Glacier Mass Balance Pattern and Its Variation Mechanism in the West Kunlun Mountains in Tibetan Plateau
Abstract
:1. Introduction
2. Study Area and Data Used
2.1. Study Area
2.2. Data Used
2.2.1. ICESat/GLAS Altimeter Data
2.2.2. Digital Elevation Model
2.2.3. Second Glacier Inventory of China
2.2.4. Glacier Surface Velocity and Thickness Fields
3. Methodology
3.1. Altimetry-Derived Glacier Surface Elevation Trends
3.2. ICE Flux Divergence and Glacier Mass Balance
4. Results
4.1. Elevation Changes
4.2. Glacier Velocity, Thickness, Flux Divergence, and Mass Balance
5. Discussion
5.1. Glacier Surging
5.2. Climate Changes
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Immerzeel, W.W.; Van Beek, L.P.H.; Bierkens, M.F.P. Climate change will affect the Asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef]
- Jacob, T.; Wahr, J.; Pfeffer, W.T.; Swenson, S. Recent contributions of glaciers and ice caps to sea level rise. Nature 2012, 482, 514–518. [Google Scholar] [CrossRef] [PubMed]
- Wingham, D.J.; Ridout, A.J.; Scharroo, R.; Arthern, R.J.; Shum, C.K. Antarctic elevation change from 1992 to 1996. Science 1998, 282, 456–458. [Google Scholar] [CrossRef]
- Johannessen, O.M.; Khvorostovsky, K.; Miles, M.W.; Bobylev, L.P. Recent icesheet growth in the interior of Greenland. Science 2005, 310, 1013–1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magruder, L.A.; Webb, C.E.; Urban, T.J.; Silverberg, E.C.; Schutz, B.E. ICESat altimetry data product verification at White Sands Space Harbor. IEEE Trans. Geosci. Remote Sens. 2007, 45, 147–155. [Google Scholar] [CrossRef]
- Kääb, A. Glacier volume changes using ASTER satellite stereo and ICESat GLAS laser altimetry. A test study on EdgeØya, Eastern Savalbard. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2823–2830. [Google Scholar] [CrossRef]
- Kääb, A.; Berthier, E.; Nuth, C.; Gardelle, J.; Arnaud, Y. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 2012, 488, 495–498. [Google Scholar] [CrossRef]
- Gardner, A.S.; Moholdt, G.; Cogley, J.G.; Wouters, B.; Arendt, A.A.; Wahr, J.; Berthier, E.; Hock, R.; Pfeffer, W.T.; Kaser, G.; et al. A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009. Science 2013, 340, 852–857. [Google Scholar] [CrossRef] [Green Version]
- Bolch, T.; Kulkarni, A.; Kääb, A.; Huggel, C.; Paul, F.; Cogley, J.G.; Frey, H.; Kargel, J.S.; Fujita, K.; Scheel, M.; et al. The State and Fate of Himalayan Glaciers. Science 2012, 336, 310–314. [Google Scholar] [CrossRef] [Green Version]
- Bolch, T.; Shea, J.M.; Liu, S.; Azam, F.M.; Gao, Y.; Gruber, S.; Immerzeel, W.W.; Kulkarni, A.; Li, H.; Tahir, A.A.; et al. Status and Change of the Cryosphere in the Extended Hindu Kush Himalaya Region. In The Hindu Kush Himalaya Assessment; Wester, P., Mishra, A., Mukherji, A., Shrestha, A., Eds.; Springer: Cham, Switzerland, 2019; pp. 209–255. [Google Scholar] [CrossRef] [Green Version]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B.; et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Wang, Y.; Hou, S.; Huai, B.; An, W.; Pang, H.; Liu, Y. Glacier anomaly over the western Kunlun Mountains, Northwestern Tibetan Plateau, since the 1970s. J. Glaciol. 2018, 64, 624–636. [Google Scholar] [CrossRef] [Green Version]
- Huang, M. The climatic conditions of polar-type glaciers development in china. Chin. Geogr. Sci. 1995, 5, 97–103. [Google Scholar] [CrossRef]
- Shen, Y. An Overview of Glaciers, Retreating Glaciers and Their Impact in the Tibetan Plateau; Cold and Arid Regions Environmental and Engineering Research Institute (CAREERI), Chinese Academy of Sciences (CAS): Lanzhou, China, 2004. [Google Scholar]
- Brun, F.; Wagnon, P.; Berthier, E.; Shea, J.M.; Immerzeel, W.W.; Kraaijenbrink, P.D.A.; Vincent, C.; Reverchon, C.; Shrestha, D.; Arnaud, Y. Ice cliff contribution to the tongue-wide ablation of Changri Nup Glacier, Nepal, central Himalaya. Cryosphere 2018, 12, 3439–3457. [Google Scholar] [CrossRef] [Green Version]
- Bisset, R.R.; Dehecq, A.; Goldberg, D.N.; Huss, M.; Bingham, R.G.; Gourmelen, N. Reversed Surface-Mass-Balance Gradients on Himalayan Debris-Covered Glaciers Inferred from Remote Sensing. Remote Sens. 2020, 12, 1563. [Google Scholar] [CrossRef]
- Wagnon, P.; Brun, F.; Khadka, A.; Berthier, E.; Shrestha, D.; Vincent, C.; Arnaud, Y.; Six, D.; Dehecq, A.; Ménégoz, M.; et al. Reanalysing the 2007–19 glaciological mass-balance series of Mera Glacier, Nepal, Central Himalaya, using geodetic mass balance. J. Glaciol. 2021, 67, 117–125. [Google Scholar] [CrossRef]
- Miles, E.; McCarthy, M.; Dehecq, A.; Kneib, M.; Fugger, S.; Pellicciotti, F. Health and sustainability of glaciers in High Mountain Asia. Nat. Commun. 2021, 12, 2868. [Google Scholar] [CrossRef]
- Zemp, M.; Thibert, E.; Huss, M.; Stumm, D.; Denby, C.R.; Nuth, C.; Nussbaumer, S.U.; Moholdt, G.; Mercer, A.; Mayer, C.; et al. Uncertainties and re-analysis of glacier mass balance measurements Uncertainties and re-analysis of glacier mass balance measurements. Cryosphere Discuss. 2013, 7, 789–839. [Google Scholar] [CrossRef] [Green Version]
- Van Tricht, L.; Huybrechts, P.; Van Breedam, J.; Vanhulle, A.; Van Oost, K.; Zekollari, H. Estimating surface mass balance patterns from unoccupied aerial vehicle measurements in the ablation area of the Morteratsch–Pers glacier complex (Switzerland). Cryosphere 2021, 15, 4445–4464. [Google Scholar] [CrossRef]
- Bhang, K.J.; Schwartz, F.W.; Braun, A. Verification of the vertical error in C-band SRTM DEM using ICESat and Landsat-7, Otter Tail County, MN. IEEE Trans. Geosc. Remote Sens. 2007, 45, 36–44. [Google Scholar] [CrossRef]
- Neckel, N.; Kropacek, J.; Bolch, T.; Hochschild, V. Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements. Environ. Res. Lett. 2014, 9, 014009. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Wu, L.; Guo, L.; Hu, J.; Zhang, X. Estimating the Changes in Glaciers and Glacial Lakes in the Xixabangma Massif, Central Himalayas, between 1974 and 2018 from Multisource Remote Sensing Data. Remote Sens. 2021, 13, 3903. [Google Scholar] [CrossRef]
- Guo, W.; Liu, S.; Yao, X.; Xu, J.; Shangguan, D.; Wu, L.; Zhao, J.; Liu, Q.; Jiang, Z.; Wei, J.; et al. The Second Glacier Inventory Dataset of China (Version 1.0); Cold and Arid Regions Science Data Center: Lanzhou, China, 2014. [Google Scholar] [CrossRef]
- Farinotti, D.; Huss, M.; Fürst, J.J.; Landmann, J.; Machguth, H.; Maussion, F.; Pandit, A. A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nat. Geosci. 2019, 12, 168–173. [Google Scholar] [CrossRef] [Green Version]
- Kääb, A.; Treichler, D.; Nuth, C.; Berthier, E. Brief communication: Contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya. Cryosphere 2015, 9, 557–564. [Google Scholar] [CrossRef] [Green Version]
- Ke, L.; Ding, X.; Song, C. Heterogeneous changes of glaciers over the western Kunlun Mountains based on ICESat and Landsat-8 derived glacier inventory. Remote Sens. Environ. 2015, 168, 13–23. [Google Scholar] [CrossRef]
- Zhang, J.; Fu, B.H.; Wang, L.M.; Maimaiti, A.; Ma, Y.X.; Yan, F. Glacier Changes in the West Kunlun Mountains Revealed by Landsat Data from 1994 to 2016. IOP Conf. Ser. Earth Environ. Sci. 2017, 74, 012002. [Google Scholar] [CrossRef] [Green Version]
- Jansson, P. Effect of uncertainties in measured variables on the calculated mass balance of Storglaciären. Geogr. Ann. Ser. A Phys. Geogr. 1999, 81, 633–642. [Google Scholar] [CrossRef]
- Bao, W.; Liu, S.; Wei, J.; Guo, W. Glacier changes during the past 40 years in the West Kunlun Shan. J. Mt. Sci. 2015, 12, 344–357. [Google Scholar] [CrossRef]
- Yasuda, T.; Furuya, M. Short-term glacier velocity changes at West Kunlun Shan, Northwest Tibet, detected by Synthetic Aperture Radar data. Remote Sens. Environ. 2013, 128, 87–106. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Yao, T.; Zhang, G.; Li, F.; Zheng, G.; Zhou, Y.; Xu, F. Towards ice-thickness inversion: An evaluation of global digital elevation models (DEMs) in the glacierized Tibetan Plateau. Cryosphere 2022, 16, 197–218. [Google Scholar] [CrossRef]
- Millan, R.; Mouginot, J.; Rabatel, A.; Morlighem, M. Ice velocity and thickness of the world’s glaciers. Nat. Geosci. 2022, 15, 124–129. [Google Scholar] [CrossRef]
- Li, C.; Yang, T.; Tian, H. Variation of West Kunlun Mountains glacier during 1990–2011. Prog. Geogr. 2013, 32, 548–559. (In Chinese) [Google Scholar]
- Cao, B.; Guan, W.; Li, K.; Wen, Z.; Han, H.; Pan, B. Area and Mass Changes of Glaciers in the West Kunlun Mountains Based on the Analysis of Multi-Temporal Remote Sensing Images and DEMs from 1970 to 2018. Remote Sens. 2020, 12, 2632. [Google Scholar] [CrossRef]
- Wang, Y.; Hou, S.; An, W.; Pang, H.; Liu, Y. Slight glacier reduction over the northwestern Tibetan Plateau despite significant recent warming. Cryosphere Discuss. 2016. [Google Scholar] [CrossRef] [Green Version]
- Kapnick, S.B.; Delworth, T.L.; Ashfaq, M.; Malyshev, S.; Milly, P.C.D. Snowfall less sensitive to warming in Karakoram than in Himalayas due to a unique seasonal cycle. Nat. Geosci. 2014, 7, 834–840. [Google Scholar] [CrossRef]
Local Glacier ID | Glacier Name | Count of Footprints | dh Trend (m/a) | Glacier Area (km2) | Mean Elevation (m a.s.l) | Mean Slope (degree) | Mean Aspect | Mean Roughness | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Winter | Autumn | Accumulation Area | Ablation Area | On-Glacier Area | Off-Glacier Area | ||||||||
1 | 5Y641H0067 | 353 | — | 0.15 ± 0.14 | 0.19 ± 0.10 | −0.07 ± 0.14 | −0.05 ± 0.11 | −0.03 ± 0.04 | 44.195 | 6049.8 | 8.2826 | 232.3274 | 1.0160 |
2 | West Yulong 5Y641G0068 | 628 | — | 0.28 ± 0.10 | 0.19 ± 0.09 | — | 0.20 ± 0.09 | −0.03 ± 0.04 | 120.5 | 6097.7 | 7.4202 | 120.5910 | 1.0154 |
3 | Duota 5Z433C0020 | 458 | — | 0.23 ± 0.11 | 0.09 ± 0.12 | 1.32 ± 0.19 | 0.31 ± 0.11 | −0.03 ± 0.04 | 80.996 | 6040.4 | 8.3379 | 192.9959 | 1.0185 |
4 | Gongxing 5Z433C0027 | 381 | — | 0.26 ± 0.20 | 0.04 ± 0.16 | −1.16 ± 0.75 | 0.23 ± 0.21 | −0.03 ± 0.04 | 108.183 | 5972.2 | 10.8266 | 130.1602 | 1.0283 |
5 | Kunlun 5Y641G0055 | 623 | 0.34 ± 0.11 | 0.07 ± 0.16 | 0.27 ± 0.09 | 0.24 ± 0.15 | 0.35 ± 0.09 | −0.03 ± 0.04 | 199.088 | 6101.4 | 10.0992 | 193.6727 | 1.0242 |
6 | Zhongfeng 5Z433D0008 | 706 | −0.68 ± 0.27 | −0.39 ± 0.15 | −0.35 ± 0.13 | −0.16 ± 0.17 | −0.39 ± 0.11 | −0.03 ± 0.04 | 237.458 | 6150.3 | 9.7051 | 145.5690 | 1.0242 |
7 | 5Y641G0038 | 206 | — | 0.26 ± 0.27 | 0.36 ± 0.20 | — | 0.45 ± 0.19 | −0.03 ± 0.04 | 90.256 | 6152.2 | 11.1139 | 158.3028 | 1.0282 |
8 ** | 5Y641H0064,65,66, and 5Y641G0088 | 119 | 0.01 ± 0.32 | 0.35 ± 0.24 | 0.12 ± 0.33 | 0.07 ± 0.20 | 0.23 ± 0.19 | −0.03 ± 0.04 | 9.363 | 5935.2 | 13.8402 | 230.9515 | 1.0389 |
9 | 5Y641G0045 | 123 | — | 0.66 ± 0.32 | 0.40 ± 0.29 | 0.31 ± 0.42 | 0.63 ± 0.25 | −0.03 ± 0.04 | 8.517 | 6018.8 | 14.9394 | 162.0498 | 1.0454 |
10 * | 5Y641F0047 | 109 | — | 0.34 ± 0.22 | 0.28 ± 0.16 | — | 0.28 ± 0.16 | 0.04 ± 0.03 | 18.810 | 6047.6 | 11.3647 | 81.2169 | 1.0265 |
11 | 5Y641F0049 | 262 | −0.17 ± 0.32 | −0.21 ± 0.25 | 0.02 ± 0.18 | −0.52 ± 0.11 | −0.20 ± 0.19 | 0.04 ± 0.03 | 41.892 | 5838.5 | 6.5255 | 160.8932 | 1.0101 |
12 | 5Y641F0048 | 139 | 0.40 ± 0.26 | 0.02 ± 0.17 | 0.12 ± 0.22 | 0.05 ± 0.15 | 0.14 ± 0.15 | 0.04 ± 0.03 | 6.840 | 5872.8 | 9.5336 | 91.6888 | 1.0172 |
13 | Guliya 5Z431C0022 | 732 | 0.13 ± 0.10 | 0.18 ± 0.06 | 0.28 ± 0.06 | 0.08 ± 0.10 | 0.18 ± 0.06 | 0.04 ± 0.03 | 111.371 | 5989.3 | 6.5990 | 245.4506 | 1.0102 |
14 * | 5Y641F0046 | 163 | 1.01 ± 0.19 | 0.75 ± 0.10 | 0.83 ± 0.10 | — | 0.83 ± 0.10 | 0.04 ± 0.03 | 84.9704 | 6160.9 | 5.4266 | 115.4411 | 1.0065 |
15 | 5Y641F0023 | 506 | 0.32 ± 0.14 | 0.29 ± 0.12 | 0.11 ± 0.10 | 0.63 ± 0.20 | 0.29 ± 0.09 | 0.04 ± 0.03 | 50.92 | 5956.3 | 7.7895 | 125.7124 | 1.0151 |
16 | 5Y636J0100 | 210 | 0.25 ± 0.15 | 0.04 ± 0.16 | 0.15 ± 0.11 | — | 0.15 ± 0.11 | 0.04 ± 0.03 | 15.724 | 6122.0 | 7.5922 | 135.3 | 1.0143 |
17 | 5Y636J0098 | 148 | 0.04 ± 0.25 | −0.05 ± 0.18 | 0.23 ± 0.14 | −0.39 ± 0.31 | −0.00 ± 0.15 | 0.04 ± 0.03 | 12.247 | 5953.8 | 9.5841 | 155.2660 | 1.0168 |
18 | Overall *** | 5866 | 0.17 ± 0.21 | 0.19 ± 0.17 | 0.20 ± 0.15 | 0.03 ± 0.24 | 0.21 ± 0.14 | 0.00 ± 0.04 | 1241.33 | 6027.01 | 9.3518 | 157.5053 | 1.0209 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, L.; Yang, X.; Qi, J.; Chen, W. Glacier Mass Balance Pattern and Its Variation Mechanism in the West Kunlun Mountains in Tibetan Plateau. Remote Sens. 2022, 14, 2634. https://doi.org/10.3390/rs14112634
Gao L, Yang X, Qi J, Chen W. Glacier Mass Balance Pattern and Its Variation Mechanism in the West Kunlun Mountains in Tibetan Plateau. Remote Sensing. 2022; 14(11):2634. https://doi.org/10.3390/rs14112634
Chicago/Turabian StyleGao, Le, Xiaofeng Yang, Jifeng Qi, and Wenfeng Chen. 2022. "Glacier Mass Balance Pattern and Its Variation Mechanism in the West Kunlun Mountains in Tibetan Plateau" Remote Sensing 14, no. 11: 2634. https://doi.org/10.3390/rs14112634
APA StyleGao, L., Yang, X., Qi, J., & Chen, W. (2022). Glacier Mass Balance Pattern and Its Variation Mechanism in the West Kunlun Mountains in Tibetan Plateau. Remote Sensing, 14(11), 2634. https://doi.org/10.3390/rs14112634