. Lett. 2019, 14, 9. [Google Scholar] [CrossRef]
- Margono, B.A.; Usman, A.B.; Sugardiman, R.A. Indonesia’s Forest Resource Monitoring. Indones. J. Geogr. 2016, 48, 7–20. [Google Scholar] [CrossRef]
- Wijaya, A.; Budiharto, R.S.; Tosiani, A.; Murdiyarso, D.; Verchot, L. Assessment of large scale land cover change classifications and drivers of deforestation in Indonesia. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 557. Available online: https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-7-W3/557/2015/ (accessed on 14 May 2019). [CrossRef] [Green Version]
- Tarko, A.; Tsendbazar, N.-E.; de Bruin, S.; Bregt, A.K. Producing consistent visually interpreted land cover reference data: Learning from feedback. Int. J. Digit. Earth 2021, 14, 52–70. [Google Scholar] [CrossRef]
- Ministry of Environment and Forestry, Republic of Indonesia. The State of Indonesia’s Forests 2018; Ministry of Environment and Forestry, Republic of Indonesia: Jakarta, Indonesia, 2018; p. 10. Available online: https://www.menlhk.go.id/site/download?start=10 (accessed on 14 May 2019).
- Ministry of Environment and Forestry, Republic of Indonesia. Third National Communication under the United Nations Framework Convention on Climate Change Convention; Ministry of Environment and Forestry, Republic of Indonesia: Jakarta, Indonesia, 2018; p. xxiv. Available online: https://unfccc.int/sites/default/files/resource/8360571_Indonesia-NC3-2-Third%20National%20Communication%20-%20Indonesia%20-%20editorial%20refinement%2013022018.pdf (accessed on 14 May 2019).
- DeFries, R.; Achard, F.; Brown, S.; Herold, M.; Murdiyarso, D.; Schlamadinger, B.; de Souza, C. Earth observations for estimating greenhouse gas emissions from deforestation in developing countries. Environ. Sci. Policy 2007, 10, 385–394. [Google Scholar] [CrossRef]
- Penman, J.; Gytarsky, M.; Hiraishi, T.; Krug, T.; Kruger, D.; Pipatti, R.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. Good Practice Guidance for Land Use, Land-Use Change and Forestry; Institute for Global Environmental Strategies (IGES): Hayama, Kanagawa, Japan, 2003; Available online: https://www.ipcc.ch/site/assets/uploads/2018/03/GPG_LULUCF_FULLEN.pdf (accessed on 9 January 2021).
- Directorate General of Climate Change, Ministry of Environment and Forestry. National Forest Reference Emission Level for Deforestation and Forest Degradation: In the Context of Decision 1/CP.16 para 70 UNFCCC (Encourages Developing Country Parties to Contribute to Mitigation Actions in the Forest Sector); Ministry of Environment and Forestry: Jakarta, Indonesia, 2016; pp. 6–7. Available online: https://redd.unfccc.int/files/frel_submission_by__indonesia_final.pdf (accessed on 26 April 2020).
- LAPAN. The Remote Sensing Monitoring Program of Indonesia’s National Carbon Accounting System: Methodology and Products, Version 1; LAPAN-IAFCP: Jakarta, Indonesia, 2014; pp. 15–78. Available online: http://incas.menlhk.go.id/methodology/incas-standard-method-forest-cover-change/ (accessed on 4 January 2019).
- Kustiyo, K.; Roswintiarti, O.; Tjahjaningsih, A.; Dewanti, R.; Furby, S.; Wallace, J. Annual forest monitoring as part of the Indonesia’s National Carbon Accounting System. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40–47/W3, 441. [Google Scholar] [CrossRef] [Green Version]
- Wickham, J.; Stehman, S.V.; Gass, L.; Dewitz, J.A.; Sorenson, D.G.; Granneman, B.J.; Poss, R.V.; Baer, L.A. Thematic accuracy assessment of the 2011 National Land Cover Database (NLCD). Remote Sens. Environ. 2017, 191, 328–341. [Google Scholar] [CrossRef] [Green Version]
- Division of Integrated Data Processing Integration and Statistical Disemination, BPS-Statistics of Kalimantan Tengah Province. Provinsi Kalimantan Tengah Dalam Angka 2018 (Kalimantan Tengah Province In Figures 2018); BPS-Statistics of Kalimantan Tengah Province: Palangka Raya, Indonesia, 2018; Volume 10, pp. 326–327. Available online: https://kalteng.bps.go.id/publication/2018/08/16/ceed046d35684aefde786f04/provinsi-kalimantan-tengah-dalam-angka-2018.html (accessed on 23 May 2020).
- Division of Integrated Data Processing Integration and Statistical Disemination, BPS-Statistics of Kalimantan Timur Province. Provinsi Kalimantan Timur Dalam Angka 2018 (Kalimantan Timur Province In Figures 2018); BPS-Statistics of Kalimantan Timur Province: Samarinda, Indonesia, 2018; Volume 9, pp. 249–250. Available online: https://kaltim.bps.go.id/publication/2018/08/16/9341dae4a1306ccfee98a393/provinsi-kalimantan-timur-dalam-angka-2018.html (accessed on 23 May 2020).
- Division of Integrated Data Processing Integration and Statistical Disemination, BPS-Statistics of Kalimantan Selatan Province. Provinsi Kalimantan Selatan Dalam Angka 2018 (Kalimantan Selatan Province In Figures 2018); BPS-Statistics of Kalimantan Selatan Province: Banjarbaru, Indonesia, 2018; Volume 7, pp. 230–231. Available online: https://kalsel.bps.go.id/publication/2018/08/16/f646d3011e4c3dfb0a4cbd74/provinsi-kalimantan-selatan-dalam-angka-2018.html (accessed on 23 May 2020).
- Directorate General of Estate Crops, Ministry of Agriculture. Statistik Perkebunan Indonesia 2015–2017: Kelapa sawit (Tree Crop Estate Statistics of Indonesia 2015-2017: Palm Oil); Ministry of Agriculture: Jakarta, Indonesia, 2017; p. 3. Available online: http://ditjenbun.pertanian.go.id/?publikasi=buku-publikasi-statistik-2015-2017 (accessed on 26 April 2020).
- Directorate General of Estate Crops, Ministry of Agriculture. Statistik Perkebunan Indonesia 2015–2017: Karet (Tree Crop Estate Statistics of Indonesia 2015-2017: Rubber); Ministry of Agriculture: Jakarta, Indonesia, 2017; p. 3. Available online: http://ditjenbun.pertanian.go.id/?publikasi=buku-publikasi-statistik-2015-2017 (accessed on 26 April 2020).
- Karakizi, C.; Karantzalos, K.; Vakalopoulou, M.; Antoniou, G. Detailed land cover mapping from multitemporal Landsat-8 data of different cloud cover. Remote. Sens. 2018, 10, 1214. [Google Scholar] [CrossRef] [Green Version]
- Caccetta, P.; Furby, S.; Wallace, J.; Wu, X.; Richards, G.; Waterworth, R. Long-term monitoring of Australian land cover change using landsat data: Development, implementation, and operation. In Global Forest Monitoring from Earth Observation; Achard, F., Hansen, M.C., Eds.; Taylor & Francis: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Stehman, S.V.; Foody, G.M. Key issues in rigorous accuracy assessment of land cover products. Remote Sens. Environ. 2019, 231, 111199. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- FAO. Open Foris. Available online: http://www.openforis.org/ (accessed on 28 March 2020).
- Lesiv, M.; See, L.; Laso Bayas, J.C.; Sturn, T.; Schepaschenko, D.; Karner, M.; Moorthy, I.; McCallum, I.; Fritz, S. Characterizing the spatial and temporal availability of very high resolution satellite imagery in Google Earth and Microsoft Bing Maps as a source of reference data. Land 2018, 7, 118. [Google Scholar] [CrossRef] [Green Version]
- Bey, A.; Sánchez-Paus Díaz, A.; Maniatis, D.; Marchi, G.; Mollicone, D.; Ricci, S.; Bastin, J.-F.; Moore, R.; Federici, S.; Rezende, M.; et al. Collect Earth: Land use and land cover assessment through augmented visual interpretation. Remote. Sens. 2016, 8, 807. [Google Scholar] [CrossRef] [Green Version]
- McCoy, R.M. Field Methods in Remote Sensing; The Guilford Press: New York, NY, USA, 2005; pp. 16–21. [Google Scholar]
- Stehman, S.V. Sampling designs for accuracy assessment of land cover. Int. J. Remote. Sens. 2009, 30, 5243–5272. [Google Scholar] [CrossRef]
- Stehman, S.V.; Wickham, J.D.; Smith, J.H.; Yang, L. Thematic accuracy of the 1992 National Land-Cover Data for the eastern United States: Statistical methodology and regional results. Remote Sens. Environ. 2003, 86, 500–516. [Google Scholar] [CrossRef]
- Ramezan, C.A.; Warner, T.A.; Maxwell, A.E. Evaluation of sampling and Cross-Validation tuning strategies for regional-scale Machine Learning Classification. Remote. Sens. 2019, 11, 185. [Google Scholar] [CrossRef] [Green Version]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar] [CrossRef]
- Mackinnon, K.; Hatta, G.; Halim, H.; Mangalik, A. The Ecology of Kalimantan; Periplus Editions: Singapore, 1996. [Google Scholar]
- Fatawi, M.; Mori, T. Description of Forests and Forestry in East Kalimantan. In Rainforest Ecosystems of East Kalimantan: El Niño, Drought, Fire and Human Impacts; Guhardja, E., Fatawi, M., Sutisna, M., Mori, T., Ohta, S., Eds.; Springer: Tokyo, Japan, 2000. [Google Scholar] [CrossRef]
- Ngatiman, N.; Saridan, A. Ekplorasi Jenis-Jenis Dipterokarpa di Kabupaten Paser, Kalimantan Timur (Exploration of Dipterocarps Species in Paser Regency, East Kalimantan). J. Penelit. Dipterokarpa 2012, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Turubanova, S.; Potapov, P.V.; Tyukavina, A.; Hansen, M.C. Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environ. Res. Lett. 2018, 13, 15. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, D.; Cunningham, P.; Fagan, M.E. Identifying Biases in Global Tree Cover Products: A Case Study in Costa Rica. Forests 2019, 10, 853. [Google Scholar] [CrossRef] [Green Version]
- Asner, G.P. Cloud cover in Landsat observations of the Brazilian Amazon. Int. J. Remote. Sens. 2001, 22, 3855–3862. [Google Scholar] [CrossRef]
- Hoekman, D.H.; Vissers, M.A.M.; Wielaard, N. PALSAR wide-area mapping of Borneo: Methodology and map validation. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2010, 3, 605–617. [Google Scholar] [CrossRef]
- Mitchell, A.L.; Tapley, I.; Milne, A.K.; Williams, M.L.; Zhou, Z.-S.; Lehmann, E.; Caccetta, P.; Lowell, K.; Held, A. C- and L-band SAR interoperability: Filling the gaps in continuous forest cover mapping in Tasmania. Remote Sens. Environ. 2014, 155, 58–68. [Google Scholar] [CrossRef]
- Hansen, M.C.; Loveland, T.R. A review of large area monitoring of land cover change using Landsat data. Remote Sens. Environ. 2012, 122, 66–74. [Google Scholar] [CrossRef]
- Ban, Y. Multitemporal Remote Sensing; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Miettinen, J.; Gaveau, D.L.A.; Liew, S.C. Comparison of visual and automated oil palm mapping in Borneo. Int. J. Remote. Sens. 2019, 40, 8174–8185. [Google Scholar] [CrossRef]
- Beaubien, J. Visual interpretation of vegetation through digitally enhanced LANDSAT-MSS images. Remote Sens. Rev. 1986, 2, 111–143. [Google Scholar] [CrossRef]
- Svatonova, H. Analysis of visual interpretation of satellite data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 675. [Google Scholar] [CrossRef] [Green Version]
- Borghuis, A.M.; Chang, K.; Lee, H.Y. Comparison between automated and manual mapping of typhoon-triggered landslides from SPOT-5 imagery. Int. J. Remote. Sens. 2007, 28, 1843–1856. [Google Scholar] [CrossRef]
- Stocker, O.; Le Bris, A. Can SPOT-6/7 CNN Semantic Segmentation improve Sentinel-2 based land cover products? sensor assessment and fusion. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 5. [Google Scholar] [CrossRef]
- Gallaun, H.; Steinegger, M.; Wack, R.; Schardt, M.; Kornberger, B.; Schmitt, U. Remote sensing based two-stage sampling for accuracy assessment and area estimation of land cover changes. Remote. Sens. 2015, 7, 11992–12008. [Google Scholar] [CrossRef] [Green Version]
- Stehman, S.V.; Foody, G.M. Accuracy assessment. In The SAGE Handbook of Remote Sensing; SAGE Publications, Inc.: London, UK, 2009. [Google Scholar] [CrossRef]
Distribution Per Class | Distribution Per Zones *) | |||
---|---|---|---|---|
Zone 3 | Zone 9 | Zone 2 | ||
Stable non-forest | 26.9 | 81.4 | 7.8 | 10.8 |
Stable forest | 51.2 | 89.0 | 4.5 | 6.5 |
Forest loss | 12.6 | 70.8 | 18.0 | 11.2 |
Forest regrowth | 9.3 | 89.4 | 6.8 | 3.8 |
Reference (r) | Under/Over Estimation, SSU | Estimated Area, Hectares | |||||||
---|---|---|---|---|---|---|---|---|---|
Class a | Class b | Class c | Class d | Total | |||||
Map (m) | class a | ||||||||
class b | |||||||||
class c | |||||||||
class d | |||||||||
Total | n | ||||||||
A | H |
Maps | 2000–2006 | 2006–2012 | 2012–2018 |
---|---|---|---|
ADP | 76% (±5.6%) | 77% (±5.8%) | 73% (±4.4%) |
VI | 82% (±5.5%) | 80% (±6%) | 84% (±5.4%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sari, I.L.; Weston, C.J.; Newnham, G.J.; Volkova, L. Assessing Accuracy of Land Cover Change Maps Derived from Automated Digital Processing and Visual Interpretation in Tropical Forests in Indonesia. Remote Sens. 2021, 13, 1446. https://doi.org/10.3390/rs13081446
Sari IL, Weston CJ, Newnham GJ, Volkova L. Assessing Accuracy of Land Cover Change Maps Derived from Automated Digital Processing and Visual Interpretation in Tropical Forests in Indonesia. Remote Sensing. 2021; 13(8):1446. https://doi.org/10.3390/rs13081446
Chicago/Turabian StyleSari, Inggit Lolita, Christopher J. Weston, Glenn J. Newnham, and Liubov Volkova. 2021. "Assessing Accuracy of Land Cover Change Maps Derived from Automated Digital Processing and Visual Interpretation in Tropical Forests in Indonesia" Remote Sensing 13, no. 8: 1446. https://doi.org/10.3390/rs13081446
APA StyleSari, I. L., Weston, C. J., Newnham, G. J., & Volkova, L. (2021). Assessing Accuracy of Land Cover Change Maps Derived from Automated Digital Processing and Visual Interpretation in Tropical Forests in Indonesia. Remote Sensing, 13(8), 1446. https://doi.org/10.3390/rs13081446