Astrape: A System for Mapping Severe Abiotic Forest Disturbances Using High Spatial Resolution Satellite Imagery and Unsupervised Classification
Abstract
:1. Introduction
- Fully automated and optimized image segmentation;
- Automated classification using machine-learning classification (here, we tie together Jenks Natural Breaks and Extreme Gradient Boosting);
- Use of widely available ancillary data for topographical correction and masking (here, we leverage data available for the United States, described in Section 2.1.2, but country-specific or global datasets could be used);
- Built-in flexibility to account for different area of interest (AOI) sizes in different regions and forest types;
- Ability to map multiple severe disturbance agents;
- Able to use different image sources (here, primarily Sentinel-2 and Dove) without changing parameters;
- Uses only two images (pre- and post-event) instead of time-series data to minimize production time.
2. Materials and Methods
2.1. Image Segmentation and Differencing Module
2.1.1. Module Overview
2.1.2. Preprocessing and Ancillary Data
2.1.3. Image Segmentation
2.1.4. Image Differencing
2.2. Automated Classification Module
2.2.1. Module Overview
2.2.2. Jenks Natural Breaks
2.2.3. XGBoost
3. Case Studies of Astrape Mapping Capabilities
3.1. Introduction to the Case Studies
3.2. Case Study 1: Derecho in Wisconsin (2019)
3.2.1. Overview
3.2.2. Results
3.3. Case Study 2: Wildfire in Oregon (2020)
3.3.1. Overview
3.3.2. Results
3.4. Case Study 3: Hurricane Damage in Louisiana (2020)
3.4.1. Overview
3.4.2. Results
3.5. Case Study 4: Tornado Damage in Wisconsin (2020)
3.5.1. Overview
3.5.2. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kossin, J.; Hall, T.; Knutson, T.; Kunkel, K.E.; Trapp, R.J.; Waliser, D.E.; Wehner, M.F. Ch. 9: Extreme Storms. Climate Science Special Report: Fourth National Climate Assessment; Wuebbles, D.J., Fahey, D.W., Hibbard, K.A., Dokken, D.J., Stewart, B.C., Maycock, T.K., Eds.; Springer: Singapore; Washington, DC, USA, 2017; Volume I. [Google Scholar]
- Prein, A.F.; Liu, C.; Ikeda, K.; Trier, S.B.; Rasmussen, R.M.; Holland, G.J.; Clark, M.P. Increased rainfall volume from future convective storms in the US. Nat. Clim. Chang. 2017, 7, 880–884. [Google Scholar] [CrossRef]
- Simonson, J.M.; Birkel, S.D.; Maasch, K.A.; Mayewski, P.A.; Lyon, B.; Carleton, A.M. Historical incidence of mid-autumn wind storms in New England. Meteorol. Appl. 2020, 27, e1952. [Google Scholar] [CrossRef]
- Gregow, H.; Laaksonen, A.; Alper, M.E. Increasing large scale windstorm damage in Western, Central and Northern European forests, 1951–2010. Sci. Rep. 2017, 7, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, S.; Mishra, A.K. Increase in Compound Drought and Heatwaves in a Warming World. Geophys. Res. Lett. 2021, 48, 1–13. [Google Scholar] [CrossRef]
- Potter, K.M.; Conkling, B.L. Forest health monitoring: National status, trends, and analysis 2017. Gen. Tech. Rep. 2018, 215, SRS-233. [Google Scholar]
- FHP. Aviation Program. Available online: https://www.fs.fed.us/foresthealth/aviation/aviationprogram.shtml (accessed on 12 February 2021).
- Norman, S.P.; Hargrove, W.W.; Spruce, J.P.; Christie, W.M.; Schroeder, S.W. Highlights of Satellite-Based Forest Using the ForWarn System Change Recognition and Tracking. Gen. Tech. Rep. SRS-180 2013. [Google Scholar] [CrossRef]
- USFS. HiForm. Available online: https://hiform.org/ (accessed on 15 January 2021).
- Housman, I.; Chastain, R.; Finco, M. An Evaluation of Forest Health Insect and Disease Survey Data and Satellite-Based Remote Sensing Forest Change Detection Methods: Case Studies in the United States. Remote Sens. 2018, 10, 1184. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Hansen, M.C.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.V.; Goetz, S.J.J.; Loveland, T.R.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–854. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.D.; Knapp, E.E.; Key, C.H.; Skinner, C.N.; Isbell, C.J.; Creasy, R.M.; Sherlock, J.W. Calibration and validation of the relative differenced Normalized Burn Ratio (RdNBR) to three measures of fire severity in the Sierra Nevada and Klamath Mountains, California, USA. Remote Sens. Environ. 2009, 113, 645–656. [Google Scholar] [CrossRef]
- USFS. RAVG Background, Products & Applications. Available online: https://fsapps.nwcg.gov/ravg/background-products-applications (accessed on 15 January 2021).
- Cohen, W.B.; Healey, S.P.; Yang, Z.; Stehman, S.V.; Brewer, C.K.; Brooks, E.B.; Gorelick, N.; Huang, C.; Hughes, M.J.; Kennedy, R.E.; et al. How Similar Are Forest Disturbance Maps Derived from Different Landsat Time Series Algorithms? Forests 2017, 8, 98. [Google Scholar] [CrossRef]
- Sentinel-2. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-2 (accessed on 15 January 2021).
- Planet. Available online: https://www.planet.com/ (accessed on 15 January 2021).
- ESA. Sentinel-2 Resolution and Swath. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-2/instrument-payload/resolution-and-swath (accessed on 15 January 2021).
- Dalponte, M.; Marzini, S.; Solano-Correa, Y.T.; Tonon, G.; Vescovo, L.; Gianelle, D. Mapping forest windthrows using high spatial resolution multispectral satellite images. Int. J. Appl. Earth Obs. Geoinf. 2020, 93, 102206. [Google Scholar] [CrossRef]
- Rich, R.L.; Frelich, L.; Reich, P.B.; Bauer, M.E. Detecting wind disturbance severity and canopy heterogeneity in boreal forest by coupling high-spatial resolution satellite imagery and field data. Remote Sens. Environ. 2010, 114, 299–308. [Google Scholar] [CrossRef]
- Michael, Y.; Lensky, I.M.; Brenner, S.; Tchetchik, A.; Tessler, N.; Helman, D. Economic assessment of fire damage to urban forest in the wildland-urban interface using planet satellites constellation images. Remote Sens. 2018, 10, 1479. [Google Scholar] [CrossRef] [Green Version]
- Leach, N. Processing and Applying Multisensor CubeSat Data to Map Forest Fire Timing and Patterns. Ph.D. Thesis, The University of British Columbia, Columbia, UK, 2020. [Google Scholar]
- Wulder, M.A.; White, J.C.; Coops, N.C.; Butson, C.R. Multi-temporal analysis of high spatial resolution imagery for disturbance monitoring. Remote Sens. Environ. 2008, 112, 2729–2740. [Google Scholar] [CrossRef]
- De Chant, T.; Kelly, M. Individual Object Change Detection for Monitoring the Impact of a Forest Pathogen on a Hardwood Forest. Photogramm. Eng. Remote Sens. 2009, 75, 1005–1013. [Google Scholar] [CrossRef] [Green Version]
- Meentemeyer, R.K.; Rank, N.E.; Shoemaker, D.A.; Oneal, C.B.; Wickland, A.C.; Frangioso, K.M.; Rizzo, D.M. Impact of sudden oak death on tree mortality in the Big Sur ecoregion of California. Biol. Invasions 2008, 10, 1243–1255. [Google Scholar] [CrossRef]
- Gärtner, P.; Förster, M.; Kleinschmit, B. The benefit of synthetically generated RapidEye and Landsat 8 data fusion time series for riparian forest disturbance monitoring. Remote Sens. Environ. 2016, 177, 237–247. [Google Scholar] [CrossRef] [Green Version]
- Meng, R.; Wu, J.; Schwager, K.L.; Zhao, F.; Dennison, P.E.; Cook, B.D.; Brewster, K.; Green, T.M.; Serbin, S.P. Using high spatial resolution satellite imagery to map forest burn severity across spatial scales in a Pine Barrens ecosystem. Remote Sens. Environ. 2017, 191, 95–109. [Google Scholar] [CrossRef] [Green Version]
- Blaschke, T.; Kelly, M.; Merschdorf, H. Object-Based Image Analysis: Evolution, History, State of the Art, and Future Vision. In Remotely Sensed Data Characterization, Classification, and Accuracies; University of California: Berkeley, CA, USA, 2015; ISBN 9781482217872. [Google Scholar]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS J. Photogramm. Remote Sens. 2013, 80, 91–106. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Tonbul, H. An experimental comparison of multi-resolution segmentation, SLIC and K-means clustering for object-based classification of VHR imagery. Int. J. Remote Sens. 2018, 39, 6020–6036. [Google Scholar] [CrossRef]
- Waser, L.T.; Küchler, M.; Jütte, K.; Stampfer, T. Evaluating the potential of worldview-2 data to classify tree species and different levels of ash mortality. Remote Sens. 2014, 6, 4515–4545. [Google Scholar] [CrossRef] [Green Version]
- Cooley, S.W.; Smith, L.C.; Ryan, J.C.; Pitcher, L.H.; Pavelsky, T.M. Arctic-Boreal Lake Dynamics Revealed Using CubeSat Imagery. Geophys. Res. Lett. 2019, 46, 2111–2120. [Google Scholar] [CrossRef]
- Einzmann, K.; Immitzer, M.; Böck, S.; Bauer, O.; Schmitt, A.; Atzberger, C. Windthrow detection in european forests with very high-resolution optical data. Forests 2017, 8, 21. [Google Scholar] [CrossRef] [Green Version]
- Georganos, S.; Grippa, T.; Vanhuysse, S.; Lennert, M.; Shimoni, M.; Kalogirou, S.; Wolff, E. Less is more: Optimizing classification performance through feature selection in a very-high-resolution remote sensing object-based urban application. GIScience Remote Sens. 2018, 55, 221–242. [Google Scholar] [CrossRef]
- Georganos, S.; Lennert, M.; Grippa, T.; Vanhuysse, S.; Johnson, B.; Wolff, E. Normalization in unsupervised segmentation parameter optimization: A solution based on local regression trend analysis. Remote Sens. 2018, 10, 222. [Google Scholar] [CrossRef] [Green Version]
- Shepherd, J.; Bunting, P.; Dymond, J. Operational Large-Scale Segmentation of Imagery Based on Iterative Elimination. Remote Sens. 2019, 11, 658. [Google Scholar] [CrossRef] [Green Version]
- Kavzoglu, T. Object-Oriented Random Forest for High Resolution Land Cover Mapping Using Quickbird-2 Imagery. In Handbook of Neural Computation; Academic Press: Amsterdam, The Netherlands, 2017; ISBN 9780128113196. [Google Scholar]
- Latifi, H.; Fassnacht, F.E.; Schumann, B.; Dech, S. Object-based extraction of bark beetle (Ips typographus L.) infestations using multi-date LANDSAT and SPOT satellite imagery. Prog. Phys. Geogr. 2014, 38, 755–785. [Google Scholar] [CrossRef]
- Mudereri, B.T.; Dube, T.; Adel-Rahman, E.M.; Niassy, S.; Kimathi, E.; Khan, Z.; Landmann, T. A comparative analysis of planetscope and sentinel sentinel-2 space-borne sensors in mapping striga weed using guided regularised random forest classification ensemble. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2019, 42, 701–708. [Google Scholar] [CrossRef] [Green Version]
- Kelly, M.; Blanchard, S.D.; Kersten, E.; Koy, K. Terrestrial remotely sensed imagery in support of public health: New avenues of research using object-based image analysis. Remote Sens. 2011, 3, 2321–2345. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Schill, S.R.; Knapp, D.E.; Asner, G.P. Object-based mapping of coral reef habitats using planet dove satellites. Remote Sens. 2019, 11, 1445. [Google Scholar] [CrossRef] [Green Version]
- Soenen, S.A.; Peddle, D.R.; Coburn, C.A. SCS+C: A modified sun-canopy-sensor topographic correction in forested terrain. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2148–2159. [Google Scholar] [CrossRef]
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective, 4th ed.; Pearson Education, Inc.: Glenview, IL, USA, 2016. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.; Gao, X.; Ferreira, L. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Miller, J.D.; Thode, A.E. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sens. Environ. 2007, 109, 66–80. [Google Scholar] [CrossRef]
- Helman, D.; Bahat, I.; Netzer, Y.; Ben-Gal, A.; Alchanatis, V.; Peeters, A.; Cohen, Y. Using time series of high-resolution planet satellite images to monitor grapevine stem water potential in commercial vineyards. Remote Sens. 2018, 10, 1615. [Google Scholar] [CrossRef] [Green Version]
- Dixon, D.J.; Callow, J.N.; Duncan, J.M.A.; Setterfield, S.A.; Pauli, N. Satellite prediction of forest flowering phenology. Remote Sens. Environ. 2021, 255, 112197. [Google Scholar] [CrossRef]
- Coulston, J.W.; Moisen, G.G.; Wilson, B.T.; Finco, M.V.; Cohen, W.B.; Brewer, C.K. Modeling percent tree canopy cover: A pilot study. Photogramm. Eng. Remote Sens. 2012, 78, 715–727. [Google Scholar] [CrossRef] [Green Version]
- Coulston, J.W.; Jacobs, D.M.; King, C.R.; Elmore, I.C. The influence of multi-season imagery on models of canopy cover: A case study. Photogramm. Eng. Remote Sens. 2013, 79, 469–477. [Google Scholar] [CrossRef] [Green Version]
- Clewley, D.; Bunting, P.; Shepherd, J.; Gillingham, S.; Flood, N.; Dymond, J.; Lucas, R.; Armston, J.; Moghaddam, M. A Python-Based Open Source System for Geographic Object-Based Image Analysis (GEOBIA) Utilizing Raster Attribute Tables. Remote Sens. 2014, 6, 6111–6135. [Google Scholar] [CrossRef] [Green Version]
- Bunting, P.; Clewley, D.; Lucas, R.M.; Gillingham, S. The Remote Sensing and GIS Software Library (RSGISLib). Comput. Geosci. 2014, 62, 216–226. [Google Scholar] [CrossRef]
- Bunting, P.; Gillingham, S. The KEA image file format. Comput. Geosci. 2013, 57, 54–58. [Google Scholar] [CrossRef]
- Jenks, G.F. Optimal Data Classification for Choropleth Maps; University of Kansas: Lawrence, KS, USA, 1977. [Google Scholar]
- North, M.A. A Method for Implementing a Statistically Significant Number of Data Classes in the Jenks Algorithm. In Proceedings of the 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery, Tianjin, China, 14–16 August 2009; pp. 35–38. [Google Scholar] [CrossRef]
- Coulson, M.R.C. In The Matter Of Class Intervals For Choropleth Maps: With Particular Reference To The Work Of George F Jenks. Cartogr. Int. J. Geogr. Inf. Geovisualization 1987, 24, 16–39. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef] [Green Version]
- Friedman, J. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Friedman, J.; Hastie, T.; Tibshirani, R. The Elements of Statistical Learning: Data Mining, Inference and Prediction; Springer: Cham, Switzerland, 2008. [Google Scholar]
- Parnass, L. It Could Take 10 Years for Wisconsin to Recover from the Violent July Wind Storm that Wrecked Northern Forests. Available online: https://www.jsonline.com/story/news/special-reports/2019/10/23/wisconsin-july-2019-derecho-wind-storm-affect-economy-decade/4047898002/ (accessed on 15 January 2021).
- USFS. 2019 July Storm. Available online: https://www.fs.usda.gov/detail/cnnf/landmanagement/?cid=fseprd644781 (accessed on 15 January 2021).
- Matthew, C. Here’s How Two Derechos Slammed Wisconsin, Ravaging an Area Five Times Bigger than Washington, D.C., with 100 mph Winds. Available online: https://www.washingtonpost.com/weather/2019/07/24/heres-how-two-derechos-slammed-wisconsin-ravaging-an-area-five-times-bigger-than-washington-dc-with-mph-winds/ (accessed on 15 January 2021).
- Wegmueller, S.; Leach, N.; Townsend, P.A. LOESS radiometric correction for contiguous scenes (LORACCS): Improving the consistency of radiometry in high-resolution satellite image mosaics. Int. J. Appl. Earth Obs. Geoinf. 2021, 97, 102290. [Google Scholar] [CrossRef]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 Surface Reflectance Data Set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Leach, N.; Coops, N.C.; Obrknezev, N. Normalization method for multi-sensor high spatial and temporal resolution satellite imagery with radiometric inconsistencies. Comput. Electron. Agric. 2019, 164, 104893. [Google Scholar] [CrossRef]
- Beachie Creek Fire. Available online: https://inciweb.nwcg.gov/incident/7001/ (accessed on 15 January 2021).
- Maxwell, A.E.; Warner, T.A. Thematic classification accuracy assessment with inherently uncertain boundaries: An argument for center-weighted accuracy assessment metrics. Remote Sens. 2020, 12, 1905. [Google Scholar] [CrossRef]
- USFS. Forest Service Unites around Hurricane-Damaged Forests. Available online: https://www.fs.usda.gov/inside-fs/delivering-mission/sustain/forest-service-unites-around-hurricane-damaged-forests (accessed on 15 January 2021).
- Huang, H.; Roy, D.P. Characterization of Planetscope-0 Planetscope-1 surface reflectance and normalized difference vegetation index continuity. Sci. Remote Sens. 2021, 3, 100014. [Google Scholar] [CrossRef]
Operationally Used Satellite-Based Forest Change Detections Systems (USA) | ||||
---|---|---|---|---|
System [ref] | Data | Method (Platform) | Output | Distinguishing Characteristics |
ForWarn II [8] | MODIS | Time-series to calculate continuous scale of departure from average NDVI values (Web app). | Heat map of NDVI change at 250 m spatial resolution | High temporal resolution—able to help direct further initial response efforts. Not optimized for fine-spatial-scale operational mapping. |
HiForm [9] | Landsat Sentinel-2 | Image compositing to create a pre- and post-event image. Calculates a continuous scale of departure from average NDVI values (GEE). | Heat map of NDVI change at 10 or 30 m spatial resolution, depending on image source. | Potential to inform initial response efforts, but may exhibit long lag time due to clouds/image collection necessary for compositing. |
ORS [10] | MODIS Landsat | Time-series analysis using three methods: basic z-score, harmonic z-score and linear trend (GEE; may be produced upon request*). | Heat map of change at 30 m spatial resolution. | Ability to adjust model parameters based on characteristics of specific disturbance events, permitting the tuning of ORS products. Able to provide intra-seasonal results, but may exhibit long lag time and/or coarse spatial resolution. Requires in-depth knowledge of methods and parameters. |
LandTrendr [11] | Landsat | Analyzes the spectral response over a time series, smoothing anomalies unless the sudden departure from the trend line is sustained (GEE). | Maps of sudden disturbances and subsequent recovery at 30 m spatial resolution. | Optimized for monitoring recovery after a sudden disturbance event. Not intended as a tool for initial response efforts. |
Global Forest Change [12] | Landsat | Time-series analysis to identify stand-replacing disturbances and reforestation on a global-level (Web app; produced internally). | Data with locations of stand-replacing loss and canopy gain at 30 m spatial resolution | Global coverage of tree canopy gain and total loss. Does not report less severe damage. Lag time over a year. Not intended as a tool for initial response efforts. |
RAVG/ BARC [13,14] | Landsat Sentinel-2 Other | RAVG: Threshold RdNBR values to map wildfire damage with Landsat/Sentinel-2 imagery. | RAVG: Maps with USFS traditional damage categories 1–5 at 10–30 m spatial resolution. | Intended to inform initial management and response efforts. Only calibrated for wildfires in the western regions of the USA. |
BARC: leverages soonest-available, accessible imagery to map change in NBR/NDVI. (None—product produced by GTAC *). | BARC: Map of severity in 4 categories (high, moderate, low, unburned); spatial resolution varies. |
Satellite Imagery Bands Used in This Study | |||||
---|---|---|---|---|---|
Sentinel-2 | Dove | ||||
Number (resolution) | Region | Wavelength (nm) | Number (resolution = 3 m) | Region | Wavelength (nm) S2/PS2.SD/PSB.SD * |
2 (10 m) | Blue | 459–525 | 1 | Blue | 455–515/464–517/465–515 |
3 (10 m) | Green | 542–578 | 2 | Green | 500–590/547–585/513–549 |
4 (10 m) | Red | 649–680 | 3 | Red | 590–670/650–682/650–580 |
8 (10 m) | NIR | 780–886 | 4 | NIR | 780–860/846–888/845–885 |
8A (20 m) ** | NIR | 854–875 | |||
12 (20 m) ** | SWIR | 2115–2290 |
Case Study Overview | ||||
---|---|---|---|---|
Case | Event Type | Imagery | Location | AOI Sizes (ha) |
1 | Derecho | Dove | Wisconsin (Figure 2a) | 44,020 |
2 | Wildfire | Sentinel-2 | Oregon (Figure 2b) | 80,470 |
3 | Hurricane | Sentinel-2 Dove | Louisiana (Figure 2c) | 788,450 47,260 |
4 | Tornado | Sentinel-2 | Wisconsin (Figure 2a) | 5,876,700 68,280 5730 2940 |
Wisconsin Derecho Imagery Source: Planet Dove | |||
---|---|---|---|
Purpose | Date (Sensor) | Scene Times (UTC) | HLS Date (Product) |
Before | 19 July 2019 (Dove 1008) | 162,641, 162,642, 162,643 | 3 July 2019 (S30) |
After | 31 July 2019 (Dove 0e26) | 161,401, 161,402, 161,403 | 7 August 2019 (S30) |
Astrape | Ground Data | Producer’s | |||
---|---|---|---|---|---|
A | B | C | D | ||
A | 97 | 7 | 0 | 0 | 93 |
B | 17 | 66 | 4 | 0 | 76 |
C | 4 | 47 | 103 | 10 | 63 |
D | 2 | 3 | 11 | 106 | 87 |
User’s | 81 | 54 | 87 | 91 | Overall: 78 |
Cohen’s Kappa: 0.70 |
Beachie Creek Fire Imagery Source: Sentinel-2 | ||
---|---|---|
Product | Purpose | Date/Time (UTC) |
RAVG | Before After | 30 October 2019/190,521 29 October 2020/190,519 |
Astrape | Before After | 10 August 2020/185,919 29 October 2020/190,519 |
Astrape | RAVG | Producer’s | |||
---|---|---|---|---|---|
A | B | C | D | ||
A | 179.53 | 2.48 | 2.26 | 6.49 | 94.1 |
B | 45.32 | 2.06 | 1.25 | 8.87 | 3.6 |
C | 17.54 | 5.53 | 4.4 | 25.62 | 8.3 |
D | 4.35 | 5.66 | 14.05 | 303.61 | 92.7 |
User’s | 72.8 | 13.1 | 20.0 | 88.1 | Overall: 78.8 |
Cohen’s Kappa: 0.62 |
Hurricane Laura Large AOI Imagery Source: Sentinel-2 | |
---|---|
Purpose | Date/Time (UTC) |
Before After | 12 June 2020/164,849 30 September 2020/165,019 |
Hurricane Laura Small AOI Imagery Source: Planet Dove | |||
---|---|---|---|
Purpose | Date (Sensor) | Sensor | Scene Times in Mosaic (UTC) |
Before | 19 August 2019 | 1001 * 1005 | 163,154, 163,155, 163,156 163,334, 163,335, 163,336 |
After | 29 September 2020 | 0f34 1057 * 101b | 163,559, 163,600, 163,601 170,533, 170,534, 170,536 163,155, 163,156 |
Astrape | Ground | Producer’s | |
---|---|---|---|
AB | CD | ||
AB | 71 | 18 | 80 |
CD | 9 | 26 | 74 |
User’s | 89 | 59 | Overall: 78 |
Cohen’s Kappa: 0.50 |
Astrape | Ground | Producer’s | |
---|---|---|---|
AB | CD | ||
AB | 20 | 1 | 95 |
CD | 5 | 16 | 76 |
User’s | 80 | 94 | Overall: 86 |
Cohen’s Kappa: 0.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wegmueller, S.A.; Townsend, P.A. Astrape: A System for Mapping Severe Abiotic Forest Disturbances Using High Spatial Resolution Satellite Imagery and Unsupervised Classification. Remote Sens. 2021, 13, 1634. https://doi.org/10.3390/rs13091634
Wegmueller SA, Townsend PA. Astrape: A System for Mapping Severe Abiotic Forest Disturbances Using High Spatial Resolution Satellite Imagery and Unsupervised Classification. Remote Sensing. 2021; 13(9):1634. https://doi.org/10.3390/rs13091634
Chicago/Turabian StyleWegmueller, Sarah A., and Philip A. Townsend. 2021. "Astrape: A System for Mapping Severe Abiotic Forest Disturbances Using High Spatial Resolution Satellite Imagery and Unsupervised Classification" Remote Sensing 13, no. 9: 1634. https://doi.org/10.3390/rs13091634
APA StyleWegmueller, S. A., & Townsend, P. A. (2021). Astrape: A System for Mapping Severe Abiotic Forest Disturbances Using High Spatial Resolution Satellite Imagery and Unsupervised Classification. Remote Sensing, 13(9), 1634. https://doi.org/10.3390/rs13091634