Remote Sensing of Forest Structural Changes Due to the Recent Boom of Unconventional Shale Gas Extraction Activities in Appalachian Ohio
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Datasets
3. Methods
3.1. Spatial Footprints of Shale Gas Extraction Facilities
3.2. Forest Fragmentation Verification
3.3. Loss of Core Forest Area and Forest Volume
4. Results
4.1. Footprints of Shale Gas Extraction Facilities
4.2. The Occurrence of Forest Fragmentation
4.3. Loss of Core Forest and Forest Volume
5. Discussion
5.1. The Reliability of Analysis
5.2. Landcover Change Pattern and the Degradation of Ecological Serving Capability
5.3. Forest Fragmentation Issues
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- U.S. Energy Information Administration. Annual Energy Outlook 2018; Energy Information Administration: Washington, DC, USA, 2018. [Google Scholar]
- Shah, D.O. Improved Oil Recovery by Surfactant and Polymer Flooding; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Ohio Department of Natural Resources. Underground Injection Control (UIC). Available online: http://oilandgas.ohiodnr.gov/regulatory-sections/underground-injection-control#info (accessed on 29 December 2018).
- Vengosh, A.; Jackson, R.B.; Warner, N.; Darrah, T.H.; Kondash, A. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States. Environ. Sci. Technol. 2014, 48, 8334–8348. [Google Scholar] [CrossRef] [PubMed]
- Snyder, J. Oil and Gas 101: An Overview of Oil and Gas Upstream Activities and Using EPA’s Nonpoint Oil and Gas Emission Estimation Tool for the 2014 NEI; United States Environmental Protection Agency: Washington, DC, USA, 2014. [Google Scholar]
- Pearson, I.; Zeniewski, P.; Gracceva, F.; Zastera, P.; McGlade, C.; Sorrell, S.; Speirs, J.; Thonhauser, G. Unconventional gas: Potential energy market impacts in the European Union. Eur. Comm. Jt. Res. Cent. 2012, 7. [Google Scholar] [CrossRef]
- Moran, M.D.; Taylor, N.T.; Mullins, T.F.; Sardar, S.S.; McClung, M.R. Land-use and ecosystem services costs of unconventional US oil and gas development. Front. Ecol. Environ. 2017, 15, 237–242. [Google Scholar] [CrossRef]
- Langlois, L.A.; Drohan, P.J.; Brittingham, M.C. Linear infrastructure drives habitat conversion and forest fragmentation associated with Marcellus shale gas development in a forested landscape. J. Environ. Manag. 2017, 197, 167–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohio Environmental Protection Agency. Drilling for Natural Gas in the Marcellus and Utica Shales: Environmental Regulatory Basics; Ohio Environmental Protection Agency: Columbus, OH, USA, 2014. Available online: https://epa.ohio.gov/Marcellus-and-Utica-Shale#135404330-general-information (accessed on 29 December 2018).
- Ohio Department of Natural Resources. Ohio Oil & Gas Wells. Available online: https://gis.ohiodnr.gov/MapViewer/?config=oilgaswells (accessed on 29 December 2018).
- Drohan, P.J.; Brittingham, M.; Bishop, J.; Yoder, K. Early trends in landcover change and forest fragmentation due to shale-gas development in Pennsylvania: A potential outcome for the Northcentral Appalachians. Environ. Manag. 2012, 49, 1061–1075. [Google Scholar] [CrossRef]
- Donnelly, S.; Cobbinah Wilson, I.; Oduro Appiah, J. Comparing land change from shale gas infrastructure development in neighboring Utica and Marcellus regions, 2006–2015. J. Land Use Sci. 2017, 12, 338–350. [Google Scholar] [CrossRef]
- Olmstead, S.M.; Muehlenbachs, L.A.; Shih, J.-S.; Chu, Z.; Krupnick, A.J. Shale gas development impacts on surface water quality in Pennsylvania. Proc. Natl. Acad. Sci. USA 2013, 201213871. [Google Scholar] [CrossRef] [Green Version]
- Vidic, R.D.; Brantley, S.L.; Vandenbossche, J.M.; Yoxtheimer, D.; Abad, J.D. Impact of shale gas development on regional water quality. Science 2013, 340, 1235009. [Google Scholar] [CrossRef] [Green Version]
- Warner, N.R.; Christie, C.A.; Jackson, R.B.; Vengosh, A. Impacts of shale gas wastewater disposal on water quality in western Pennsylvania. Environ. Sci. Technol. 2013, 47, 11849–11857. [Google Scholar] [CrossRef]
- Covert, S.A.; Jagucki, M.L.; Huitger, C.A. Baseline Water Quality of an Area Undergoing Shale-Gas Development in the Muskingum River Watershed, Ohio, 2015–2016; ISSN 2328–0328 (online); U.S. Geological Survey Scientific Investigations Report. 2018. Available online: https://pubs.er.usgs.gov/publication/sir20185113 (accessed on 29 February 2020).
- Annevelink, M.; Meesters, J.; Hendriks, A. Environmental contamination due to shale gas development. Sci. Total Environ. 2016, 550, 431–438. [Google Scholar] [CrossRef]
- Brittingham, M.C.; Maloney, K.O.; Farag, A.M.; Harper, D.D.; Bowen, Z.H. Ecological risks of shale oil and gas development to wildlife, aquatic resources and their habitats. Environ. Sci. Technol. 2014, 48, 11034–11047. [Google Scholar] [CrossRef]
- Kiviat, E. Risks to biodiversity from hydraulic fracturing for natural gas in the Marcellus and Utica shales. Ann. N. Y. Acad. Sci. 2013, 1286, 1–14. [Google Scholar] [CrossRef]
- Cluff, M.A.; Hartsock, A.; MacRae, J.D.; Carter, K.; Mouser, P.J. Temporal changes in microbial ecology and geochemistry in produced water from hydraulically fractured Marcellus Shale gas wells. Environ. Sci. Technol. 2014, 48, 6508–6517. [Google Scholar] [CrossRef]
- Barlow, K.M.; Mortensen, D.A.; Drohan, P.J.; Averill, K.M. Unconventional gas development facilitates plant invasions. J. Environ. Manag. 2017, 202, 208–216. [Google Scholar] [CrossRef]
- Weinberger, B.; Greiner, L.H.; Walleigh, L.; Brown, D. Health symptoms in residents living near shale gas activity: A retrospective record review from the Environmental Health Project. Prev. Med. Rep. 2017, 8, 112–115. [Google Scholar] [CrossRef] [PubMed]
- Ohio Department of Natural Resources. Shale Well Drilling & Permitting; ODNR Division of Oil & Gas Resources. 2018. Available online: https://ohiodnr.gov/wps/portal/gov/odnr/business-and-industry/energy-resources/oil-and-gas-wells/horizontal-wells (accessed on 29 February 2020).
- Gillen, J.L.; Kiviat, E. Environmental reviews and case studies: Hydraulic fracturing threats to species with restricted geographic ranges in the Eastern United States. Environ. Pract. 2012, 14, 320–331. [Google Scholar] [CrossRef] [Green Version]
- Foley, J.A.; Asner, G.P.; Costa, M.H.; Coe, M.T.; DeFries, R.; Gibbs, H.K.; Howard, E.A.; Olson, S.; Patz, J.; Ramankutty, N. Amazonia revealed: Forest degradation and loss of ecosystem goods and services in the Amazon Basin. Front. Ecol. Environ. 2007, 5, 25–32. [Google Scholar] [CrossRef]
- D’Almeida, C.; Vörösmarty, C.J.; Hurtt, G.C.; Marengo, J.A.; Dingman, S.L.; Keim, B.D. The effects of deforestation on the hydrological cycle in Amazonia: A review on scale and resolution. Int. J. Climatol. 2007, 27, 633–647. [Google Scholar] [CrossRef]
- McCuen, R.H. Modeling Hydrologic Change: Statistical Methods; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Gleason, C.J.; Im, J. Forest biomass estimation from airborne LiDAR data using machine learning approaches. Remote Sens. Environ. 2012, 125, 80–91. [Google Scholar] [CrossRef]
- Donnelly, S. Factors influencing the location of gathering pipelines in utica and marcellus shale gas development. J. Geogr. 2018, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Khanal, S.; Lal, R.; Kharel, G.; Fulton, J. Identification and classification of critical soil and water conservation areas in the Muskingum River basin in Ohio. J. Soil Water Conserv. 2018, 73, 213–226. [Google Scholar] [CrossRef]
- Craine, L.E. The Muskingum Watershed Conservancy District: A study of local control. Law Contemp. Probs. 1957, 22, 378–404. [Google Scholar] [CrossRef] [Green Version]
- U.S. Census Bureau, Population Division. Annual Estimates of the Resident Population: April 1, 2010 to July 1, 2018; U.S. Census Bureau: Suitland-Silver Hill, MD, USA, 2018. Available online: https://www.census.gov/newsroom/press-kits/2018/pop-estimates-national-state.html (accessed on 29 December 2018).
- Koppen, W.D. Das geographische system der klimat. In Handbuch der Klimatologie; Gebrüder Borntraeger: Stuttgart, Germany, 1936; p. 46. [Google Scholar]
- Beck, C.; Grieser, J.; Kottek, M.; Rubel, F.; Rudolf, B. Characterizing global climate change by means of Köppen climate classification. Klimastatusbericht 2005, 51, 139–149. [Google Scholar]
- White, D.; Johnston, K.; Miller, M. Ohio river basin. In Rivers of North America; Academic Press: Cambridge, MA, USA, 2005; pp. 375–424. [Google Scholar]
- United States Geological Survey. Water-Year Summary for Site USGS 03150500 (Muskingum River at Beverly OH). Available online: https://waterdata.usgs.gov/nwis/wys_rpt?dv_ts_ids=108910&wys_water_yr=2019&site_no=03150500&agency_cd=USGS (accessed on 7 October 2020).
- Iverson, L.R.; Dale, M.E.; Scott, C.T.; Prasad, A. A GIS-derived integrated moisture index to predict forest composition and productivity of Ohio forests (USA). Landsc. Ecol. 1997, 12, 331–348. [Google Scholar] [CrossRef]
- Albright, T.A.; Butler, B.J.; Crocker, S.J.; Kurtz, C.M.; Lister, T.W.; McWilliams, W.H.; Miles, P.D.; Morin, R.S.; Nelson, M.D.; Riemann, R.; et al. Ohio Forests 2016; Resour. Bull. NRS-118; US Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA, USA, 2018; 114p. [Google Scholar]
- OSIP. OSIP Data Downloads. Available online: https://ogrip.oit.ohio.gov/projectsinitiatives/osipdatadownloads.aspx (accessed on 29 December 2018).
- United States Department of Agriculture Farm Service Agency. NAIP Imagery. Available online: https://www.fsa.usda.gov/programs-and-services/aerial-photography/imagery-programs/naip-imagery/ (accessed on 29 December 2018).
- Witharana, C.; Civco, D.L.; Meyer, T.H. Evaluation of data fusion and image segmentation in earth observation based rapid mapping workflows. ISPRS J. Photogramm. Remote Sens. 2014, 87, 1–18. [Google Scholar] [CrossRef]
- Liu, Y. Remote Sensing of Forest Structural Changes Due to Shale Gas Extraction in Muskingum Watershed. Master’s Thesis, University of Cincinnati, Cincinnati, OH, USA, 2018. [Google Scholar]
- Chakraborty, A.; Ghosh, A.; Sachdeva, K.; Joshi, P.K. Characterizing fragmentation trends of the Himalayan forests in the Kumaon region of Uttarakhand, India. Ecol. Inform. 2017, 38, 95–109. [Google Scholar] [CrossRef]
- Wade, T.G.; Riitters, K.H.; Wickham, J.D.; Jones, K.B. Distribution and causes of global forest fragmentation. Conserv. Ecol. 2003, 7, 7. [Google Scholar] [CrossRef]
- Darwish, A.; Leukert, K.; Reinhardt, W. Image segmentation for the purpose of object-based classification. In Proceedings of the 2003 IEEE International Geoscience and Remote Sensing Symposium (IGARSS’03), Toulouse, France, 21–25 July 2003; pp. 2039–2041. [Google Scholar]
- Tzotsos, A.; Argialas, D. Support vector machine classification for object-based image analysis. In Object-Based Image Analysis; Springer: Berlin/Heidelberg, Germany, 2008; pp. 663–677. [Google Scholar]
- Li, X.; Shao, G. Object-based land-cover mapping with high resolution aerial photography at a county scale in midwestern USA. Remote Sens. 2014, 6, 11372–11390. [Google Scholar] [CrossRef] [Green Version]
- Riitters, K.H.; Wickham, J.D.; O’neill, R.V.; Jones, K.B.; Smith, E.R.; Coulston, J.W.; Wade, T.G.; Smith, J.H. Fragmentation of continental United States forests. Ecosystems 2002, 5, 815–822. [Google Scholar] [CrossRef]
- Van Leeuwen, M.; Nieuwenhuis, M. Retrieval of forest structural parameters using LiDAR remote sensing. Eur. J. For. Res. 2010, 129, 749–770. [Google Scholar] [CrossRef]
- Hyyppä, J.; Hyyppä, H.; Litkey, P.; Yu, X.; Haggrén, H.; Rönnholm, P.; Pyysalo, U.; Juho Pitkänen, J.; Maltamo, M. Algorithms and methods of airborne laser-scanning for forest measurements. Int. Arch. Photogramm. Remote Sens. 2004, 36, 8. [Google Scholar]
- Wickham, J.D.; Stehman, S.V.; Gass, L.; Dewitz, J.; Fry, J.A.; Wade, T.G. Accuracy assessment of NLCD 2006 land cover and impervious surface. Remote Sens. Environ. 2013, 130, 294–304. [Google Scholar] [CrossRef]
- Wickham, J.; Stehman, S.; Fry, J.; Smith, J.; Homer, C. Thematic accuracy of the NLCD 2001 land cover for the conterminous United States. Remote Sens. Environ. 2010, 114, 1286–1296. [Google Scholar] [CrossRef]
- Hernando, A.; Velázquez, J.; Valbuena, R.; Legrand, M.; García-Abril, A. Influence of the resolution of forest cover maps in evaluating fragmentation and connectivity to assess habitat conservation status. Ecol. Indic. 2017, 79, 295–302. [Google Scholar] [CrossRef]
- Li, X.; Myint, S.W.; Zhang, Y.; Galletti, C.; Zhang, X.; Turner, B.L. Object-based land-cover classification for metropolitan Phoenix, Arizona, using aerial photography. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 321–330. [Google Scholar] [CrossRef]
- Moran, M.D.; Cox, A.B.; Wells, R.L.; Benichou, C.C.; McClung, M.R. Habitat loss and modification due to gas development in the Fayetteville Shale. Environ. Manag. 2015, 55, 1276–1284. [Google Scholar] [CrossRef]
- Slonecker, E.T.; Milheim, L.E. Landscape disturbance from unconventional and conventional oil and gas development in the Marcellus Shale region of Pennsylvania, USA. Environments 2015, 2, 200–220. [Google Scholar] [CrossRef] [Green Version]
- Fahey, T.J.; Woodbury, P.B.; Battles, J.J.; Goodale, C.L.; Hamburg, S.P.; Ollinger, S.V.; Woodall, C.W. Forest carbon storage: Ecology, management, and policy. Front. Ecol. Environ. 2010, 8, 245–252. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Q.; McPherson, E.G.; Simpson, J.R.; Ustin, S.L. Rainfall interception by Sacramento’s urban forest. J. Arboric. 1998, 24, 235–244. [Google Scholar]
- Entrekin, S.; Evans-White, M.; Johnson, B.; Hagenbuch, E. Rapid expansion of natural gas development poses a threat to surface waters. Front. Ecol. Environ. 2011, 9, 503–511. [Google Scholar] [CrossRef]
- Matlack, G.R. Microenvironment variation within and among forest edge sites in the eastern United States. Biol. Conserv. 1993, 66, 185–194. [Google Scholar] [CrossRef]
- Goosem, M.; Marsh, H. Fragmentation of a small-mammal community by a powerline corridor through tropical rainforest. Wildl. Res. 1997, 24, 613–629. [Google Scholar] [CrossRef]
- Gehlhausen, S.M.; Schwartz, M.W.; Augspurger, C.K. Vegetation and microclimatic edge effects in two mixed-mesophytic forest fragments. Plant Ecol. 2000, 147, 21–35. [Google Scholar] [CrossRef]
- Yokochi, K.; Chambers, B.K.; Bencini, R. An artificial waterway and road restrict movements and alter home ranges of endangered arboreal marsupial. J. Mammal. 2015, 96, 1284–1294. [Google Scholar] [CrossRef] [Green Version]
- Farwell, L.S.; Wood, P.B.; Sheehan, J.; George, G.A. Shale gas development effects on the songbird community in a central Appalachian forest. Biol. Conserv. 2016, 201, 78–91. [Google Scholar] [CrossRef] [Green Version]
- Barton, E.P.; Pabian, S.E.; Brittingham, M.C. Bird community response to Marcellus shale gas development. J. Wildl. Manag. 2016, 80, 1301–1313. [Google Scholar] [CrossRef]
County Name | County Area (km2) 1 | Forest Area (%) 2 | Aquatic Habitat Area (%) 2 | Capture Year of Available Aerial Images | ||
---|---|---|---|---|---|---|
Start Year | Middle Year | End Year | ||||
Ashland 3 | 1111.36 | 32.83 | 0.87 | 2006 | 2013 | 2017 |
Athens | 1315.09 | 73.87 | 0.62 | No drilling | - | - |
Belmont | 1397.58 | 58.42 | 1.06 | 2007 | 2014 | 2017 |
Carroll | 1033.41 | 55.37 | 1.34 | 2006 | 2014 | 2017 |
Columbiana | 1386.58 | 46.16 | 0.76 | 2006 | 2012 | 2017 |
Coshocton | 1467.65 | 58.40 | 1.00 | 2006 | 2014 | 2017 |
Crawford | 1041.30 | 9.86 | 0.37 | No drilling | - | - |
Fairfield | 1317.20 | 25.30 | 0.87 | No drilling | - | - |
Guernsey | 1370.71 | 62.98 | 1.42 | 2007 | 2014 | 2017 |
Harrison | 1069.47 | 62.48 | 2.03 | 2006 | 2014 | 2017 |
Holmes | 1093.86 | 39.81 | 0.38 | 2006 | 2014 | 2017 |
Knox | 1379.75 | 34.46 | 0.81 | 2006 | 2013 | 2017 |
Licking | 1777.85 | 36.09 | 0.54 | 2006 | 2013 | 2017 |
Medina | 1094.43 | 31.44 | 0.82 | 2006 | 2011 | 2017 |
Monroe | 1186.73 | 77.08 | 0.40 | 2007 | 2014 | 2017 |
Morgan | 1096.67 | 71.54 | 0.97 | 2007 | 2014 | 2017 |
Morrow | 1042.35 | 25.14 | 0.45 | No drilling | - | - |
Muskingum | 1745.62 | 57.65 | 1.41 | 2007 | 2014 | 2017 |
Noble | 1042.99 | 69.68 | 1.23 | 2007 | 2014 | 2017 |
Perry 3 | 1062.06 | 59.92 | 0.69 | 2007 | 2013 | 2017 |
Portage | 1308.73 | 38.33 | 3.00 | No drilling | - | - |
Richland | 1293.71 | 32.97 | 0.86 | 2006 | 2013 | 2017 |
Stark | 1504.99 | 24.72 | 0.98 | 2006 | 2012 | 2017 |
Summit | 1088.90 | 29.58 | 1.72 | 2006 | 2011 | 2017 |
Tuscarawas | 1485.49 | 53.17 | 1.12 | 2006 | 2014 | 2017 |
Washington | 1662.45 | 66.72 | 1.01 | 2007 | 2014 | 2017 |
Wayne | 1440.21 | 17.75 | 0.58 | 2006 | 2011 | 2017 |
Total | 34,817.14 | 46.52 | 1.01 | - | - | - |
Ecological Serving Capability Near the Peak (ha) | Ecological Serving Capability at the End (ha) | |||||||
---|---|---|---|---|---|---|---|---|
Low | None | Unknown | Total | Low | None | Unknown | Total | |
High capability | 1891.44 | 100.97 | 209.20 | 2201.61 | 3450.74 | 156.62 | 19.44 | 3626.80 |
Low capability | 1517.38 | 354.39 | 0.00 | 1871.77 | 3031.37 | 526.85 | 0.00 | 3558.22 |
Total | 3408.82 | 455.36 | 209.20 | 4073.38 | 6482.11 | 683.47 | 19.44 | 7185.02 |
Interpreted Landcover Type | |||||||
---|---|---|---|---|---|---|---|
Forest | NFV 1 | Water Body | Building | Highway | Total | ||
Classification | Forest | 1525 | 29 | 1 | 7 | 0 | 1562 |
NFV 1 | 3 | 780 | 0 | 0 | 1 | 784 | |
Water body | 0 | 42 | 177 | 1 | 0 | 220 | |
Building | 0 | 3 | 0 | 219 | 1 | 223 | |
Highway | 0 | 9 | 0 | 46 | 280 | 335 | |
Total | 1528 | 863 | 178 | 273 | 282 | 3124 | |
Producer accuracy | 99.8% | 90.4% | 99.4% | 80.2% | 99.3% | - | |
User accuracy | 97.6% | 99.5% | 80.5% | 98.2% | 83.6% | - | |
KIA 2 per class | 0.996 | 0.872 | 0.994 | 0.787 | 0.992 | - | |
Overall Accuracy | 95.4% | - | |||||
KIA 2 | 0.931 | - |
Before the Boom | Near the Peak | Z of the Difference 1 | p-Value 2 | Significance | |||
Mean | SD | Mean | SD | ||||
0.799917 | 0.267146 | 0.794027 | 0.268770 | 1.742 | 0.041 | Significant | |
0.045157 | 0.119444 | 0.054618 | 0.129225 | 5.172 | <0.001 | Significant | |
0.154926 | 0.230302 | 0.151355 | 0.227833 | 1.180 | 0.119 | Insignificant | |
At the End | Z of the Difference 3 | p-Value 2 | Significance | ||||
Mean | SD | ||||||
0.792344 | 0.268851 | 2.235 | 0.013 | Significant | |||
0.056763 | 0.131100 | 6.287 | <0.001 | Significant | |||
0.150893 | 0.227374 | 1.332 | 0.091 | Insignificant |
Before the Boom | Near tde Peak | Z of the Difference 1 | p-Value 2 | Significance | |||
Mean | SD | Mean | SD | ||||
0.830812 | 0.255493 | 0.827336 | 0.255726 | 1.218 | 0.112 | Insignificant | |
0.053855 | 0.135275 | 0.059433 | 0.139807 | 3.184 | 0.001 | Significant | |
0.115333 | 0.208435 | 0.113231 | 0.206689 | 0.872 | 0.192 | Insignificant | |
At the End | Z of the Difference 3 | p-Value 2 | Significance | ||||
Mean | SD | ||||||
0.825775 | 0.255953 | 1.757 | 0.039 | Significant | |||
0.063294 | 0.143385 | 5.289 | <0.001 | Significant | |||
0.110931 | 0.204968 | 1.828 | 0.034 | Significant |
Before the Boom (ha) | Near the Peak (ha) | Change (ha) | Percentage | |||||
Site 1 1 | Site 2 2 | Site 1 | Site 2 | Site 1 | Site 2 | Site 1 | Site 2 | |
Core | 535.86 | 909.65 | 482.84 | 859.53 | −53.02 | −50.12 | −9.89% | −5.51% |
Edge | 2836.73 | 2788.04 | 2841.62 | 2851.49 | 4.88 | 63.45 | 0.17% | 2.28% |
Perforated | 450.63 | 721.68 | 404.83 | 647.03 | −45.80 | −74.65 | −10.16% | −10.34% |
Patch | 108.65 | 85.51 | 112.46 | 85.36 | 3.81 | −0.15 | 3.51% | −0.18% |
Total | 3931.88 | 4504.89 | 3841.75 | 4443.42 | −90.12 | −61.47 | −2.29% | −1.36% |
At the End (ha) | Change (ha) | Percentage | ||||||
Site 1 | Site 2 | Site 1 | Site 2 | Site 1 | Site 2 | |||
Core | 457.61 | 830.55 | −78.25 | −79.10 | −14.60% | −8.70% | ||
Edge | 2859.28 | 2841.43 | 22.55 | 53.39 | 0.79% | 1.91% | ||
Perforated | 391.42 | 624.49 | −59.21 | −97.19 | −13.14% | −13.47% | ||
Patch | 112.84 | 85.04 | 4.19 | −0.47 | 3.86% | −0.56% | ||
Total | 3821.15 | 4381.51 | −110.73 | −123.38 | −2.82% | −2.74% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y. Remote Sensing of Forest Structural Changes Due to the Recent Boom of Unconventional Shale Gas Extraction Activities in Appalachian Ohio. Remote Sens. 2021, 13, 1453. https://doi.org/10.3390/rs13081453
Liu Y. Remote Sensing of Forest Structural Changes Due to the Recent Boom of Unconventional Shale Gas Extraction Activities in Appalachian Ohio. Remote Sensing. 2021; 13(8):1453. https://doi.org/10.3390/rs13081453
Chicago/Turabian StyleLiu, Yang. 2021. "Remote Sensing of Forest Structural Changes Due to the Recent Boom of Unconventional Shale Gas Extraction Activities in Appalachian Ohio" Remote Sensing 13, no. 8: 1453. https://doi.org/10.3390/rs13081453
APA StyleLiu, Y. (2021). Remote Sensing of Forest Structural Changes Due to the Recent Boom of Unconventional Shale Gas Extraction Activities in Appalachian Ohio. Remote Sensing, 13(8), 1453. https://doi.org/10.3390/rs13081453