3D Sparse SAR Image Reconstruction Based on Cauchy Penalty and Convex Optimization
Abstract
:1. Introduction
- 1.
- We present a 3D SAR image reconstruction method based on the Cauchy non-convex penalty function and improved ADMM;
- 2.
- We apply CNC strategy to 3D sparse SAR image reconstruction. Compared with penalty function, the proposed method reduces the estimation deviation. In addition, the objective function retains convexity, which can avoid falling into local optimization;
- 3.
- We compare the proposed method with some existing penalty functions, and give qualitative and quantitative analysis. Finally, we present several simulation and experimental results that verify the promising performance of the proposed method.
2. Cauchy Penalty Function and Improved Alternating Direction Method of Multipliers
2.1. Array SAR Imaging Model
2.2. Cauchy Penalty Function
2.3. Improved Alternating Direction Method of Multipliers
Algorithm 1: ALM |
Input: ; ; . Repeat Until the stopping condition is satisfied |
Algorithm 2: ALM2 |
Input: ; ; . Repeat Until the stopping condition is satisfied |
Algorithm 3: ADMM |
Input: ; ; ; . Repeat Until the stopping condition is satisfied |
Algorithm 4: SALSA |
Input: ; ; ; . Repeat Until the stopping condition is satisfied |
Algorithm 5: GSALSA-Cauchy |
Input: ; Maximum number of iterations ; Error parameter ; ; ; . Repeat Until or Output: |
3. Experiments and Analysis
3.1. Aircraft Model
3.2. The Corner Reflector Experiment
3.3. The Experiment of Pistol
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Computation Complexities of Different Algorithm
Appendix A.1. Algorithms 1 and 2
Appendix A.2. Algorithms 3 and 4
Appendix A.3. Algorithm 5
References
- Wu, J.; Sun, Z.; An, H.; Qu, J.; Yang, J. Azimuth Signal Multichannel Reconstruction and Channel Configuration Design for Geosynchronous Spaceborne–airborne Bistatic SAR. IEEE Trans. Geosci. Remote Sens. 2018, 57, 1861–1872. [Google Scholar] [CrossRef]
- Wang, Z.M.; Guo, Q.J.; Tian, X.Z. 3-D Millimeter-wave Imaging Using MIMO RMA with Range Compensation. IEEE Trans. Microw. Theory Tech. 2019, 67, 1157–1166. [Google Scholar] [CrossRef]
- Moses, R.L.; Potter, L.C.; Çetin, M. Wide Angle SAR Imaging. In Proceedings of the 2004 International Society for Optics and Photonics in Defense and Security, Orlando, FL, USA, 12–16 April 2004; pp. 164–175. [Google Scholar]
- Zhou, L.; Zhang, X.; Pu, L.; Zhang, T.; Shi, J.; Wei, S. A High-Precision Motion Errors Compensation Method Based on Sub-Image Reconstruction for HRWS SAR Imaging. Remote Sens. 2022, 14, 1033. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, B.; Zhou, G.; Zhong, L.; Wu, Y. Sparse SAR Imaging and Quantitative Evaluation Based on Nonconvex and TV Regularization. Remote Sens. 2021, 13, 1643. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, Y.; Zhang, Y.; Huang, Y.; Yang, J. A Sparse Denoising-Based Super-Resolution Method for Scanning Radar Imaging. Remote Sens. 2021, 13, 2768. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Zhan, X.; Zhang, T.; Zhou, L.; Shi, J.; Wei, S. An RCS Measurement Method Using Sparse Imaging Based 3D SAR Complex Image. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 24–28. [Google Scholar] [CrossRef]
- Wang, M.; Wei, S.; Liang, J.; Liu, S.; Shi, J.; Zhang, X. Lightweight FISTA-Inspired Sparse Reconstruction Network for mmW 3-D Holography. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–20. [Google Scholar] [CrossRef]
- Salvetti, F.; Martorella, M.; Giusti, E. Multi-view Three-dimensional Interferometric Inverse Synthetic Aperture Radar. IEEE Trans. Aerosp. Electron. Syst. 2018, 55, 718–733. [Google Scholar] [CrossRef]
- Oveis, A.H.; Guisti, E.; Ghio, S.; Martorella, M. A Survey on the Applications of Convolutional Neural Networks for Synthetic Aperture Radar: Recent Advances. IEEE Aerosp. Electron. Syst. Mag. 2021. [Google Scholar] [CrossRef]
- Huang, L.; Liu, B.; Li, B.; Guo, W.; Yu, W.; Zhang, Z.; Yu, W. OpenSARShip: A dataset dedicated to Sentinel-1 ship interpretation. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2018, 11, 195–208. [Google Scholar] [CrossRef]
- Li, J.; Qu, C.; Shao, J. Ship detection in SAR images based on an improved faster R-CNN. In Proceedings of the 2017 SAR in Big Data Era: Models, Methods and Applications (BIGSARDATA), Beijing, China, 13–14 November 2017; pp. 1–6. [Google Scholar]
- Liu, N.; Cao, Z.; Cui, Z.; Pi, Y.; Dang, S. Multi-Scale Proposal Generation for Ship Detection in SAR Images. Remote Sens. 2019, 11, 526. [Google Scholar] [CrossRef] [Green Version]
- Wei, S.; Zhou, Z.; Wang, M.; Wei, J.; Liu, S.; Shi, J.; Zhang, X.; Fan, F. 3DRIED: A High-Resolution 3-D Millimeter-Wave Radar Dataset Dedicated to Imaging and Evaluation. Remote Sens. 2021, 13, 3366. [Google Scholar] [CrossRef]
- Bamler, R. A Comparison of Range-Doppler and Wavenumber Domain SAR Focusing Algorithms. IEEE Trans. Geosci. Remote Sens. 1992, 30, 706–713. [Google Scholar] [CrossRef]
- Hu, C.; Wang, L.; Zhu, D.; Loffeld, O. Inverse Synthetic Aperture Radar Sparse Imaging Exploiting the Group Dictionary Learning. Remote Sens. 2021, 13, 2812. [Google Scholar] [CrossRef]
- Patel, V.M.; Easley, G.R., Jr.; Healy, D.M.; Chellappa, R. Compressed Synthetic Aperture Radar. IEEE J. Sel. Top. Signal Process. 2010, 4, 244–254. [Google Scholar] [CrossRef]
- Selesnick, I. Sparse Regularization via Convex Analysis. IEEE Trans. Signal Process. 2017, 65, 4481–4494. [Google Scholar] [CrossRef]
- Baraniuk, R.; Steeghs, P. Compressive Radar Imaging. In Proceedings of the IEEE Radar Conference, Waltham, MA, USA, 17–20 April 2007; pp. 128–133. [Google Scholar]
- Daubechies, I.; Defriese, M.; De Mol, C. An Iterative Thresholding Algorithm for Linear Inverse Problems with A Sparsity Constraint. Commun. Pure Appl. Math. 2004, 57, 1413–1457. [Google Scholar] [CrossRef] [Green Version]
- Beck, A.; Teboulle, M. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems. SIAM J. Imaging Sci. 2009, 2, 183–202. [Google Scholar] [CrossRef] [Green Version]
- Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed Optimization and Statistical Learning via The Alternating Direction Method of Multipliers; Foundations and Trends® in Machine Learning: Berkeley, CA, USA, 2011; Volume 3, pp. 1–122. [Google Scholar]
- Candes, E.; Tao, T. The Dantzig Selector: Statistical Estimation When p Is much Larger Than n. Ann. Stat. 2007, 35, 2313–2351. [Google Scholar]
- Osher, S.; Ruan, F.; Xiong, J.; Yao, Y.; Yin, W. Sparse Recovery via Differential Inclusions. Appl. Comput. Harmon. Anal. 2016, 41, 436–469. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Li, R. Variable Selection via Nonconcave Penalized Likelihood and Its Oracle Properties. J. Am. Stat. Assoc. 2001, 96, 1348–1360. [Google Scholar] [CrossRef]
- Zhang, C.-H. Nearly Unbiased Variable Selection under Minimax Concave Penalty. Ann. Stat. 2010, 38, 894–942. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Meng, D.; Zhao, Q.; Cao, W.; Xu, Z. Nonconvex-Sparsity and Nonlocal-Smoothness-Based Blind Hyperspectral Unmixing. IEEE Trans. Image Process. 2019, 28, 2991–3006. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Hong, D.; Xu, L.; Meng, D.; Chanussot, J.; Xu, Z. Sparsity-Enhanced Convolutional Decomposition: A Novel Tensor-Based Paradigm for Blind Hyperspectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5505014. [Google Scholar] [CrossRef]
- Zuo, W.; Meng, D.; Zhang, L.; Feng, X.; Zhang, D. A Generalized Iterated Shrinkage Algorithm for Non-convex Sparse Coding. In Proceedings of the 2013 IEEE International Conference on Computer Vision, Sydney, NSW, Australia, 1–8 December 2013; pp. 217–224. [Google Scholar]
- Wang, Y.; He, Z.; Zhan, X.; Fu, Y.; Zhou, L. Three-Dimensional Sparse SAR Imaging with Generalized Lq Regularization. Remote Sens. 2022, 14, 288. [Google Scholar] [CrossRef]
- Woodworth, J.; Chartrand, R. Compressed Sensing Recovery via Nonconvex Shrinkage Penalties. Inverse Probl. 2016, 32, 075004. [Google Scholar] [CrossRef]
- Nikolova, M.; Ng, M.K.; Tam, C.-P. Fast Nonconvex Nonsmooth Minimization Methods for Image Restoration and Reconstruction. IEEE Trans. Image Process. 2010, 19, 3073–3088. [Google Scholar] [CrossRef]
- Parekh, A.; Selesnick, I.W. Convex Denoising Using Non-convex Tight Frame Regularization. IEEE Signal Process. Lett. 2015, 22, 1786–1790. [Google Scholar] [CrossRef] [Green Version]
- Lanza, A.; Morigi, S.; Sgallari, F. Convex Image Denoising via Non-convex Regularization with Parameter Selection. J. Math. Imaging Vis. 2016, 56, 195–220. [Google Scholar] [CrossRef]
- Selesnick, I. Total Variation Denoising via The Moreau Envelope. IEEE Signal Process. Lett. 2017, 24, 216–220. [Google Scholar] [CrossRef]
- Selesnick, I.; Lanza, A.; Morigi, S.; Sgallari, F. Non-convex Total Variation Regularization for Convex Denoising of Signals. J. Math. Imaging Vis. 2020, 62, 825–841. [Google Scholar] [CrossRef]
- Liu, Y.; Du, H.; Wang, Z.; Mei, W. Convex MR Brain Image Reconstruction via Non-convex Total Variation Minimization. Int. J. Imaging Syst. Technol. 2018, 28, 246–253. [Google Scholar] [CrossRef]
- Anantrasirichai, N.; Zheng, R.; Selesnick, I.; Achim, A. Image Fusion via Sparse Regularization with Non-convex Penalties. Pattern Recognit. Lett. 2020, 131, 355–360. [Google Scholar] [CrossRef] [Green Version]
- Karakuş, O.; Mayo, P.; Achim, A. Convergence Guarantees for Non-Convex Optimisation with Cauchy-based Penalties. IEEE Trans. Signal Process. 2020, 131, 355–360. [Google Scholar] [CrossRef]
- Afonso, M.; Bioucas-Dias, J.M.; Figueiredo, M.A.T. Fast Image Recovery Using Variable Splitting and Constrained Optimization. IEEE Trans. Image Process. 2010, 10, 2345–2356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afonso, M.; Bioucas-Dias, J.M.; Figueiredo, M.A.T. An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems. IEEE Trans. Image Process. 2011, 20, 681–695. [Google Scholar] [CrossRef] [Green Version]
- Wahlberg, B.; Boyd, S.; Annergren, M.; Wang, Y. An ADMM Algorithm for A Class of Total Variation Regularized Estimation Problems. In Proceedings of the 16th IFAC Symposium System Identification, Brussels, Belgium, 5 May 2012; pp. 83–88. [Google Scholar]
- Wan, T.; Canagarajah, N.; Achim, A. Segmentation of Noisy Colour Images Using Cauchy Distribution in The Complex Wavelet Domain. IET Image Process. 2011, 5, 159–170. [Google Scholar] [CrossRef]
- Nocedal, J.; Wright, S.J. Numerical Optimization, 2nd ed.; Springer: New York, NY, USA, 2006. [Google Scholar]
- Boyd, S.; Parikh, N. Proximal algorithms. Found. Trends Optimization 2014, 1, 127–239. [Google Scholar]
- Fang, J.; Xu, Z.; Zhang, B.; Hong, W.; Wu, Y. Fast Compressed Sensing SAR Imaging Based on Approximated Observation. IEEE J. Sel. Top. Appl. Earth Observ. 2014, 7, 352–363. [Google Scholar] [CrossRef] [Green Version]
- Bi, H.; Bi, G.; Zhang, B.; Hong, W. Complex-Image-Based Sparse SAR Imaging and Its Equivalence. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5006–5014. [Google Scholar] [CrossRef]
- Han, Y.; Ye, J.C. Framing U-Net via Deep Convolutional Framelets: Application to Sparse-view CT. IEEE Trans. Med. Imaging 2018, 37, 1418–1429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Z.; Wei, Z.; Liu, M.; Zhang, B.; Wu, Y. Analysis and Suppression of Bias Effect in Sparse SAR Imaging. In Image and Signal Processing for Remote Sensing XXV; International Society for Optics and Photonics: Bellingham, WA, USA, 2019; p. 111551E. [Google Scholar]
- Yang, L.; Zhang, S.; Fang, C.; Wu, R.; Han, P.; Xing, M. Structure-Awareness SAR Imagery by Exploiting Structure Tensor TV Regularization Under Multitask Learning Framework. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5203315. [Google Scholar] [CrossRef]
- Combettes, P.L.; Pesquet, J.-C. Proximal splitting methods in signal processing. In Fixed-Point Algorithms for Inverse Problems in Science and Engineering; Springer: New York, NY, USA, 2011; pp. 185–212. [Google Scholar]
Method | FIST | SCAD | MCP | GSALSA–Cauchy |
---|---|---|---|---|
PSNR | 42.9033 | 45.5338 | 45.6318 | 46.1380 |
NMSE | 0.3340 | 0.2026 | 0.1852 | 0.1367 |
RE | 2.0070 | 0.2853 | 0.2661 | 0.2383 |
Method | FIST | SCAD | MCP | GSALSA–Cauchy |
---|---|---|---|---|
PSNR | 42.3921 | 44.7422 | 44.7776 | 45.0526 |
NMSE | 0.3579 | 0.2316 | 0.2148 | 0.1673 |
RE | 2.0820 | 0.3648 | 0.3466 | 0.2667 |
Method | FIST | SCAD | MCP | GSALSA–Cauchy |
---|---|---|---|---|
PSNR | 39.5480 | 41.6442 | 42.1289 | 43.3540 |
NMSE | 0.4860 | 0.3599 | 0.3382 | 0.3065 |
RE | 2.5810 | 0.3913 | 0.3687 | 0.2872 |
Method | FIST | SCAD | MCP | GSALSA–Cauchy |
---|---|---|---|---|
PSNR | 39.4820 | 41.2316 | 42.0484 | 43.1757 |
NMSE | 0.4902 | 0.3801 | 0.3729 | 0.3235 |
RE | 2.6013 | 0.4095 | 0.3857 | 0.3165 |
Method | FIST | SCAD | MCP | GSALSA–Cauchy |
---|---|---|---|---|
PSNR | 37.6217 | 40.2308 | 40.9578 | 41.4718 |
NMSE | 0.1442 | 0.1038 | 0.0712 | 0.0524 |
RE | 1.6972 | 0.2386 | 0.1925 | 0.1703 |
Method | FIST | SCAD | MCP | GSALSA–Cauchy |
---|---|---|---|---|
PSNR | 34.8553 | 36.1121 | 36.4466 | 37.2201 |
NMSE | 0.2473 | 0.2104 | 0.1793 | 0.1592 |
RE | 2.3088 | 0.3854 | 0.3693 | 0.3359 |
SNR | Method | PSNR | NMSE | RE |
---|---|---|---|---|
20 | FIST | 42.9033 | 0.3340 | 2.0070 |
SCAD | 45.5338 | 0.2026 | 0.2853 | |
MCP | 45.6318 | 0.1852 | 0.2661 | |
GSALSA–Cauchy | 46.1380 | 0.1367 | 0.2383 | |
15 | FIST | 42.8691 | 0.3360 | 2.0079 |
SCAD | 45.4755 | 0.2049 | 0.2989 | |
MCP | 45.5686 | 0.1876 | 0.2724 | |
GSALSA–Cauchy | 46.0555 | 0.1391 | 0.2465 | |
10 | FIST | 42.7557 | 0.3417 | 2.0264 |
SCAD | 44.9194 | 0.2118 | 0.3399 | |
MCP | 45.2047 | 0.1944 | 0.2907 | |
GSALSA–Cauchy | 45.7885 | 0.1465 | 0.2786 | |
5 | FIST | 42.4084 | 0.3578 | 2.0773 |
SCAD | 44.7494 | 0.2320 | 0.4236 | |
MCP | 44.7860 | 0.2151 | 0.3473 | |
GSALSA–Cauchy | 45.0355 | 0.1685 | 0.3227 | |
0 | FIST | 41.4968 | 0.4082 | 2.2554 |
SCAD | 43.0364 | 0.2922 | 0.5921 | |
MCP | 43.3931 | 0.2771 | 0.5004 | |
GSALSA–Cauchy | 43.6851 | 0.2332 | 0.4721 |
Method | FIST | SCAD | MCP | GSALSA–Cauchy |
---|---|---|---|---|
PSNR | 41.6101 | 43.2581 | 43.5891 | 43.6651 |
NMSE | 0.3994 | 0.2788 | 0.2632 | 0.2146 |
RE | 2.2343 | 0.5095 | 0.4844 | 0.4623 |
Method | FIST | SCAD | MCP | GSALSA–Cauchy |
---|---|---|---|---|
PSNR | 40.0131 | 41.2218 | 41.3731 | 41.4339 |
NMSE | 0.4939 | 0.3728 | 0.3660 | 0.2953 |
RE | 2.5984 | 0.5992 | 0.5865 | 0.4767 |
ALM | ALM2 | ADMM | SALSA | GSALSA |
---|---|---|---|---|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; He, Z.; Yang, F.; Zeng, Q.; Zhan, X. 3D Sparse SAR Image Reconstruction Based on Cauchy Penalty and Convex Optimization. Remote Sens. 2022, 14, 2308. https://doi.org/10.3390/rs14102308
Wang Y, He Z, Yang F, Zeng Q, Zhan X. 3D Sparse SAR Image Reconstruction Based on Cauchy Penalty and Convex Optimization. Remote Sensing. 2022; 14(10):2308. https://doi.org/10.3390/rs14102308
Chicago/Turabian StyleWang, Yangyang, Zhiming He, Fan Yang, Qiangqiang Zeng, and Xu Zhan. 2022. "3D Sparse SAR Image Reconstruction Based on Cauchy Penalty and Convex Optimization" Remote Sensing 14, no. 10: 2308. https://doi.org/10.3390/rs14102308
APA StyleWang, Y., He, Z., Yang, F., Zeng, Q., & Zhan, X. (2022). 3D Sparse SAR Image Reconstruction Based on Cauchy Penalty and Convex Optimization. Remote Sensing, 14(10), 2308. https://doi.org/10.3390/rs14102308