Drought Extent and Severity on Arable Lands in Romania Derived from Normalized Difference Drought Index (2001–2020)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Its Geographical Features
2.2. Data Used
2.2.1. Moderate Resolution Imaging Spectroradiometer (MODIS) Data
2.2.2. Corine Land Cover (CLC) Data for Arable Lands
2.2.3. Precipitation Data
2.3. Methodology
2.3.1. Gap-Filling of MODIS Images
2.3.2. NDDI Calculation and Drought Assessment
2.3.3. Spearman’s Correlation Analysis between NDDI and Precipitation Amount
3. Results and Discussions
3.1. Drought Extent and Severity According to NDDI
3.2. The Relationship between Atmospheric Precipitation and NDDI
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Trenberth, K.E.; Dai, A.; Van Der Schrier, G.; Jones, P.D.; Barichivich, J.; Briffa, K.R.; Sheffield, J. Global warming and changes in drought. Nat. Clim. Chang. 2014, 4, 17–22. [Google Scholar] [CrossRef]
- Heim, R.R. A Review of Twentieth-Century Drought Indices Used in the United States. Bull. Am. Meteorol. Soc. 2002, 83, 1149–1166. [Google Scholar] [CrossRef] [Green Version]
- Hao, Z.; Singh, V.P. Drought characterization from a multivariate perspective: A review. J. Hydrol. 2015, 527, 668–678. [Google Scholar] [CrossRef]
- Rakonczai, J. Effects and Consequences of Global Climate Change in the Carpathian Basin. Clim. Chang. Geophys. Found. Ecol. Eff. 2011, 12, 297–322. [Google Scholar] [CrossRef] [Green Version]
- Gulácsi, A.; Kovács, F. Drought Monitoring with Spectral Indices Calculated from Modis Satellite Images in Hungary. J. Environ Geogr. 2015, 8, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Wilhite, D.A.; Glantz, M.H. Understanding: The Drought Phenomenon: The Role of Definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Palmer, W.C. Meteorological Drought; Research Paper No. 45; US Department of Commerce Weather Bureau: Washington, DC, USA, 1965; Volume 30.
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–183. [Google Scholar]
- Hayes, M.J.; Svoboda, M.D.; Wardlow, B.D.; Anderson, M.C.; Kogan, F. Drought monitoring: Historicaland current perspectives. In Remote Sensing of Drought: Innovative Monitoring Approaches; CRC Press: Boca Raton, FL, USA, 2012; pp. 1–19. ISBN 978143983560. [Google Scholar]
- Páscoa, P.; Gouveia, C.; Russo, A.; Bojariu, R.; Vicente-Serrano, S.; Trigo, R. Drought Impacts on Vegetation in Southeastern Europe. Remote Sens. 2020, 12, 2156. [Google Scholar] [CrossRef]
- Kogan, F. Application of vegetation index and brightness temperature for drought detection. Adv. Space Res. 1995, 15, 91–100. [Google Scholar] [CrossRef]
- Wang, P.X.; Li, X.W.; Gong, J.Y.; Song, C. Vegetation temperature condition index and its application for drought monitoring. Int. Geosci. Remote Sens. 2001, 1, 141–143. [Google Scholar] [CrossRef]
- Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Rahimzadeh-Bajgiran, P.; Omasa, K.; Shimizu, Y. Comparative evaluation of the Vegetation Dryness Index (VDI), the Temperature Vegetation Dryness Index (TVDI) and the improved TVDI (iTVDI) for water stress detection in semi-arid regions of Iran. ISPRS J. Photogramm. 2012, 68, 1–12. [Google Scholar] [CrossRef]
- Lloyd-Hughes, B. The impracticality of a universal drought definition. Appl. Clim. 2014, 117, 607–611. [Google Scholar] [CrossRef] [Green Version]
- Tucker, C.J.; Pinzon, J.E.; Brown, M.E.; Slayback, D.A.; Pak, E.W.; Mahoney, R.; Vermote, E.F.; El Saleous, N. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 2005, 26, 4485–4498. [Google Scholar] [CrossRef]
- Fensholt, R.; Rasmussen, K.; Nielsen, T.T.; Mbow, C. Evaluation of earth observation based long term vegetation trends—Intercomparing NDVI time series trend analysis consistency of Sahel from AVHRR GIMMS, Terra MODIS and SPOT VGT data. Remote Sens. Environ. 2009, 113, 1886–1898. [Google Scholar] [CrossRef]
- Beck, P.S.; Atzberger, C.; Høgda, K.A.; Johansen, B.; Skidmore, A.K. Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI. Remote Sens. Environ. 2006, 100, 321–334. [Google Scholar] [CrossRef]
- Gu, Y.; Brown, J.F.; Verdin, J.P.; Wardlow, B. A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, R.; Butson, C.; Leblanc, S.; Latifovic, R. Landsat-5 TM and Landsat-7 ETM+ based accuracy assessment of leaf area index products for Canada derived from SPOT-4 VEGETATION data. Can. J. Remote Sens. 2003, 29, 241–258. [Google Scholar] [CrossRef]
- Gouveia, C.M.; Bastos, A.; Trigo, R.M.; Dacamara, C.C. Drought impacts on vegetation in the pre- and post-fire events over Iberian Peninsula. Nat. Hazards Earth Syst. Sci. 2012, 12, 3123–3137. [Google Scholar] [CrossRef]
- Idso, S.; Jackson, R.; Pinter, P.; Reginato, R.; Hatfield, J. Normalizing the stress-degree-day parameter for environmental variability. Agric. Meteorol. 1981, 24, 45–55. [Google Scholar] [CrossRef]
- Ceccato, P.; Gobron, N.; Flasse, S.; Pinty, B.; Tarantola, S. Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1. Remote Sens. Environ. 2002, 82, 188–197. [Google Scholar] [CrossRef]
- Wagner, W.; Scipal, K.; Pathe, C.; Gerten, D.; Lucht, W.; Rudolf, B. Evaluation of the agreement between the first global remotely sensed soil moisture data with model and precipitation data. J. Geophys. Res. Space Phys. 2003, 108. [Google Scholar] [CrossRef]
- Liu, L.; Xiang, D.; Dong, X.; Zhou, Z. Improvement of the Drought Monitoring Model Based on the Cloud Parameters Methodand Remote Sensing Data. In Proceedings of the First International Workshop on Knowledge Discovery and Data Mining (WKDD 2008), Adelaide, Australia, 23–24 January 2008; pp. 293–296. [Google Scholar]
- Belal, A.A.; El-Ramady, H.R.; Mohamed, E.S.; Saleh, A.M. Drought risk assessment using remote sensing and GIS techniques. Arab. J. Geosci. 2014, 7, 35–53. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M. Evaluating the Impact of Drought Using Remote Sensing in a Mediterranean, Semi-arid Region. Nat Hazards 2007, 40, 173–208. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Cuadrat-Prats, J.M.; Romo, A. Early prediction of crop production using drought indices at different time-scales and remote sensing data: Application in the Ebro Valley (north-east Spain). Int. J. Remote Sens. 2006, 27, 511–518. [Google Scholar] [CrossRef]
- Gouveia, C.; Trigo, R.; Beguería, S.; Vicente-Serrano, S. Drought impacts on vegetation activity in the Mediterranean region: An assessment using remote sensing data and multi-scale drought indicators. Glob. Planet. Chang. 2017, 151, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Sepulcre-Canto, G.; Horion, S.; Singleton, A.; Carrao, H.; Vogt, J. Development of a Combined Drought Indicator to detect agricultural drought in Europe. Nat. Hazards Earth Syst. Sci. 2012, 12, 3519–3531. [Google Scholar] [CrossRef] [Green Version]
- Dalezios, N.R.; Blanta, A.; Spyropoulos, N.V. Assessment of remotely sensed drought features in vulnerable agriculture. Nat. Hazards Earth Syst. Sci. 2012, 12, 3139–3150. [Google Scholar] [CrossRef] [Green Version]
- Gobron, N.; Pinty, B.; Mélin, F.; Taberner, M.; Verstraete, M.M.; Belward, A.; Lavergne, T.; Widlowski, J. The state of vegetation in Europe following the 2003 drought. Int. J. Remote Sens. 2005, 26, 2013–2020. [Google Scholar] [CrossRef]
- Buras, A.; Rammig, A.; Zang, C.S. Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003. Biogeosciences 2020, 17, 1655–1672. [Google Scholar] [CrossRef] [Green Version]
- Spinoni, J.; Naumann, G.; Vogt, J.; Barbosa, P. European drought climatologies and trends based on a multi-indicator approach. Glob. Planet. Chang. 2015, 127, 50–57. [Google Scholar] [CrossRef]
- Enea, A.; Urzica, A.; Breabăn, I.G. Remote sensing, GIS and HEC-RAS techniques, applied for flood extentvalidation, based on Landsat imagery, LiDAR and hydrological data. Case study: Baseu River, Romania. J. Environ. Prot. Ecol 2018, 19, 1091–1101. [Google Scholar]
- Rusu, A.; Ursu, A.; Stoleriu, C.C.; Groza, O.; Niacșu, L.; Sfîcă, L.; Minea, I.; Stoleriu, O.M. Structural Changes in the Romanian Economy Reflected through Corine Land Cover Datasets. Remote Sens. 2020, 12, 1323. [Google Scholar] [CrossRef] [Green Version]
- Kuemmerle, T.; Müller, D.; Griffiths, P.; Rusu, M. Land use change in Southern Romania after the collapse of socialism. Reg. Environ. Chang. 2009, 9, 1–12. [Google Scholar] [CrossRef]
- Mărgărint, M.C.; Niculiţă, M. Landslide type and pattern in Moldavian Plateau, NE Romania. In Landform Dynamics and Evolution in Romania; Springer: Cham, The Netherlands, 2017; pp. 271–304. [Google Scholar] [CrossRef]
- Mărmureanu, L.; Marin, C.A.; Andrei, S.; Antonescu, B.; Ene, D.; Boldeanu, M.; Vasilescu, J.; Viţelaru, C.; Cadar, O.; Levei, E. Orange Snow—A Saharan Dust Intrusion over Romania During Winter Conditions. Remote Sens. 2019, 11, 2466. [Google Scholar] [CrossRef] [Green Version]
- Țîmpu, S.; Sfîcă, L.; Dobri, R.-V.; Cazacu, M.-M.; Nita, A.-I.; Birsan, M.-V. Tropospheric Dust and Associated Atmospheric Circulations over the Mediterranean Region with Focus on Romania’s Territory. Atmosphere 2020, 11, 349. [Google Scholar] [CrossRef] [Green Version]
- Prăvălie, R.; Sîrodoev, I.; Peptenatu, D. Changes in the forest ecosystems in areas impacted by aridization in south-western Romania. J. Env. Health Sci. Eng. 2014, 12, 2. [Google Scholar] [CrossRef] [Green Version]
- Cheval, S.; Dumitrescu, A. The summer surface urban heat island of Bucharest (Romania) retrieved from MODIS images. Appl. Clim. 2015, 121, 631–640. [Google Scholar] [CrossRef]
- Herbel, I.; Croitoru, A.-E.; Rus, A.V.; Roşca, C.F.; Harpa, G.V.; Ciupertea, A.-F.; Rus, I. The impact of heat waves on surface urban heat island and local economy in Cluj-Napoca city, Romania. Appl. Clim. 2018, 133, 681–695. [Google Scholar] [CrossRef]
- Crețu, Ș.-C.; Ichim, P.; Sfîcă, L. Summer urban heat island of Galați city (Romania) detected using satellite products. Present Environ. Sustain. Dev. 2020, 14, 5–27. [Google Scholar] [CrossRef]
- Vorovencii, I. Assessing and monitoring the risk of desertification in Dobrogea, Romania, using Landsat data and decision tree classifier. Environ. Monit. Assess. 2015, 187, 204. [Google Scholar] [CrossRef]
- Angearu, C.-V.; Ontel, I.; Boldeanu, G.; Mihailescu, D.; Nertan, A.; Craciunescu, V.; Catana, S.; Irimescu, A. Multi-Temporal Analysis and Trends of the Drought based on MODIS Data in Agricultural Areas, Romania. Remote Sens. 2020, 12, 3940. [Google Scholar] [CrossRef]
- Geografia României, I. Geografia Fizică (Geography of Romania, I. Physical Geography); Romanian Academy Publishing: Bucharest, Romania, 1983; pp. 171–194. (In Romanian) [Google Scholar]
- Sandu, I.; Pescaru, V.I.; Poiană, I.; Geicu, A.; Cândea, I.; Ţâştea, D. Clima României (Climate of Romania); Romanian Academy Publishing: Bucharest, Romania, 2008. (In Romanian) [Google Scholar]
- Prăvălie, R.; Piticar, A.; Roșca, B.; Sfîcă, L.; Bandoc, G.; Tiscovschi, A.; Patriche, C. Spatio-temporal changes of the climatic water balance in Romania as a response to precipitation and reference evapotranspiration trends during 1961–2013. Catena 2019, 172, 295–312. [Google Scholar] [CrossRef]
- Prăvalie, R.; Sîrodoev, I.; Peptenatu, D. Detecting climate change effects on forest ecosystems in Southwestern Romania using Landsat TM NDVI data. J. Geogr. Sci. 2014, 24, 815–832. [Google Scholar] [CrossRef] [Green Version]
- Dobri, R.-V.; Sfîcă, L.; Ichim, P.; Harpa, G.-V. The Distribution of the Monthly 24-Hour Maximum Amount of Precipitation in Romania According to their Synoptic Causes. Geogr. Tech. 2017, 12, 62–72. [Google Scholar] [CrossRef] [Green Version]
- Nita, I.A.; Sfîcă, L.; Apostol, L.; Radu, C.; Birsan, M.V.; Szep, R.; Keresztesi, A. Changes in cyclone intensity over Romania according to 12 tracking methods. Rom. Rep. Phys. 2020, 72, 706. [Google Scholar]
- Croitoru, A.-E.; Piticar, A.; Dragotă, C.S.; Burada, D.C. Recent changes in reference evapotranspiration in Romania. Glob. Planet. Chang. 2013, 111, 127–136. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Azorin-Molina, C.; Sanchez-Lorenzo, A.; Revuelto, J.; López-Moreno, J.I.; González-Hidalgo, J.C.; Moran-Tejeda, E.; Espejo, F. Reference evapotranspiration variability and trends in Spain, 1961–2011. Glob. Planet. Chang. 2014, 121, 26–40. [Google Scholar] [CrossRef] [Green Version]
- Colantoni, A.; Ferrara, C.; Perini, L.; Salvati, L. Assessing trends in climate aridity and vulnerability to soil degradation in Italy. Ecol. Indic. 2015, 48, 599–604. [Google Scholar] [CrossRef]
- Nastos, P.T.; Politi, N.; Kapsomenakis, J. Spatial and temporal variability of the Aridity Index in Greece. Atmos. Res. 2013, 119, 140–152. [Google Scholar] [CrossRef]
- Rusu, M.; Simion, G. Farm structure adjustments under the irrigation systems rehabilitation in the Southern plain of Romania: A first step towards sustainabile developments. Carpathian J. Earth Environ. Sci. 2015, 10, 91–100. [Google Scholar]
- Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m SIN grid V006. NASA EOSDIS Land Processes DAAC. 2015. Available online: https://doi.org/10.5067/MODIS/MOD13Q1.006 (accessed on 22 September 2020).
- Du, T.L.T.; Du Bui, D.; Nguyen, M.D.; Lee, H. Satellite-Based, Multi-Indices for Evaluation of Agricultural Droughts in a Highly Dynamic Tropical Catchment, Central Vietnam. Water 2018, 10, 659. [Google Scholar] [CrossRef] [Green Version]
- Testa, S.; Mondino, E.C.B.; Pedroli, C. Correcting MODIS 16-day composite NDVI time-series with actual acquisition dates. Eur. J. Remote Sens. 2014, 47, 285–305. [Google Scholar] [CrossRef]
- Team, A. Application for Extracting and Exploring Analysis Ready Samples (AppEEARS). NASA EOSDIS Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center: Sioux Falls, SD, USA. 2019. Available online: https://lpdaacsvc.cr.usgs.gov/appeears/ (accessed on 22 September 2020).
- Corine Land Cover, Copernicus Programme. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (accessed on 7 January 2020).
- Haylock, M.R.; Hofstra, N.; Tank, A.M.G.K.; Klok, E.J.; Jones, P.D.; New, M. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res. Space Phys. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Klok, E.J.; Tank, A.M.G.K. Updated and extended European dataset of daily climate observations. Int. J. Clim. 2009, 29, 1182–1191. [Google Scholar] [CrossRef]
- Copernicus Climate Change Service (C3S). Climate Data Store (CDS). 2020. Available online: https://cds.climate.copernicus.eu/#!/home (accessed on 7 October 2020).
- Beckers, J.-M.; Rixen, M. EOF calculations and data filling from incomplete oceanographic data sets. J. Atmos. Oceanic Technol. 2003, 20, 1839–1856. [Google Scholar] [CrossRef]
- Alvera-Azcárate, A.; Barth, A.; Rixen, M.; Beckers, J. Reconstruction of incomplete oceanographic data sets using empirical orthogonal functions: Application to the Adriatic Sea surface temperature. Ocean Model. 2005, 9, 325–346. [Google Scholar] [CrossRef] [Green Version]
- Alvera-Azcárate, A.; Barth, A.; Beckers, J.-M.; Weisberg, R.H. Multivariate reconstruction of missing data in sea surface temperature, chlorophyll, and wind satellite fields. J. Geophys. Res. Space Phys. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Sirjacobs, D.; Alvera-Azcárate, A.; Barth, A.; Lacroix, G.; Park, Y.; Nechad, B.; Ruddick, K.; Beckers, J.M. Cloud filling of ocean and sea surface temperature remote sensing products over the Southern North Sea by the Data Interpolating Empirical Orthogonal Functions methodology. J. Sea Res. 2011, 65, 114–130. [Google Scholar] [CrossRef]
- Alvera-Azcárate, A.; Barth, A.; Parard, G.; Beckers, J.-M. Analysis of SMOS sea surface salinity data using DINEOF. Remote Sens. Environ. 2016, 180, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Beckers, J.-M.; Barth, A.; Alvera-Azcárate, A. DINEOF reconstruction of clouded images including error maps–application to the Sea-Surface Temperature around Corsican Island. Ocean Sci. 2006, 2, 183–199. [Google Scholar] [CrossRef] [Green Version]
- Hilborn, A.; Costa, M. Applications of DINEOF to Satellite-Derived Chlorophyll-a from a Productive Coastal Region. Remote Sens. 2018, 10, 1449. [Google Scholar] [CrossRef] [Green Version]
- Cheval, S.; Dumitrescu, A.; Amihaesei, V.-A. Exploratory Analysis of Urban Climate Using a Gap-Filled Landsat 8 Land Surface Temperature Data Set. Sensors 2020, 20, 5336. [Google Scholar] [CrossRef] [PubMed]
- Filipponi, F.; Valentini, E.; Xuan, A.N.; Guerra, C.A.; Wolf, F.; Andrzejak, M.; Taramelli, A. Global MODIS Fraction of Green Vegetation Cover for Monitoring Abrupt and Gradual Vegetation Changes. Remote Sens. 2018, 10, 653. [Google Scholar] [CrossRef] [Green Version]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Chen, J.; Jönsson, P.; Tamura, M.; Gu, Z.; Matsushita, B.; Eklundh, L. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sens. Environ. 2004, 91, 332–344. [Google Scholar] [CrossRef]
- Chen, J.; Quan, W.; Zhang, M.; Cui, T. A Simple Atmospheric Correction Algorithm for MODIS in Shallow Turbid Waters: A Case Study in Taihu Lake. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 6, 1825–1833. [Google Scholar] [CrossRef]
- Wang, Q.; Adiku, S.; Tenhunen, J.; Granier, A. On the relationship of NDVI with leaf area index in a deciduous forest site. Remote Sens. Environ. 2005, 94, 244–255. [Google Scholar] [CrossRef]
- Gamon, J.A.; Field, C.B.; Goulden, M.L.; Griffin, K.L.; Hartley, A.E.; Joel, G.; Penuelas, J.; Valentini, R. Relationships Between NDVI, Canopy Structure, and Photosynthesis in Three Californian Vegetation Types. Ecol. Appl. 1995, 5, 28–41. [Google Scholar] [CrossRef] [Green Version]
- Myneni, R.; Williams, D. On the relationship between FAPAR and NDVI. Remote Sens. Environ. 1994, 49, 200–211. [Google Scholar] [CrossRef]
- Angearu, C.-V.; Irimescu, A.; Mihailescu, D.; Virsta, A. Evaluation of Droughts and Fires in the Dobrogea Region, Using Modis Satellite Data. Agric. Life. Life Agric. Conf. Proc. 2018, 1, 336–345. [Google Scholar] [CrossRef] [Green Version]
- Angearu, C.V. Analiza secetei asupra terenurilor arabile din România pe baza imaginilor satelitare. Rev. Stiintifica A Adm. Natl. Meteorol. 2018, 1, 61–76. (In Romanian) [Google Scholar]
- Zhang, A.; Jia, G. Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data. Remote Sens. Environ. 2013, 134, 12–23. [Google Scholar] [CrossRef]
- Park, S.; Im, J.; Park, S. Probabilistic Drought Intensification Forecasts Using Temporal Patterns of Satellite-Derived Drought Indicators. EGU General Assembly Conference Abstracts. 2016; EPSC2016-11264. Available online: https://meetingorganizer.copernicus.org/EGU2016/EGU2016-11264-1.pdf (accessed on 10 October 2020).
- Trinh, L.H.; Vu, D.T. Application of remote sensing technique for drought assessment based on normalized difference drought index, a case study of Bac Binh district, Binh Thuan province (Vietnam). Russ. J. Earth Sci. 2019, 19, 1–9. [Google Scholar] [CrossRef]
- Gulácsi, A.; Kovács, F. Drought monitoring of forest vegetation using MODIS-based normalized difference drought index in Hungary. Hung. Geogr. Bull. 2018, 67, 29–42. [Google Scholar] [CrossRef] [Green Version]
- Erdenetuya, M.; Bulgan, D.; Erdenetsetseg, B. Drought monitoring and assessment using multi satellite data in Mongolia. In Proceedings of the 32nd Asian Conference on Remote Sensing, Tapei, Taiwan, 3–7 October 2011. [Google Scholar]
- Cheng-lin, L.; Jian-jun, W. Crop drought monitoring using MODIS NDDI over mid-territory of China. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2008, Boston, MA, USA, 7–11 July 2008. [Google Scholar]
- Rhee, J.; Im, J.; Carbone, G.J. Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data. Remote Sens. Environ. 2010, 114, 2875–2887. [Google Scholar] [CrossRef]
- Stancalie, G.; Nertan, A.T.; Serban, F. Agricultural Drought Monitoring Using Satellite—Based Products in Romania. In Proceedings of the Third International Conference on Telecommunications and Remote Sensing, Luxembourg, 26–27 June 2014; ICTRS, SciTePress: Luxembourg, 2014; Volume 1, pp. 100–106, ISBN 978-989-758-033-8. [Google Scholar]
- Cheval, S.; Busuioc, A.; Dumitrescu, A.; Birsan, M. Spatiotemporal variability of meteorological drought in Romania using the standardized precipitation index (SPI). Clim. Res. 2014, 60, 235–248. [Google Scholar] [CrossRef]
- Ionita, M.; Scholz, P.; Chelcea, S. Assessment of droughts in Romania using the Standardized Precipitation Index. Nat. Hazards 2016, 81, 1483–1498. [Google Scholar] [CrossRef] [Green Version]
- Paltineanu, C.; Mihailescu, I.F.; Prefac, Z.; Dragota, C.; Vasenciuc, F.; Claudia, N. Combining the standardized precipitation index and climatic water deficit in characterizing droughts: A case study in Romania. Theor. Appl. Clim. 2008, 97, 219–233. [Google Scholar] [CrossRef]
- Prăvălie, R.; Patriche, C.; Săvulescu, I.; Sîrodoev, I.; Bandoc, G.; Sfîcă, L. Spatial assessment of land sensitivity to degradation across Romania. A quantitative approach based on the modified MEDALUS methodology. Catena 2020, 187, 104407. [Google Scholar] [CrossRef]
- Minea, I.; Iosub, M.; Boicu, D. Groundwater Resources from Eastern Romania under Human and Climatic Pressure. Sustainability 2020, 12, 10341. [Google Scholar] [CrossRef]
- Potopová, V.; Boroneant, C.; Boincean, B.; Soukup, J. Impact of agricultural drought on main crop yields in the Republic of Moldova. Int. J. Climatol. 2016, 36, 2063–2082. [Google Scholar] [CrossRef] [Green Version]
- National Institute of Statistics in Romania (NISR). Available online: https://insse.ro/cms/en (accessed on 10 December 2020).
Territorial Extension of Arable Lands in Romania (Source: CLC 2018) | ||||||||
---|---|---|---|---|---|---|---|---|
Carpathians | Transylvanian Plateau | Subcarpathians | Pannonian Plain | Crisana and Banat Hills | Moldavian Plateau | Romanian Plain | Getic Plateau | Dobrogea Plateau and Danube Delta |
270 | 750 | 313 | 2600 | 363 | 1390 | 3.070 | 680 | 1680 |
Composite | Day of Year (No.) | Starting Day during Non-Leap Years | Starting Day during Leap Years * | Season |
---|---|---|---|---|
1 | 65 | 6-Mar | 05-Mar | Spring |
2 | 81 | 22-Mar | 21-Mar | |
3 | 97 | 7-Apr | 06-Apr | |
4 | 113 | 23-Apr | 22-Apr | |
5 | 129 | 9-May | 08-May | |
6 | 145 | 25-May | 24-May | |
7 | 161 | 10-Jun | 09-Jun | |
8 | 177 | 26-Jun | 25-Jun | Summer |
9 | 193 | 12-Jul | 11-Jul | |
10 | 209 | 28-Jul | 27-Jul | |
11 | 225 | 13-Aug | 12-Aug | |
12 | 241 | 29-Aug | 28-Aug |
Layer Name | Description | Units | Data Type | Fill Value | No Data Value | Valid Range | Scale Factor |
---|---|---|---|---|---|---|---|
250 m 16 days NDVI | 16 day NDVI | NDVI | 16-bit signed integer | −3000 | N/A | −2000 to 10,000 | 0.0001 |
250 m 16 days EVI | 16 day EVI | EVI | 16-bit signed integer | −3000 | N/A | −2000 to 10,000 | 0.0001 |
250 m 16 days VI Quality | VI quality indicators | Bit Field | 16-bit unsigned integer | 65535 | N/A | 0 to 65534 | N/A |
250 m 16 days red reflectance | Surface Reflectance Band 1 | N/A | 16-bit signed integer | −1000 | N/A | 0 to 10,000 | 0.0001 |
250 m 16 days Near Infrared reflectance | Surface Reflectance Band 2 | N/A | 16-bit signed integer | −1000 | N/A | 0 to 10,000 | 0.0001 |
250 m 16 days blue reflectance | Surface Reflectance Band 3 | N/A | 16-bit signed integer | −1000 | N/A | 0 to 10,000 | 0.0001 |
250 m 16 days Middle Infrared reflectance | Surface Reflectance Band 7 | N/A | 16-bit signed integer | −1000 | N/A | 0 to 10,000 | 0.0001 |
250 m 16 days view zenith angle | View zenith angle of VI Pixel | Degree | 16-bit signed integer | −10000 | N/A | 0 to 18,000 | 0.01 |
250 m 16 days sun zenith angle | Sun zenith angle of VI pixel | Degree | 16-bit signed integer | −10000 | N/A | 0 to 18,000 | 0.01 |
250 m 16 days relative azimuth angle | Relative azimuth angle of VI pixel | Degree | 16-bit signed integer | −4000 | N/A | −18,000 to 18,000 | 0.01 |
250 m 16 days composite day of the year | Day of year VI pixel | Julian day | 16-bit signed integer | −1 | N/A | 1 to 366 | N/A |
250 m 16 days pixel reliability | Quality reliability of VI pixel | Rank | 8-bit signed integer | −1 | N/A | 0 to 3 | N/A |
Summary Statistical | Original Data | Gap-Filled Data | Original vs. Gap-Filled Data |
---|---|---|---|
Minimum | 0.02 | −0.08 | // |
1st Quartile | 0.34 | 0.31 | // |
Median | 0.46 | 0.44 | // |
Average | 0.48 | 0.46 | // |
3rd Quartile | 0.59 | 0.57 | // |
Maximum | 1.75 | 1.72 | // |
Root-Mean-Square Error | // | // | 0.03 |
Mean-Absolute-Error | // | // | 0.09 |
R-squared | // | // | 0.91 |
Normal Difference Drought Index (NDDI) | ||||||
---|---|---|---|---|---|---|
ToD | Nd | Md | Sd | Ed | Ad | Precipitation Amount (mm) |
Range | <0.5 | 0.5–0.6 | 0.6–1 | >1 | >0.5 | |
2001 | 80.2 | 6.4 | 10.5 | 2.9 | 19.8 | 370.9 |
2002 | 77.0 | 7.2 | 12.3 | 3.5 | 23.0 | 310.0 |
2003 | 74.4 | 7.4 | 13.6 | 4.7 | 25.6 | 207.2 |
2004 | 81.3 | 5.5 | 9.8 | 3.5 | 18.7 | 319.8 |
2005 | 81.5 | 5.4 | 10.1 | 3.0 | 18.5 | 458.7 |
2006 | 83.0 | 4.9 | 9.8 | 2.3 | 17.0 | 375.3 |
2007 | 78.8 | 7.9 | 10.9 | 2.3 | 21.2 | 295.1 |
2008 | 87.0 | 4.5 | 6.9 | 1.5 | 13.0 | 289.9 |
2009 | 85.5 | 5.6 | 7.7 | 1.2 | 14.5 | 276.1 |
2010 | 88.8 | 4.0 | 6.1 | 1.1 | 11.2 | 381.0 |
2011 | 84.6 | 5.1 | 8.4 | 1.9 | 15.4 | 270.3 |
2012 | 75.9 | 7.2 | 13.4 | 3.5 | 24.1 | 267.3 |
2013 | 85.4 | 4.9 | 8.2 | 1.5 | 14.6 | 339.3 |
2014 | 89.0 | 3.8 | 6.0 | 1.3 | 11.0 | 405.5 |
2015 | 82.4 | 5.8 | 9.6 | 2.2 | 17.6 | 262.3 |
2016 | 89.2 | 3.7 | 5.9 | 1.2 | 10.8 | 329.4 |
2017 | 84.2 | 5.2 | 8.5 | 2.1 | 15.8 | 316.6 |
2018 | 88.9 | 4.2 | 5.9 | 1.0 | 11.1 | 340.9 |
2019 | 80.5 | 5.5 | 10.6 | 3.4 | 19.5 | 286.3 |
2020 | 78.1 | 7.2 | 11.8 | 2.9 | 21.9 | 360.1 |
2001–2020 | 82.8 | 5.6 | 9.3 | 2.4 | 17.2 | 323.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobri, R.-V.; Sfîcă, L.; Amihăesei, V.-A.; Apostol, L.; Țîmpu, S. Drought Extent and Severity on Arable Lands in Romania Derived from Normalized Difference Drought Index (2001–2020). Remote Sens. 2021, 13, 1478. https://doi.org/10.3390/rs13081478
Dobri R-V, Sfîcă L, Amihăesei V-A, Apostol L, Țîmpu S. Drought Extent and Severity on Arable Lands in Romania Derived from Normalized Difference Drought Index (2001–2020). Remote Sensing. 2021; 13(8):1478. https://doi.org/10.3390/rs13081478
Chicago/Turabian StyleDobri, Radu-Vlad, Lucian Sfîcă, Vlad-Alexandru Amihăesei, Liviu Apostol, and Simona Țîmpu. 2021. "Drought Extent and Severity on Arable Lands in Romania Derived from Normalized Difference Drought Index (2001–2020)" Remote Sensing 13, no. 8: 1478. https://doi.org/10.3390/rs13081478
APA StyleDobri, R. -V., Sfîcă, L., Amihăesei, V. -A., Apostol, L., & Țîmpu, S. (2021). Drought Extent and Severity on Arable Lands in Romania Derived from Normalized Difference Drought Index (2001–2020). Remote Sensing, 13(8), 1478. https://doi.org/10.3390/rs13081478