Retrieval of the Leaf Area Index from MODIS Top-of-Atmosphere Reflectance Data Using a Neural Network Supported by Simulation Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Satallite Data and Field Data
2.1.1. MODIS Data
2.1.2. DIRECT 2.0 Ground Database
2.2. Sample Data Simulation
2.2.1. Creation of the LUT with the PROSAIL Model
2.2.2. 6S Simulation
2.3. Design of the Neural Networks
2.3.1. Deep Belief Network
2.3.2. Training the DBN LAI Model
2.4. Error Metrics
3. Results and Validation
3.1. LAI Retrieval from TOC and TOA Reflectance
3.2. Validation against the DIRECT 2.0 Database
4. Discussion
4.1. Performance of the TOA Retrieval
4.2. Advantages and Limitations of the Method Used
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiao, Z.; Liang, S.; Wang, J.; Xiang, Y.; Zhao, X.; Song, J. Long-time-series global land surface satellite leaf area index product derived from MODIS and AVHRR surface reflectance. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5301–5318. [Google Scholar] [CrossRef]
- Xiao, Z.; Liang, S.; Sun, R.; Wang, J.; Jiang, B. Estimating the fraction of absorbed photosynthetically active radiation from the MODIS data based GLASS leaf area index product. Remote Sens. Environ. 2015, 171, 105–117. [Google Scholar] [CrossRef]
- Bacour, C.; Baret, F.; Béal, D.; Weiss, M.; Pavageau, K. Neural network estimation of LAI, fAPAR, fCover and LAI×Cab, from top of canopy MERIS reflectance data: Principles and validation. Remote Sens. Environ. 2006, 105, 313–325. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, K.; Liu, J.; Wang, F.; Zhong, Y. Decreasing the error in the measurement of the ecosystem effective leaf area index of a Pinus massoniana forest. J. For. Res. 2018, 30, 1459–1470. [Google Scholar] [CrossRef]
- Chen, J.M.; Black, T.A. Defining leaf area index for non-flat leaves. Plant Cell Environ. 1992, 15, 421–429. [Google Scholar] [CrossRef]
- Myneni, R.B.; Hoffman, S.; Knyazikhin, Y.; Privette, J.L.; Glassy, J.; Tian, Y.; Wang, X.; Song, Y.; Zhang, G.R.; Smith, A.; et al. Running. Global products of vegetation leaf area and absorbed PAR from year one of MODIS data. Remote Sens. Environ. 2002, 83, 214–231. [Google Scholar] [CrossRef] [Green Version]
- Ranga, B.; Myneni, J.R.; Asrar, G. A review on the theory of photon transport in leaf canopies. Agric. For. Meteorol. 1989, 45, 1–153. [Google Scholar] [CrossRef]
- Arora, V. Modeling vegetation as a dynamic component in soil-vegetation-atmosphere transfer schemes and hydrological models. Rev. Geophys. 2002, 40, 3-1–3-26. [Google Scholar] [CrossRef] [Green Version]
- GCOS. Systematic Observation Requirements for Satellite-Based Products for Climate. Available online: http://www.wmo.ch/web/gcos/gcoshome.html (accessed on 28 February 2022).
- Yin, G.; Li, J.; Liu, Q.; Zhong, B.; Li, A. Improving LAI spatio-temporal continuity using a combination of MODIS and MERSI data. Remote Sens. Lett. 2016, 7, 771–780. [Google Scholar] [CrossRef]
- Xu, B.; Park, T.; Yan, K.; Chen, C.; Zeng, Y.; Song, W.; Yin, G.; Li, J.; Liu, Q.; Knyazikhin, Y.; et al. Analysis of global LAI/FPAR products from VIIRS and MODIS Sensors for spatio-temporal consistency and uncertainty from 2012–2016. Forests 2018, 9, 73. [Google Scholar] [CrossRef] [Green Version]
- Knyazikhin, Y.; Martonchik, J.V.; Diner, D.J.; Myneni, R.B.; Verstraete, M.; Pinty, B.; Gobron, N. Estimation of vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from atmosphere-corrected MISR data. J. Geophys. Res. Atmos. 1998, 103, 32239–32256. [Google Scholar] [CrossRef] [Green Version]
- Wenze, Y.; Bin, T.; Dong, H.; Rautiainen, M.; Shabanov, N.V.; Wang, Y.; Privette, J.L.; Huemmrich, K.F.; Fensholt, R.; Sandholt, I.; et al. MODIS leaf area index products: From validation to algorithm improvement. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1885–1898. [Google Scholar] [CrossRef]
- Baret, F.; Hagolle, O.; Geiger, B.; Bicheron, P.; Miras, B.; Huc, M.; Berthelot, B.; Niño, F.; Weiss, M.; Samain, O.; et al. LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION. Remote Sens. Environ. 2007, 110, 275–286. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, R.; Butson, C.; Leblanc, S.; Latifovic, R. Landsat-5 TM and Landsat-7 ETM+ based accuracy assessment of leaf area index products for Canada derived from SPOT-4 VEGETATION data. Can. J. Remote Sens. 2014, 29, 241–258. [Google Scholar] [CrossRef]
- Claverie, M.; Matthews, J.; Vermote, E.; Justice, C. A 30+ Year AVHRR LAI and FAPAR climate data record: Algorithm description and validation. Remote Sens. 2016, 8, 263. [Google Scholar] [CrossRef] [Green Version]
- Masson, V.; Champeaux, J.L.; Chauvin, F.; Meriguet, C.; Lacaze, R. A global database of land surface parameters at 1-km resolution in meteorological and climate models. J. Clim. 2003, 16, 1261–1282. [Google Scholar] [CrossRef]
- Hu, J.; Su, Y.; Tan, B.; Huang, D.; Yang, W.; Schull, M.; Bull, M.A.; Martonchik, J.V.; Diner, D.J.; Knyazikhin, Y.; et al. Analysis of the MISR LAI/FPAR product for spatial and temporal coverage, accuracy and consistency. Remote Sens. Environ. 2007, 107, 334–347. [Google Scholar] [CrossRef] [Green Version]
- Bicheron, P.; Leroy, M.; Hautecoeur, O. Retrieving of LAI and fAPAR with airborne POLDER data over various biomes. In Proceedings of the Geoscience & Remote Sensing, IGARSS 97 Remote Sensing—A Scientific Vision for Sustainable Development, Singapore, 3–8 August 1997; pp. 556–558. [Google Scholar]
- Xiao, Z.; Liang, S.; Wang, J.; Chen, P.; Yin, X.; Zhang, L.; Song, J. Use of general regression neural networks for generating the GLASS leaf area index product from time-series MODIS surface reflectance. IEEE Trans. Geosci. Remote Sens. 2014, 52, 209–223. [Google Scholar] [CrossRef]
- Xiang, Y.; Xiao, Z.Q.; Ling, S.L.; Wang, J.D.; Song, J.L. Validation of global land surface satellite (GLASS) leaf area index product. J. Remote Sens. 2014, 18, 57–596. [Google Scholar] [CrossRef]
- Feng, D.; Chen, J.M.; Plummer, S.; Mingzhen, C.; Pisek, J. Algorithm for global leaf area index retrieval using satellite imagery. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2219–2229. [Google Scholar] [CrossRef] [Green Version]
- Copernicus Global Land Operations “Vegetation and Energy” “CGLOPS-1”. Available online: https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/CGLOPS1_PUM_LC100m-V3_I3.4.pdf (accessed on 8 April 2022).
- Fang, H.; Baret, F.; Plummer, S.; Schaepman-Strub, G. An overview of global leaf area index (LAI): Methods, products, validation, and applications. Rev. Geophys. 2019, 57, 739–799. [Google Scholar] [CrossRef]
- Guo, H.; Liu, L.; Wang, C.; Lei, L.; Wu, Y.; Jiao, Q. Monitoring Chinese Spring Drought Using Time-Series MODIS data. In Proceedings of the Sixth International Symposium on Digital Earth: Data Processing and Applications, Beijing, China, 9–12 September 2009. [Google Scholar]
- Raffy, M.; Soudani, K.; Trautmann, J. On the variability of the LAI of homogeneous covers with respect to the surface size and application. Int. J. Remote Sens. 2010, 24, 2017–2035. [Google Scholar] [CrossRef]
- Ranga, B.; Myneni, R.R.N.; Steven, W. Running. Estimation of global leaf area index and absorbed par using radiative transfer models. IEEE Trans. Geosci. Remote Sens. 1997, 35, 1380–1393. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Biudes, M.S.; Machado, N.G.; Danelichen, V.H.; Souza, M.C.; Vourlitis, G.L.; Nogueira, J.d.S. Ground and remote sensing-based measurements of leaf area index in a transitional forest and seasonal flooded forest in Brazil. Int. J. Biometeorol. 2014, 58, 1181–1193. [Google Scholar] [CrossRef]
- Liu, Y.; Ju, W.; Chen, J.; Zhu, G.; Xing, B.; Zhu, J.; He, M. Spatial and temporal variations of forest LAI in China during 2000–2010. Chin. Sci. Bull. 2012, 57, 2846–2856. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Zhou, Q.-B.; Wu, W.-B.; Xia, T.; Tang, H.-J. Estimating the crop leaf area index using hyperspectral remote sensing. J. Integr. Agric. 2016, 15, 475–491. [Google Scholar] [CrossRef] [Green Version]
- Duan, S.-B.; Li, Z.-L.; Wu, H.; Tang, B.-H.; Ma, L.; Zhao, E.; Li, C. Inversion of the PROSAIL model to estimate leaf area index of maize, potato, and sunflower fields from unmanned aerial vehicle hyperspectral data. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 12–20. [Google Scholar] [CrossRef]
- Lek, S.; Guégan, J.F. Artificial neural networks as a tool in ecological modelling, an introduction. Ecol. Model. 1999, 120, 65–73. [Google Scholar] [CrossRef]
- Yang, G.; Zhao, C.; Liu, Q.; Huang, W.; Wang, J. Inversion of a radiative transfer model for estimating forest LAI from multisource and multiangular optical remote sensing data. IEEE Trans. Geosci. Remote Sens. 2011, 49, 988–1000. [Google Scholar] [CrossRef]
- Masemola, C.; Cho, M.A.; Ramoelo, A. Comparison of landsat 8 OLI and landsat 7 ETM+ for estimating grassland LAI using model inversion and spectral indices: Case study of Mpumalanga, South Africa. Int. J. Remote Sens. 2016, 37, 4401–4419. [Google Scholar] [CrossRef]
- Smith, J.A. LAI inversion using a back-propagation neural network trained with a multiple scattering model. IEEE Trans. Geosci. Remote Sens. 1993, 31, 1102–1106. [Google Scholar] [CrossRef] [Green Version]
- Hongliang, F.; Shunlin, L. Retrieving leaf area index with a neural network method: Simulation and validation. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2052–2062. [Google Scholar] [CrossRef] [Green Version]
- Estévez, J.; Berger, K.; Vicent, J.; Rivera-Caicedo, J.P.; Wocher, M.; Verrelst, J. Top-of-atmosphere retrieval of multiple crop traits using variational heteroscedastic gaussian processes within a hybrid workflow. Remote Sens. 2021, 13, 1589. [Google Scholar] [CrossRef]
- Sun, L.; Wang, W.; Jia, C.; Liu, X. Leaf area index remote sensing based on Deep Belief Network supported by simulation data. Int. J. Remote Sens. 2021, 42, 7637–7661. [Google Scholar] [CrossRef]
- MODIS Characterization Support Team (MCST). MODIS Level 1B Product User’s Guide For Level 1B Version 6.2.2 (Terra) and Version 6.2.1 (Aqua). 2017. Available online: https://mcst.gsfc.nasa.gov/sites/default/files/file_attachments/M1054E_PUG_2017_0901_V6.2.2_Terra_V6.2.1_Aqua.pdf (accessed on 8 March 2021).
- MODIS Science Data Support Team. MODIS Level 1A Earth Location: Algorithm Theoretical Basis Document Version 3.0. 1997. Available online: https://modis.gsfc.nasa.gov/data/atbd/atbd_mod28_v3.pdf (accessed on 8 March 2021).
- Garrigues, S.; Lacaze, R.; Baret, F.; Morisette, J.T.; Weiss, M.; Nickeson, J.E.; Fernandes, R.; Plummer, S.; Shabanov, N.V.; Myneni, R.B.; et al. Validation and intercomparison of global Leaf Area Index products derived from remote sensing data. J. Geophys. Res. Biogeosci. 2008, 113, G02028. [Google Scholar] [CrossRef]
- Wei, H.; Cui, S.; Yang, S.; Zhao, Q. Sea surface temperature retrieving using MODIS data. J. Atmos. Environ. Opt. 2018, 13, 8. Available online: http://gk.hfcas.ac.cn/CN/Y2018/V13/I4/277 (accessed on 8 March 2021).
- MODIS Characterization Support Team (MCST). MODIS 1 km Calibrated Radiances Product; NASA MODIS Adaptive Processing System, Goddard Space Flight Center: Greenbelt, MD, USA, 2017. [CrossRef]
- MODIS Characterization Support Team (MCST). MODIS Geolocation Fields Product; NASA MODIS Adaptive Processing System, Goddard Space Flight Center: Greenbelt, MD, USA, 2017. [CrossRef]
- NASA. MOD09A1 MODIS/Terra Surface Reflectance 8-Day L3 Global 500 m SIN Grid; NASA LP DAAC; NASA: Washington, DC, USA, 2017. [CrossRef]
- Friedl, M.; Sulla-Menashe, D. MCD12Q1 MODIS/Terra + Aqua Land Cover Type Yearly L3 Global 500 m SIN Grid; NASA LP DAAC; NASA: Washington, DC, USA, 2015. [CrossRef]
- Myneni, R.; Knyazikhin, Y.; Park, T.; MODAPS SIPS NASA. MYD15A2H MODIS/Aqua Leaf Area Index/FPAR 8-Day L4 Global 500 m SIN Grid; NASA LP DAAC; NASA: Washington, DC, USA, 2017. [CrossRef]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Knyazikhin, Y.; Glassy, J.; Privette, J.L.; Tian, Y.; Lotsch, A.; Zhang, Y.; Wang, Y.; Morisette, J.T.; Votava, P.; Myneni, R.B.; et al. MODIS Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation Absorbed by Vegetation (FPAR) Product (MOD15). Algorithm Theoretical Basis Document Version 4.0. Available online: https://modis.gsfc.nasa.gov/data/atbd/atbd_mod15.pdf (accessed on 31 May 2019).
- Knyazikhin, Y.; Martonchik, J.V.; Myneni, R.B.; Diner, D.J.; Running, S.W. Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data. J. Geophys. Res. Atmos. 1998, 103, 32257–32275. [Google Scholar] [CrossRef] [Green Version]
- Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P.J.; Asner, G.P.; François, C.; Ustin, S.L. PROSPECT + SAIL models: A review of use for vegetation characterization. Remote Sens. Environ. 2009, 113, S56–S66. [Google Scholar] [CrossRef]
- Hosgood, B.; Jacquemoud, S.; Andreoli, J.; Verdebout, A.; Pedrini, A.; Schmuck, G. Leaf Optical Properties Experiment 93 (LOPEX93); European Commission: Brussels, Belgium, 1995. [Google Scholar]
- Wocher, M.; Berger, K.; Danner, M.; Mauser, W.; Hank, T. Physically-based retrieval of canopy equivalent water thickness using hyperspectral data. Remote Sens. 2018, 10, 1924. [Google Scholar] [CrossRef] [Green Version]
- Tanré, D.; Deroo, C.; Duhaut, P.; Herman, M.; Morcrette, J.J.; Perbos, J.; Deschamps, P.Y. Technical note description of a computer code to simulate the satellite signal in the solar spectrum: The 5S code. Int. J. Remote Sens. 2010, 11, 659–668. [Google Scholar] [CrossRef]
- Vermote, E.F.; Kotchenova, S. Atmospheric correction for the monitoring of land surfaces. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Vermote, E.F.; Tanré, D.; Deuze, J.L.; Herman, M.; Morcette, J.J. Second simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef] [Green Version]
- Vermote, E.F.T.D.; Tanré, D.; Deuzé, J.L.; Herman, M.; Morcrette, J.J.; Kotchenova, S.Y. Second Simulation of a Satellite Signal in the Solar Spectrum-Vector (6SV). Available online: https://salsa.umd.edu/files/6S/6S_Manual_Part_1.pdf (accessed on 8 March 2021).
- Vermote, E.F.; El Saleous, N.Z.; Justice, C.O. Atmospheric correction of MODIS data in the visible to middle infrared First results. Remote Sens. Environ. 2002, 83, 97–111. [Google Scholar] [CrossRef]
- Vermote, E.F.; El Saleous, N.; Justice, C.O.; Kaufman, Y.J.; Privette, J.L.; Remer, L.; Roger, J.C.; Tanré, D. Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: Background, operational algorithm and validation. J. Geophys. Res. Atmos. 1997, 102, 17131–17141. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Yin, Z.; Yang, H.; Wu, Y.; Ma, X. Reconstructing geostationary satellite land surface temperature imagery based on a multiscale feature connected convolutional neural network. Remote Sens. 2019, 11, 300. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J.; et al. Deep learning in environmental remote sensing: Achievements and challenges. Remote Sens. Environ. 2020, 241, 111716. [Google Scholar] [CrossRef]
- Geoffrey, E.; Hinton, S.O.; Yee-Whye, T. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527–1554. [Google Scholar] [CrossRef]
- Larochelle, H.; Erhan, D.; Courville, A.; Bergstra, J.; Bengio, Y. An Empirical Evaluation of Deep Architectures on Problems with Many Factors of Variation. In Proceedings of the 24th International Conference on Machine Learning, Corvallis, OR, USA, 20–24 June 2007; Association for Computing Machinery: New York, NY, USA, 2007; pp. 473–480. [Google Scholar]
- De Kauwe, M.G.; Disney, M.I.; Quaife, T.; Lewis, P.; Williams, M. An assessment of the MODIS collection 5 leaf area index product for a region of mixed coniferous forest. Remote Sens. Environ. 2011, 115, 767–780. [Google Scholar] [CrossRef]
Site Name | Country | Lat | Lon | Land Cover | DOY | LAI | Reference |
---|---|---|---|---|---|---|---|
KONZ | USA | 39.0890 | −96.5712 | Crops | 2000159 | 2.175 | BigFoot |
Nezer | France | 44.5680 | −1.0375 | NLF | 2000211 | 1.591 | VALERI |
Fundulea | Romania | 44.4060 | 26.5832 | Crops | 2002144 | 1.284 | VALERI |
Walnut_Creek | USA | 41.9322 | −93.7510 | Crops | 2002174 | 1.386 | NAN |
Walnut_Creek | USA | 41.9322 | −93.7510 | Crops | 2002182 | 2.145 | NAN |
Walnut_Creek | USA | 41.9322 | −93.7510 | Crops | 2002189 | 2.880 | NAN |
SudOuest | France | 43.5063 | 1.2375 | Crops | 2002189 | 1.228 | VALERI |
Alpilles2 | France | 43.8104 | 4.7146 | Crops | 2002204 | 1.054 | VALERI |
SEVI | USA | 34.3509 | −106.6899 | Shrubs | 2002207 | 0.121 | BigFoot |
Appomattox | Canada | 37.2183 | −78.8838 | Mixed F. | 2002217 | 1.89 | US EPA |
SEVI | USA | 34.3509 | −106.6899 | Shrubs | 2002234 | 0.311 | BigFoot |
SEVI | USA | 34.3509 | −106.6899 | Shrubs | 2002252 | 0.402 | BigFoot |
METL | USA | 44.4508 | −121.5730 | NLF | 2002267 | 1.906 | BigFoot |
Fundulea | Romania | 44.4060 | 26.5832 | Crops | 2003144 | 0.913 | VALERI |
SEVI | USA | 34.3509 | −106.6899 | Shrubs | 2003174 | 0.061 | BigFoot |
Barrax | Spain | 39.0728 | −2.1040 | Crops | 2003193 | 0.965 | VALERI |
SEVI | USA | 34.3509 | −106.6899 | Shrubs | 2003209 | 0.047 | BigFoot |
SEVI | USA | 34.3509 | −106.6899 | Shrubs | 2003258 | 0.05 | BigFoot |
Plan_De_Dieu | France | 44.1987 | 4.9481 | Crops | 2004189 | 0.469 | VALERI |
Barrax | Spain | 39.0728 | −2.1040 | Crops | 2004196 | 0.553 | VALERI |
Barrax2 | Spain | 39.0281 | −2.0743 | Crops | 2005194 | 0.267 | EOLAB |
Barrax | Spain | 39.0728 | −2.1040 | Crops | 2005194 | 0.27 | VALERI |
Utiel | Spain | 39.5807 | −1.2646 | Crops | 2006204 | 0.491 | SMOS |
Jarvselja | Estonia | 58.2987 | 27.2623 | Mixed F. | 2007199 | 2.730 | VALERI |
Barrax | Spain | 39.0728 | −2.1040 | Crops | 2009173 | 0.558 | VALERI |
SouthWest_2 | France | 43.4471 | 1.1451 | Crops | 2013191 | 0.490 | Imagines |
SouthWest_1 | France | 43.5511 | 1.0889 | Crops | 2013191 | 0.810 | Imagines |
SouthWest_2 | France | 43.4471 | 1.1451 | Crops | 2013207 | 0.670 | Imagines |
SouthWest_2 | France | 43.4471 | 1.1451 | Crops | 2013230 | 1.620 | Imagines |
SouthWest_1 | France | 43.5511 | 1.0889 | Crops | 2013230 | 1.080 | Imagines |
SouthWest_2 | France | 43.4471 | 1.1451 | Crops | 2013247 | 1.790 | Imagines |
SouthWest_1 | France | 43.5511 | 1.0889 | Crops | 2013247 | 1.100 | Imagines |
Ottawa | Canada | 45.3056 | −75.7673 | Crops | 2014159 | 1.030 | Imagines |
Rosasco | Italy | 45.2530 | 8.5620 | Crops | 2014184 | 2.620 | Imagines |
Ottawa | Canada | 45.3056 | −75.7673 | Crops | 2014187 | 1.820 | Imagines |
Pshenichne | Ukraine | 50.0766 | 30.2322 | Crops | 2014212 | 2.010 | Imagines |
Barrax-LasTiesas | Spain | 39.0544 | −2.1007 | Crops | 2015147 | 0.740 | Imagines |
AHSPECT-MTO | France | 43.5728 | 1.3745 | Crops | 2015173 | 0.550 | Imagines |
AHSPECT-URG | France | 43.6397 | −0.4340 | Crops | 2015174 | 1.390 | Imagines |
AHSPECT-PEY | France | 43.6662 | 0.2195 | Crops | 2015174 | 0.900 | Imagines |
Pshenichne | Ukraine | 50.0766 | 30.2322 | Crops | 2015174 | 1.370 | Imagines |
AHSPECT-CRE | France | 43.9936 | −0.0469 | Crops | 2015175 | 1.510 | Imagines |
AHSPECT-SAV | France | 43.8242 | 1.1749 | Crops | 2015176 | 0.650 | Imagines |
AHSPECT-CON | France | 43.9743 | 0.3360 | Crops | 2015176 | 0.770 | Imagines |
Pshenichne | Ukraine | 50.0766 | 30.2322 | Crops | 2015188 | 1.860 | Imagines |
Pshenichne | Ukraine | 50.0766 | 30.2322 | Crops | 2015204 | 1.470 | Imagines |
Barrax-LasTiesas | Spain | 39.0544 | −2.1007 | Crops | 2016194 | 0.464 | Imagines |
Moncada | Spain | 39.5205 | −0.3870 | Crops | 2017142 | 0.810 | EOLAB |
Moncada | Spain | 39.5205 | −0.3870 | Crops | 2017199 | 0.570 | EOLAB |
Model | Parameter | Description | Unit | Step Length | Range |
---|---|---|---|---|---|
PROSPECT | N | Leaf structure | Unitless | 0.5 | 1–4 |
Cab | Chlorophyll concentration | μg cm−2 | 15 | 15–90 | |
Cw | Equivalent water thickness | cm | 0.015 | 0.005–0.035 | |
Cm | Leaf dry matter content | g cm−2 | 0.01 | 0.001–0.03 | |
Car | Carotenoid content | μg cm−2 | / | 6 | |
Cbrown | Brown pigment content | Unitless | / | 0.2 | |
SAIL | LAI | Leaf area index | m2 m−2 | 0.2 | 0–7 |
ALA | Mean leaf inclination | ° | 30 | 0–90 | |
Soil brightness | Unitless | 0.2 | 0–1 | ||
Hots | Hot spot parameter | m m−1 | 0.03 | 0.01–0.1 | |
Solar zenith angle | ° | 9 | 0–72 | ||
Sensor zenith angle | ° | 9 | 0–72 | ||
Relative azimuth angle | ° | 15 | 0–180 |
Input of 6S | Parameters Setting |
---|---|
geometry | read directly from the LUT simulated by PROSAIL |
atmospheric mode | mid-latitude summer |
aerosol mode | continental aerosol |
aerosol optical depth (AOD) | input the AOD at 550nm: 0.01–0.61 |
sensor height | −1000 represents satellite observation |
spectral conditions of sensor | SRFs of multiple sensors are embedded in 6S, where 42–48 represent bands 1–7 of MODIS |
surface characteristics | read directly from the LUT simulated by PROSAIL |
Error Statistics | N | r | RMSE | MAE |
---|---|---|---|---|
MODIS LAI | 50 | 0.7607 | 0.8239 | 0.5311 |
DBN_LAI_TOC | 50 | 0.8063 | 0.7669 | 0.5527 |
DBN_LAI_TOA | 50 | 0.7852 | 0.5191 | 0.3865 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Ma, Y.; Meng, X.; Sun, L.; Jia, C.; Jin, S.; Li, H. Retrieval of the Leaf Area Index from MODIS Top-of-Atmosphere Reflectance Data Using a Neural Network Supported by Simulation Data. Remote Sens. 2022, 14, 2456. https://doi.org/10.3390/rs14102456
Wang W, Ma Y, Meng X, Sun L, Jia C, Jin S, Li H. Retrieval of the Leaf Area Index from MODIS Top-of-Atmosphere Reflectance Data Using a Neural Network Supported by Simulation Data. Remote Sensing. 2022; 14(10):2456. https://doi.org/10.3390/rs14102456
Chicago/Turabian StyleWang, Weiyan, Yingying Ma, Xiaoliang Meng, Lin Sun, Chen Jia, Shikuan Jin, and Hui Li. 2022. "Retrieval of the Leaf Area Index from MODIS Top-of-Atmosphere Reflectance Data Using a Neural Network Supported by Simulation Data" Remote Sensing 14, no. 10: 2456. https://doi.org/10.3390/rs14102456
APA StyleWang, W., Ma, Y., Meng, X., Sun, L., Jia, C., Jin, S., & Li, H. (2022). Retrieval of the Leaf Area Index from MODIS Top-of-Atmosphere Reflectance Data Using a Neural Network Supported by Simulation Data. Remote Sensing, 14(10), 2456. https://doi.org/10.3390/rs14102456