Evaluation of the Moso Bamboo Age Determination Based on Laser Echo Intensity
Abstract
:1. Introduction
2. Study Area
3. Methodology
3.1. Data Collection and Pre-Processing
3.2. Laser Echo Intensity Correction
3.3. Laser Intensity-Culm Section Model
3.3.1. Analysis of Laser Intensity of Moso Bamboo Culms
3.3.2. Construction of Laser Intensity-Culm Section Models
3.4. Bamboo Age Determination
4. Results
4.1. Intensity Correction Results
4.2. Validation of Bamboo Age Determination Method
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rashidi, M.; Mohammadi, M.; Sadeghlou Kivi, S.; Abdolvand, M.M.; Truong-Hong, L.; Samali, B. A Decade of modern bridge monitoring using terrestrial laser scanning: Review and future directions. Remote Sens. 2020, 12, 3796. [Google Scholar] [CrossRef]
- Liang, X.; Kankare, V.; Hyyppä, J.; Wang, Y.; Kukko, A.; Haggrén, H.; Yu, X.; Kaartinen, H.; Jaakkola, A.; Guan, F.; et al. Terrestrial laser scanning in forest inventories. ISPRS J. Photogramm. Remote Sens. 2016, 115, 63–77. [Google Scholar] [CrossRef]
- Liang, X.; Litkey, P.; Hyyppa, J.; Kaartinen, H.; Vastaranta, M.; Holopainen, M. Automatic stem mapping using single-scan terrestrial laser scanning. IEEE Trans. Geosci. Remote Sens. 2012, 50, 661–670. [Google Scholar] [CrossRef]
- Strahler, A.H.; Jupp, D.L.B.; Woodcock, C.E.; Schaaf, C.B.; Yao, T.; Zhao, F.; Yang, X.; Lovell, J.; Culvenor, D.; Newnham, G.; et al. Retrieval of forest structural parameters using a ground-based lidar instrument (Echidna®). Can. J. Remote Sens. 2008, 34, S426–S440. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Strahler, A.H.; Schaaf, C.B.; Jupp, D.L.B.; Yao, T.; Zhao, F.; Wang, Z.; Culvenor, D.S.; Newnham, G.J.; Lovell, J.L. Three-dimensional forest reconstruction and structural parameter retrievals using a terrestrial full-waveform lidar instrument (Echidna®). Remote Sens. Environ. 2013, 135, 36–51. [Google Scholar] [CrossRef]
- Zhu, X.; Skidmore, A.K.; Wang, T.; Liu, J.; Darvishzadeh, R.; Shi, Y.; Premier, J.; Heurich, M. Improving leaf area index (LAI) estimation by correcting for clumping and woody effects using terrestrial laser scanning. Agric. For. Meteorol. 2018, 263, 276–286. [Google Scholar] [CrossRef]
- Danson, F.M.; Hetherington, D.; Morsdorf, F.; Koetz, B.; Allgower, B. Forest canopy gap fraction from terrestrial laser scanning. IEEE Geosci. Remote Sens. Lett. 2007, 4, 157–160. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Guo, Q.; Su, Y.; Tao, S.; Zhao, K.; Xu, G. Retrieving the gap fraction, element clumping index, and leaf area index of individual trees using single-scan data from a terrestrial laser scanner. ISPRS J. Photogramm. Remote Sens. 2017, 130, 308–316. [Google Scholar] [CrossRef]
- Calders, K.; Newnham, G.; Burt, A.; Murphy, S.; Raumonen, P.; Herold, M.; Culvenor, D.; Avitabile, V.; Disney, M.; Armston, J.; et al. Nondestructive estimates of above-ground biomass using terrestrial laser scanning. Methods Ecol. Evol. 2015, 6, 198–208. [Google Scholar] [CrossRef]
- Greaves, H.E.; Vierling, L.A.; Eitel, J.U.H.; Boelman, N.T.; Magney, T.S.; Prager, C.M.; Griffin, K.L. Estimating aboveground biomass and leaf area of low-stature Arctic shrubs with terrestrial LiDAR. Remote Sens. Environ. 2015, 164, 26–35. [Google Scholar] [CrossRef]
- Disney, M.; Burt, A.; Wilkes, P.; Armston, J.; Duncanson, L. New 3D measurements of large redwood trees for biomass and structure. Sci. Rep. 2020, 10, 16721. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.; Qian, C.; Tang, J.; Liu, H.; Fan, X.; Liang, X.; Zhang, H. Improved 3D stem mapping method and elliptic hypothesis-based DBH estimation from terrestrial laser scanning data. Remote Sens. 2020, 12, 352. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Gong, Y.; Sun, Y.; Jiang, J.; Zhang, Y.; Wen, X. Analysis of dynamic forest structures based on hierarchical features extracted from multi-station LiDAR scanning. Environ. Sci. Proc. 2021, 3, 21. [Google Scholar] [CrossRef]
- Puttonen, E.; Lehtomäki, M.; Litkey, P.; Näsi, R.; Feng, Z.; Liang, X.; Wittke, S.; Pandžić, M.; Hakala, T.; Karjalainen, M. A clustering framework for monitoring circadian rhythm in structural dynamics in plants from terrestrial laser scanning time series. Front. Plant Sci. 2019, 10, 486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, W.; Zhou, G.; Chen, G.; Zhou, Y.; Ge, Z.; Niu, Z.; Xu, L.; Shi, Y. Effects of Different Management Practices on the Increase in Phytolith-Occluded Carbon in Moso Bamboo Forests. Front. Plant Sci. 2020, 11, 591852. [Google Scholar] [CrossRef] [PubMed]
- Gratani, L.; Crescente, M.F.; Varone, L.; Fabrini, G.; Digiulio, E. Growth pattern and photosynthetic activity of different bamboo species growing in the Botanical Garden of Rome. Flora 2008, 203, 77–84. [Google Scholar] [CrossRef]
- Li, Z.; Kobayashi, M. Plantation future of bamboo in China. J. For. Res. 2004, 15, 233–242. [Google Scholar] [CrossRef]
- Li, P.; Zhou, G.; Du, H.; Lu, D.; Mo, L.; Xu, X.; Shi, Y.; Zhou, Y. Current and potential carbon stocks in Moso bamboo forests in China. J. Environ. Manag. 2015, 156, 89–96. [Google Scholar] [CrossRef]
- Xiong, W.; Zhou, F.; Hu, C. Determination of age of Phyllostachys pubescens. Sci. Silvae 1965, 10, 87–88. (In Chinese) [Google Scholar]
- Yang, C. Study on age determination of Phyllostachys pubescens. Sci. Silvae 1965, 10, 83–86. (In Chinese) [Google Scholar]
- Xu, X.; Du, H.; Zhou, G.; Ge, H.; Shi, Y.; Zhou, Y.; Fan, W.; Fan, W. Estimation of aboveground carbon stock of Moso bamboo (Phyllostachys heterocycla var. pubescens) forest with a Landsat Thematic Mapper image. Int. J. Remote Sens. 2011, 32, 1431–1448. [Google Scholar] [CrossRef]
- Yan, Y.; Xia, M.; Fan, S.; Zhan, M.; Guan, F. Detecting the competition between Moso bamboos and broad-leaved trees in mixed forests using a terrestrial laser scanner. Forests 2018, 9, 520. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Xu, W. Volume-biomass conversation model of Moso bamboo shoots based on point cloud data. Laser Optoelectron. Prog. 2020, 57, 212803. (In Chinese) [Google Scholar] [CrossRef]
- Li, C.; Cai, Y.; Xiao, L.; Gao, X.; Shi, Y.; Zhou, Y.; Du, H.; Zhou, G. Rhizome extension characteristics, structure and carbon storage relationships with culms in a 10-year moso bamboo reforestation period. Forest Ecol. Manag. 2021, 498, 119556. [Google Scholar] [CrossRef]
- Yan, W.Y.; Shaker, A.; Habib, A.; Kersting, A.P. Improving classification accuracy of airborne LiDAR intensity data by geometric calibration and radiometric correction. ISPRS J. Photogramm. Remote Sens. 2012, 67, 35–44. [Google Scholar] [CrossRef]
- Coren, F.; Sterzai, P. Radiometric correction in laser scanning. Int. J. Remote Sens. 2006, 27, 3097–3104. [Google Scholar] [CrossRef]
- Höfle, B.; Pfeifer, N. Correction of laser scanning intensity data: Data and model-driven approaches. ISPRS J. Photogramm. Remote Sens. 2007, 62, 415–433. [Google Scholar] [CrossRef]
- Kaasalainen, S.; Krooks, A.; Kukko, A.; Kaartinen, H. Radiometric calibration of terrestrial laser scanners with external reference targets. Remote Sens. 2009, 1, 144–158. [Google Scholar] [CrossRef] [Green Version]
- Errington, A.F.C.; Daku, B.L.F. Temperature compensation for radiometric correction of terrestrial LiDAR intensity data. Remote Sens. 2017, 9, 356. [Google Scholar] [CrossRef] [Green Version]
- Tan, K.; Cheng, X. Intensity data correction based on incidence angle and distance for terrestrial laser scanner. J. Appl. Remote Sens. 2015, 9, 094094. [Google Scholar] [CrossRef]
- Tan, K.; Cheng, X. Distance effect correction on TLS intensity data using naturally homogeneous targets. IEEE Geosci. Remote Sens. Lett. 2020, 17, 499–503. [Google Scholar] [CrossRef]
- Tan, K.; Zhang, W.; Dong, Z.; Cheng, X.; Cheng, X. Leaf and wood separation for individual trees using the intensity and density data of terrestrial laser scanners. IEEE Trans. Geosci. Remote Sens. 2021, 59, 7038–7049. [Google Scholar] [CrossRef]
- Xu, T.; Xu, L.; Yang, B.; Li, X.; Yao, J. Terrestrial laser scanning intensity correction by piecewise fitting and overlap-driven adjustment. Remote Sens. 2017, 9, 1090. [Google Scholar] [CrossRef] [Green Version]
- Carrea, D.; Abellan, A.; Humair, F.; Matasci, B.; Derron, M.H.; Jaboyedoff, M. Correction of terrestrial LiDAR intensity channel using Oren–Nayar reflectance model: An application to lithological differentiation. ISPRS J. Photogramm. Remote Sens. 2016, 113, 17–29. [Google Scholar] [CrossRef]
- Kaasalainen, S.; Jaakkola, A.; Kaasalainen, M.; Krooks, A.; Kukko, A. Analysis of incidence angle and distance effects on terrestrial laser scanner intensity: Search for correction methods. Remote Sens. 2011, 3, 2207–2221. [Google Scholar] [CrossRef] [Green Version]
- Fang, W.; Huang, X.; Zhang, F.; Li, D. Intensity correction of terrestrial laser scanning data by estimating laser transmission function. IEEE Trans. Geosci. Remote Sens. 2015, 53, 942–951. [Google Scholar] [CrossRef]
- Kashani, A.; Olsen, M.; Parrish, C.; Wilson, N. A review of LiDAR radiometric processing: From ad hoc intensity correction to rigorous radiometric calibration. Sensors 2015, 15, 28099–28128. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Cheng, X. Impact of plant surface features on 3D laser point cloud. Laser Optoelectron. Prog. 2020, 57, 242802. (In Chinese) [Google Scholar] [CrossRef]
- Cui, M.; Yin, Y.; Jiang, X.; Liu, B.; Zhang, S. Variation analysis of physical characteristics in Phyllostachy pubescens stem at different growth ages. J. Fujian Coll. For. 2010, 30, 338–343. (In Chinese) [Google Scholar] [CrossRef]
Parameter Name | Parameter Value |
---|---|
Maximum range | 300 m @ 90% albedo |
Wavelength | 532 nm |
Field of view | 360° (horizontal), 270° (vertical) |
Scan rate | 50,000 pts/s |
N1 | N2 | N3 | N4 | RMSE | RMSE | RMSE | RMSE |
---|---|---|---|---|---|---|---|
R ≤ 9.9 m | R > 9.9 m | θ ≤ 45° | θ > 45° | ||||
2 | 2 | 2 | 2 | 4.00 | 2.08 | 6.67 | 22.43 |
3 | 3 | 3 | 3 | 2.31 | 3.15 | 7.38 | 25.81 |
4 | 4 | 4 | 4 | 3.48 | 9.01 | 10.89 | 18.44 |
5 | 5 | 5 | 5 | 1.98 | 8.24 | 11.23 | 27.51 |
6 | 6 | 6 | 6 | 2.71 | 8.91 | 9.08 | 33.37 |
Bamboo Du (I) | Bamboo Du (J) | Difference in Group Means (I-J) | Significance |
---|---|---|---|
1 | 2 | −58.5 | 0.000 |
3 | −50.1 | 0.000 | |
4 | −143.0 | 0.000 | |
2 | 1 | 58.5 | 0.000 |
3 | 8.4 | 0.307 | |
4 | −84.5 | 0.000 | |
3 | 1 | 50.1 | 0.000 |
2 | −8.4 | 0.307 | |
4 | −92.9 | 0.000 | |
4 | 1 | 143.0 | 0.000 |
2 | 84.5 | 0.000 | |
3 | 92.9 | 0.000 |
Type of Correction | Coefficient of Variation | |
---|---|---|
Before Correction | After Correction | |
Distance Correction | 0.0021 | 0.0007 |
Angle Correction | 0.6207 | 0.0094 |
Bamboo Du | Number of Samples | Number of Successful Discriminations | Accuracy Rate (%) |
---|---|---|---|
1 | 30 | 29 | 96.7 |
2 | 30 | 30 | 100.0 |
3 | 30 | 28 | 93.3 |
4 | 30 | 30 | 100.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Fang, Z.; Fan, S.; Deng, S. Evaluation of the Moso Bamboo Age Determination Based on Laser Echo Intensity. Remote Sens. 2022, 14, 2550. https://doi.org/10.3390/rs14112550
Xu W, Fang Z, Fan S, Deng S. Evaluation of the Moso Bamboo Age Determination Based on Laser Echo Intensity. Remote Sensing. 2022; 14(11):2550. https://doi.org/10.3390/rs14112550
Chicago/Turabian StyleXu, Wenbing, Zihao Fang, Suying Fan, and Susu Deng. 2022. "Evaluation of the Moso Bamboo Age Determination Based on Laser Echo Intensity" Remote Sensing 14, no. 11: 2550. https://doi.org/10.3390/rs14112550
APA StyleXu, W., Fang, Z., Fan, S., & Deng, S. (2022). Evaluation of the Moso Bamboo Age Determination Based on Laser Echo Intensity. Remote Sensing, 14(11), 2550. https://doi.org/10.3390/rs14112550