Marine Oil Slick Detection Using Improved Polarimetric Feature Parameters Based on Polarimetric Synthetic Aperture Radar Data
Abstract
:1. Introduction
2. Experimental Design and Dataset
2.1. Experimental Design and Dataset Overview
2.2. Dataset
2.2.1. Dataset 1-Relative Thickness of Oil Slick
2.2.2. Dataset 2-Oil Slick and Look-Alikes
2.2.3. Dataset 3-Different Types of Oil Slick
3. Methodology
3.1. Fully Polarimetric SAR Theory
3.2. Construction Frame of Combined Polarimetric Features
3.3. Oil Spill Detection Ability Comparison of H(1 − A12)
3.3.1. Michelson Contrast
3.3.2. Jeffries–Matusita Distance
3.3.3. Variable Importance
4. Experiment Result and Analysis
4.1. Michelson Contrast Results
4.2. J–M Distance Results
4.3. Variable Importance Ordering Results
5. Discussion
5.1. Analysis of H_A12 Combination and H_A Combination
5.2. Analysis of the Advantages of H(1 − A12)
6. Conclusions
- Based on the differences inherent to the scattering mechanisms of oil slicks and sea water, an improved polarimetric feature combination suitable for oil spill detection was constructed by combining the polarimetric scattering entropy H and improved anisotropy A12, thereby enhancing the contrast between oil slicks and seawater. By comparing the visualization and separation of the improved combination H_A12 with the traditional combination H_A, the evaluations and comparisons result demonstrate the superiority of the proposed improved polarimetric feature.
- Three study sites corresponding to three oil spill scenarios under the same satellite were utilized to evaluate the performance and superiority of the H(1 − A12) combination, including the relative thickness information of oil slicks, oil slicks and look-alikes, and different types of oil slick. The universality and robust performance of H(1 − A12) demonstrates that, when compared with other types polarimetric feature parameters, the proposed H(1 − A12) combination can improve oil–water separation under different oil spill scenarios, thereby improving the acquisition of oil slick information while suppressing sea clutter information.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fingas, M.; Brown, C. A review of oil spill remote sensing. Sensors 2018, 2, 91. [Google Scholar]
- Li, G.; Li, Y.; Liu, B.; Hou, Y.; Fan, J. Analysis of scattering properties of continuous slow-release slicks on the sea surface based on polarimetric synthetic aperture radar. ISPRS Int. J. Geo-Inf. 2018, 7, 237. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Li, Y.; Liu, C.; Xie, F.; Muller, J.-P. Hyperspectral features of oil-polluted sea ice and the response to the contamination area fraction. Sensors 2018, 2, 234. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Li, Y.; Liu, B.; Wu, P.; Chen, C. Marine oil slick detection based on multi-polarimetric features matching method using polarimetric synthetic aperture radar data. Sensors 2019, 19, 5176. [Google Scholar] [CrossRef] [Green Version]
- Migliaccio, M.; Nunziata, F. On the exploitation of polarimetric SAR data to map damping properties of the Deepwater Horizon oil spill. Int. J. Remote Sens. 2014, 35, 3499–3519. [Google Scholar] [CrossRef]
- Skrunes, S.; Brekke, C.; Eltoft, T. Characterization of marine surface slicks by Radarsat-2 multipolarization features. IEEE Trans. Geosci. Remote Sens. 2014, 9, 5302–5319. [Google Scholar] [CrossRef] [Green Version]
- Migliaccio, M.; Gambardella, A.; Tranfaglia, M. SAR polarimetry to observe oil spills. IEEE Trans. Geosci. Remote Sens. 2007, 45, 506–511. [Google Scholar] [CrossRef]
- Minchew, B.; Jones, C.E.; Holt, B. Polarimetric analysis of backscatter from the Deepwater Horizon oil spill using L-Band synthetic aperture radar. IEEE Trans. Geosci. Remote Sens. 2012, 10, 3812–3830. [Google Scholar] [CrossRef]
- Skrunes, S.; Brekke, C.; Doulgeris, A.P. Characterization of low-backscatter ocean features in dual-copolarization sar using log-cumulants. IEEE Geosci. Remote Sens. Lett. 2015, 12, 836–840. [Google Scholar] [CrossRef]
- Lee, J.-S.; Pottier, E. Polarimetric Radar Imaging: From Basics to Applications; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Li, H.; Perrie, W.; He, Y.; Wu, J.; Luo, X. Analysis of the polarimetric SAR scattering properties of oil-covered waters. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3751–3759. [Google Scholar] [CrossRef]
- Zhang, B.; Perrie, W.; Li, W.; Pichel, W.G. Mapping sea surface oil slicks using RADARSAT-2 quad-polarization SAR image. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Tong, S.; Liu, X.; Chen, Q.; Zhang, Z.; Xie, G. Multi-feature based ocean oil spill detection for polarimetric sar data using random forest and the self-similarity parameter. Remote Sens. 2019, 11, 451. [Google Scholar] [CrossRef] [Green Version]
- Huynen, J.R. Phenomenological Theory of Radar Targets. Ph.D. Thesis, Electrical Engineering, Mathematics and Computer Science, Delft, The Netherlands, 1970. [Google Scholar]
- Singha, S.; Ressel, R. Offshore platform sourced pollution monitoring using space-borne fully polarimetric C and X band synthetic aperture radar. Mar. Pollut. Bull. 2016, 112, 327–340. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Peng, Y.N.; Lin, S.M. Similarity between two scattering matrices. Electron. Lett. 2001, 37, 193–194. [Google Scholar] [CrossRef]
- Liu, P.; Li, X.; Qu, J.J.; Wang, W.; Zhao, C.; Pichel, W. Oil spill detection with fully polarimetric UAVSAR data. Mar. Pollut. Bull. 2011, 62, 2611–2618. [Google Scholar] [CrossRef]
- Schuler, D.L.; Lee, J.S. Mapping ocean surface features using biogenic slick-fields and SAR polarimetric decomposition techniques. IEE Proc. Radar Son. Nav. 2006, 3, 260–270. [Google Scholar] [CrossRef]
- Zhu, X.; Li, Y.; Zhang, Q.; Liu, B. Oil film classification using deep learning-based hyperspectral remote sensing technology. ISPRS Int. J. Geo-Inf. 2019, 8, 181. [Google Scholar] [CrossRef] [Green Version]
- Wismann, V.; Gade, M.; Alpers, W.; Huhnerfuss, H. Radar signatures of marine mineral oil spills measured by an airborne multi-frequency radar. Int. J. Remote Sens. 1998, 19, 3607–3623. [Google Scholar] [CrossRef]
- Alpers, W.; Espedal, H. Oils and surfactants. In Synthetic Aperture Radar Marine User’s Manual; National Oceanic and Atmospheric Administration: Washington, DC, USA, 2004. [Google Scholar]
- Gade, M.; Alpers, W.; Hühnerfuss, H.; Masuko, H.; Kobayashi, T. Imaging of biogenic and anthropogenic ocean surface films by the multifrequency/multipolarization SIR-C/X-SAR. J. Geophys. Res. Oceans 1998, 103, 18851–18866. [Google Scholar] [CrossRef]
- Buono, A.; Nunziata, F.; Migliaccio, M.; Li, X. Polarimetric analysis of compact-polarimetry SAR architectures for sea oil slick observation. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5862–5874. [Google Scholar] [CrossRef]
- Tian, W.; Shao, Y.; Yuan, J.; Wang, S.; Liu, Y. An experiment for oil spill recognition using RADARSAT-2 image. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, HI, USA, 25–30 July 2010; pp. 2761–2764. [Google Scholar]
- Cloude, S.R.; Pottier, E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 1997, 1, 68–78. [Google Scholar] [CrossRef]
- Cai, Y.; Zou, Y.; Liang, C.; Zou, B. Research on polarization of oil spill and detection. Acta Oceanologica Sinica 2016, 35, 84–89. [Google Scholar] [CrossRef]
- Zou, Y.; Shi, L.; Zhang, S.; Liang, C.; Zeng, T. Oil spill detection by a support vector machine based on polarization decomposition characteristics. Acta Oceanologica Sinica 2016, 35, 86–90. [Google Scholar] [CrossRef]
- Espeseth, M.M.; Skrunes, S.; Jones, C.E.; Brekke, C.; Holt, B.; Doulgeris, A.P. Analysis of evolving oil spills in full-polarimetric and hybrid-polarity SAR. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4190–4210. [Google Scholar] [CrossRef] [Green Version]
- Migliaccio, M.; Nunziata, F.; Buono, A. SAR polarimetry for sea oil slick observation. Int. J. Remote Sens. 2015, 36, 3243–3273. [Google Scholar] [CrossRef] [Green Version]
- Skrunes, S.; Brekke, C.; Jones, C.E.; Espeseth, M.M.; Holt, B. Effect of wind direction and incidence angle on polarimetric SAR observations of slicked and unslicked sea surfaces. Remote Sens. Environ. 2018, 213, 73–91. [Google Scholar] [CrossRef]
- Wenguang, W.; Fei, L.; Peng, W.; Jun, W. Oil spill detection from polarimetric SAR image. In Proceedings of the 10th IEEE International Conference on Signal Processing Proceedings, Beijing, China, 24–28 October 2010; pp. 832–835. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Dabboor, M.; Howell, S.; Shokr, M.; Yackel, J. The Jeffries–Matusita distance for the case of complex Wishart distribution as a separability criterion for fully polarimetric SAR data. Int. J. Remote Sens. 2014, 35, 6859–6873. [Google Scholar]
- Peli, E. Contrast in complex images. J. Opt. Soc. Am. A 1990, 7, 2032–2040. [Google Scholar] [CrossRef]
- Song, D.; Zhen, Z.; Wang, B.; Li, X.; Gao, L.; Wang, N.; Xie, T.; Zhang, T. A novel marine oil spillage identification scheme based on convolution neural network feature extraction from fully polarimetric sar imagery. IEEE Access 2020, 8, 59801–59820. [Google Scholar] [CrossRef]
- Nunziata, F.; Buono, A.; Migliaccio, M. COSMO—SkyMed synthetic aperture radar data to observe the deep water horizon oil spill. Sustainability 2018, 10, 3599. [Google Scholar] [CrossRef] [Green Version]
- Song, D.; Ding, Y.; Li, X.; Zhang, B.; Xu, M. Ocean oil spill classification with RADARSAT-2 SAR based on an optimized wavelet neural network. Remote Sens. 2017, 9, 799. [Google Scholar] [CrossRef] [Green Version]
- Padma, S.; Sanjeevi, S. Jeffries Matusita based mixed-measure for improved spectral matching in hyperspectral image analysis. Int. J. Appl. Earth Obs. Geoinf. 2014, 32, 138–151. [Google Scholar] [CrossRef]
- Belgiu, M.; Drǎguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by random forest. R News 2002, 2, 18–22. [Google Scholar]
- Guanter, L.; Kaufmann, H.; Segl, K.; Foerster, S.; Rogass, K.; Chabrillat, S.; Kuester, T.; Hollstein, A.; Rossner, G.; Chlebek, C.; et al. The EnMAP spaceborne imaging spectroscopy mission for earth observation. Remote Sens. 2015, 7, 8830–8857. [Google Scholar] [CrossRef] [Green Version]
- Van der Linden, S.; Rabe, A.; Held, M.; Jakimow, B.; Leitão, P.J.; Okujeni, A.; Schwieder, M.; Suess, S.; Hostert, P. The EnMAP-Box—A toolbox and application programming interface for EnMAP data processing. Remote Sens. 2015, 7, 11249–11266. [Google Scholar] [CrossRef] [Green Version]
Categories | Type | Definition |
---|---|---|
I | Backscattered energy | The backscattering intensity difference between oil slick and sea |
II | Scattering mechanism | The dominating scattering mechanism difference between oil and slick (non-Bragg) and seawater (Bragg) |
III | Correlation between polarization channels | The difference of channel correlation between oil slick (lower) and sea (higher) |
IV | Combination feature | The ability to combined different polarimetric features can improve the distinction between targets |
Case/Sensor | Case 1 (RADARSAT-2) | Case 2 (RADARSAT-2) | Case 3 (RADARSAT-2) |
---|---|---|---|
Date | 8 May 2010 | 18 September 2009 | 8 June 2011 |
Time | 12:01 a.m.(UTC) | 10:50 a.m.(UTC) | 17:27 a.m.(UTC) |
Region | The Gulf of Mexico (26°48′N, 92°02′W) | The South China Sea (18°06′N, 109°24′E) | The North Sea (59°59′N, 2°27′E) |
Mode/Product | Fine Quad-Pol SLC | Fine Quad-Pol SLC | Fine Quad-Pol SLC |
Polarization | HH, HV, VH, VV | HH, HV, VH, VV | HH, HV, VH, VV |
Frequency | C-band (5.405 GHz) | C-band (5.405 GHz) | C-band (5.405 GHz) |
Incidence angle | 41.9°–43.4° | 32.4°–33.2° | 34.5°–36.1° |
Wind speed | 6.5 m/s | 10 m/s | 1.6-3.3 m/s |
Slicks present | Natural oil seeps | Biogenic slick | Crude/Emulsion/plant |
Information | Relative thickness of oil slick | slick vs look-alikes | Difference between types of oil slick |
Categories | Abbreviation/Reference | Definition | Oil Slick | Sea |
---|---|---|---|---|
Backscattered energy | τ [15] | Low | High | |
PR [6,8,28] | High | Low | ||
Scattering mechanism | A12 [6] | Low | High | |
H [8,29] | High | Low | ||
Correlation between channels | pco [6,30,31] | Low | High | |
rco [6] | Low | High | ||
Combination feature | F [17] | Low | High | |
H(1 − A12) | H(1 − A12) | High | Low |
Class\Accuracy | Thick Oil | Thin Oil | Seawater |
---|---|---|---|
Producer Accuracy | 97.45% | 82.77% | 98.18% |
User’s Accuracy | 95.53% | 25.48% | 99.98% |
Average Accuracy | 83.18% | ||
Kappa | 0.76 |
Class\Accuracy | Biogenic Slick | Look Alikes | Seawater |
---|---|---|---|
Producer Accuracy | 83.93% | 89.92% | 99.69% |
User’s Accuracy | 95.29% | 73.44% | 99.74% |
Average Accuracy | 90.3% | ||
Kappa | 0.9094 |
Class\Accuracy | Crude | Emulsion | Plant | Seawater |
---|---|---|---|---|
Producer Accuracy | 91.3% | 63.46% | 94.81% | 98.66% |
User’s Accuracy | 90.77% | 67.44% | 78.54% | 98.04% |
Average Accuracy | 85.37% | |||
Kappa | 0.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Li, Y.; Hou, Y.; Wang, X.; Wang, L. Marine Oil Slick Detection Using Improved Polarimetric Feature Parameters Based on Polarimetric Synthetic Aperture Radar Data. Remote Sens. 2021, 13, 1607. https://doi.org/10.3390/rs13091607
Li G, Li Y, Hou Y, Wang X, Wang L. Marine Oil Slick Detection Using Improved Polarimetric Feature Parameters Based on Polarimetric Synthetic Aperture Radar Data. Remote Sensing. 2021; 13(9):1607. https://doi.org/10.3390/rs13091607
Chicago/Turabian StyleLi, Guannan, Ying Li, Yongchao Hou, Xiang Wang, and Lin Wang. 2021. "Marine Oil Slick Detection Using Improved Polarimetric Feature Parameters Based on Polarimetric Synthetic Aperture Radar Data" Remote Sensing 13, no. 9: 1607. https://doi.org/10.3390/rs13091607
APA StyleLi, G., Li, Y., Hou, Y., Wang, X., & Wang, L. (2021). Marine Oil Slick Detection Using Improved Polarimetric Feature Parameters Based on Polarimetric Synthetic Aperture Radar Data. Remote Sensing, 13(9), 1607. https://doi.org/10.3390/rs13091607