Monitoring Raptor Movements with Satellite Telemetry and Avian Radar Systems: An Evaluation for Synchronicity
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Overall Satellite Telemetry and Radar Track Syncronization
3.2. Performance of the AR1 Radar
3.3. Performance of the AR2-1 Radar
3.4. Performance of the AR2-2 Radar
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diehl, R.H. The airspace is habitat. Trends Ecol. Evol. 2013, 28, 377–379. [Google Scholar] [CrossRef] [PubMed]
- Womack, A.M.; Bohannan, B.J.M.; Green, J.L. Biodiversity and biogeography of the atmosphere. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 3645–3653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambertucci, S.A.; Shepard, E.L.C.; Wilson, R.P. Human-wildlife conflicts in a crowded airspace. Science 2015, 348, 502–504. [Google Scholar] [CrossRef] [PubMed]
- Davy, C.M.; Ford, A.T.; Fraser, K.C. Aeroconservation for the fragmented skies. Conserv. Lett. 2017, 10, 773–780. [Google Scholar] [CrossRef]
- Kunz, T.H.; Gauthreaux, S.A., Jr.; Hristov, N.I.; Horn, J.W.; Jones, G.; Kalko, E.K.V.; Larkin, R.P.; McCracken, G.F.; Swartz, S.M.; Srygley, R.B.; et al. Aeroecology: Probing and modeling the aerospace. Integr. Comp. Biol. 2008, 48, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Fancy, S.G.; Pank, L.F.; Whitten, K.R.; Regelin, W.L. Seasonal movements of caribou in arctic Alaska as determined by satellite. Can. J. Zool. 1989, 67, 644–650. [Google Scholar] [CrossRef] [Green Version]
- Jouventin, P.; Weimerskirsch, H. Satellite tracking of wandering albatross. Nature 1990, 343, 746–748. [Google Scholar] [CrossRef]
- Andrews, R.D.; Pitman, R.L.; Ballance, L.T. Satellite tracking reveals distinct movement patterns of Type B and Type C killer whales in the southern Ross Sea, Antarctica. Polar Biol. 2008, 31, 1461–1468. [Google Scholar] [CrossRef]
- Martell, M.S.; Bierregaard, R.O., Jr.; Washburn, B.E.; Elliott, J.E.; Henny, C.J.; Kennedy, R.; MacLeod, I. The spring migration of adult North American Ospreys. J. Raptor Res. 2014, 48, 309–324. [Google Scholar] [CrossRef] [Green Version]
- Washburn, B.E.; Martell, M.S.; Bierregaard, R.O., Jr.; Henny, C.J.; Dorr, B.S.; Olexa, T.J. Wintering ecology of adult North American Ospreys. J. Raptor Res. 2014, 48, 325–333. [Google Scholar] [CrossRef] [Green Version]
- Rutledge, M.E.; Moorman, C.E.; Washburn, B.E.; DePerno, C.S. Analyzing resident Canada goose movements to reduce the risk of goose-aircraft collisions at suburban airports. J. Wildl. Manag. 2015, 79, 1185–1191. [Google Scholar] [CrossRef] [Green Version]
- Dorak, B.E.; Ward, M.P.; Eichholz, M.W.; Washburn, B.E.; Lyons, T.P.; Hagy, H.M. Survival and habitat selection of Canada geese during autumn and winter in metropolitan Chicago, USA. Condor Ornithol. Appl. 2017, 119, 787–799. [Google Scholar] [CrossRef] [Green Version]
- Holland, A.E.; Byrne, M.E.; Bryan, A.L.; DeVault, T.L.; Rhoades, O.E., Jr.; Beasley, J.C. Fine-scale assessment of home ranges and activity patterns for resident black vultures (Coragyps airatus) and turkey vultures (Cathartes aura). PLoS ONE 2017, 12, e0179819. [Google Scholar] [CrossRef] [PubMed]
- Lack, D.; Varley, G.C. Detection of birds by radar. Nature 1945, 156, 446. [Google Scholar] [CrossRef]
- Eastwood, E. Radar Ornithology; Meuthuen Press: London, UK, 1967.
- Cooper, B.A.; Day, R.H.; Ritchie, R.J.; Cranor, C.L. An improved marine radar system for studies of bird migration. J. Field Ornithol. 1991, 62, 367–377. [Google Scholar]
- Deng, J.; Frederick, P. Nocturnal flight behavior of waterbirds in close proximity to a transmission power line in the Florida Everglades. Waterbirds 2001, 24, 419–424. [Google Scholar] [CrossRef]
- Hamer, T.E.; Cooper, B.A.; Ralph, C.J. Use of radar to study the movements of Marbled Murrelets at inland sites. Northwest. Nat. 1995, 76, 73–78. [Google Scholar] [CrossRef]
- Bertram, D.F.; Cowen, L.; Burger, A.E. Use of radar for monitoring colonial burrow-nesting seabirds. J. Field Ornithol. 1999, 70, 145–157. [Google Scholar]
- Gauthreaux, S.A., Jr.; Schmidt, P.M. Application of radar technology to monitor hazardous birds at airports. In Wildlife in Airport Environments: Preventing Animal–Aircraft Collisions through Science-Based Management; DeVault, T.L., Blackwell, B.F., Belant, J.L., Eds.; Johns Hopkins University Press: Baltimore, MD, USA, 2013; pp. 141–151. [Google Scholar]
- Beason, R.C.; Nohara, T.J.; Weber, P. Beware the Boojum: Caveats and strengths of avian radar. Hum.-Wildl. Interact. 2013, 7, 16–46. [Google Scholar]
- Harmata, A.R.; Podruzny, K.M.; Zelenak, J.L.; Morrison, M.L. Using marine surveillance radar to study bird movements and impact assessment. Wildl. Soc. Bull. 1999, 24, 44–52. [Google Scholar]
- Desholm, M.; Kahler, J. Avian collision risk at an offshore wind farm. Biol. Lett. 2005, 1, 296–298. [Google Scholar] [CrossRef] [PubMed]
- Krijgsveld, K.L.; Akershock, K.; Schenk, F.; Djik, F.; Dirksen, S. Collision risk of birds with modern large wind turbines. Ardea 2009, 97, 357–366. [Google Scholar] [CrossRef]
- May, R.; Steinheim, Y.; Kvaløy, R.; Vang, R.; Hannssen, F. Performance test of an off-the-shelf automated radar tracking system. Ecol. Evol. 2017, 7, 5930–5938. [Google Scholar] [CrossRef] [PubMed]
- van Belle, J.V.; Shamoun-Baranes, J.; Loon, E.V.; Bouten, W. An operational model predicting autumn bird migration intensities for flight safety. J. Appl. Ecol. 2007, 44, 864–874. [Google Scholar] [CrossRef]
- Coates, P.S.; Casazza, M.L.; Halstead, B.J.; Fleskes, J.P.; Laughlin, J.A. Using avian radar to examine relationships among avian activity, bird strikes, and meteorological factors. Hum.-Wildl. Interact. 2011, 5, 249–268. [Google Scholar]
- Gerringer, M.B.; Lima, S.L.; DeVault, T.L. Evaluation of an avian radar system in a Midwestern landscape. Wildl. Soc. Bull. 2016, 40, 150–159. [Google Scholar] [CrossRef] [Green Version]
- Phillips, A.C.; Majumdar, S.; Washburn, B.E.; Mayer, D.; Swearingin, R.; Herricks, E.; Guerrant, T.L.; Beckerman, S.F.; Pullins, C.K. Efficacy of avian radar systems for tracking birds on the airfield of a large international airport. Wildl. Soc. Bull. 2018, 42, 476–477. [Google Scholar] [CrossRef] [Green Version]
- Robinson, W.D.; Bowlin, M.S.; Bisson, I.; Shamoun-Barnes, J.; Thorup, K.; Diehl, R.H.; Kunz, T.H.; Mabey, S.; Winkler, D.W. Integrating concepts and technologies to advance the study of bird migration. Front. Ecol. Environ. 2010, 8, 354–361. [Google Scholar] [CrossRef] [Green Version]
- Bridge, E.S.; Thorup, K.; Bowlin, M.S.; Chilson, P.B.; Diehl, R.H.; Fleron, R.W.; Harti, P.; Kays, R.; Kelly, J.F.; Robinson, W.D.; et al. Technology on the move: Recent and forthcoming innovations for tracking migratory birds. Bioscience 2011, 61, 698. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, C.; Dokter, A.; Schmid, B.; Scacco, M.; Verlinden, L.; Bäckman, J.; Haase, G.; Dell’Omo, G.; Chapman, J.W.; Leijnse, H.; et al. Field validation of radar systems for monitoring bird migration. J. Appl. Ecol. 2018, 55, 2552–2564. [Google Scholar] [CrossRef]
- Beason, R.C.; Humphrey, J.S.; Meyers, N.E.; Avery, M.L. Synchronous monitoring of vulture movements with satellite telemetry and avian radar. J. Zool. 2010, 282, 157–162. [Google Scholar] [CrossRef] [Green Version]
- Brand, M.; Key, G.; Herricks, E.; King, R.; Nohara, J.T.; Gauthreaux, S., Jr.; Begier, M.; Bowser, C.; Beason, R.; Swift, J.; et al. Integration and Validation of Avian Radars (IVAR). Environmental Security Technology Certification Program Final Report for Project SI–2000723; SPAWAR Systems Center-Pacific: San Diego, CA, USA, 2011. [Google Scholar]
- Dokter, A.M.; Baptist, M.J.; Ens, B.J.; Krijgsveld, K.L.; van Loon, E. Bird radar validation in the field by time-referenced line-transect surveys. PLoS ONE 2013, 8, e74129. [Google Scholar] [CrossRef] [PubMed]
- Chicago Department of Aviation. Chicago O’Hare International Airport Wildlife Hazard Management Plan; City of Chicago, Department of Aviation, Chicago O’Hare International Airport: Chicago, IL, USA, 2014.
- McMillen, D.P. Airport expansions and property values: The case of Chicago’s O’Hare Airport. J. Urban Econ. 2004, 55, 627–640. [Google Scholar] [CrossRef]
- Airports Council International. Passenger Traffic 2010 Final; Airports Council International: Montréal, QC, Canada, 2011; Available online: http://www.aci.aero/Data’Centre/Annual-Traffic-Data/Passengers/2010-final (accessed on 2 April 2018).
- Calsyn, D.E.; Reinhardt, L.P.; Ryan, K.A.; Wollenweber, J.L. Soil Survey of Cook County, Illinois; U.S. Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 2012.
- Bloom, P.H.; Clark, W.S.; Kidd, J.W. Capture techniques. In Raptor Research and Management Techniques; Bird, D.M., Bildstein, K.L., Eds.; Hancock House Publishers: Blaine, WA, USA, 2007; pp. 221–236. [Google Scholar]
- Preston, C.R.; Beane, R.D. Account 52: Red-tailed hawk (Buteo jamaicensis). In The Birds of North America; Poole, A., Gill, F., Eds.; The Academy of Natural Sciences: Philadelphia, PA, USA; The American Ornithologists’ Union: Washington, DC, USA, 2009.jamaicensis). In The Birds of North America; Poole, A., Gill, F., Eds.; The American Ornithologists’ Union: Washington, DC, USA; The Academy of Natural Sciences: Philadelphia, PA, USA, 2009. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2015; Available online: http://www.R-project.org/ (accessed on 8 March 2021).
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Mazerolle, M.J. AICcmodaveg: Model Selection and Mulitmodel Inference Based on (Q)AIC(c). R Package Version 2.0-3. 2015. Available online: http://CRAN.R-project.org/package=AICcmodavg/ (accessed on 12 June 2018).
- Symonds, M.R.E.; Moussaili, A. A brief guide to model selection, multimodel inference, and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 2011, 65, 13–21. [Google Scholar] [CrossRef]
- Fox, J. Effects displays in R for generalized linear models. J. Stat. Softw. 2003, 8, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, K.V.; Kennedy, J.A.; Dettmers, R.; Ford, R.P.; Reynolds, D.; Alexander, J.D.; Beardmore, C.J.; Blancher, P.J.; Bogart, R.E.; Butcher, G.S.; et al. Partners in Flight Landbird Conservation Plan: 2016 Revision for Canada and Continental United States; Partners in Flight Science Committee: Washington, DC, USA, 2016. [Google Scholar]
- Dolbeer, R.A.; Wright, S.E. Safety management systems: How useful will the FAA National Wildlife Strike Database be? Hum.–Wildl. Confl. 2009, 3, 167–178. [Google Scholar]
- DeVault, T.L.; Belant, J.L.; Blackwell, B.F.; Seamans, T.W. Interspecific variation in wildlife hazards to aircraft: Implications for airport wildlife management. Wild. Soc. Bull. 2011, 35, 394–402. [Google Scholar] [CrossRef] [Green Version]
- DeVault, T.L.; Blackwell, B.F.; Seamans, T.W.; Begier, M.J.; Kougher, J.D.; Washburn, J.E.; Miller, P.R.; Dolbeer, R.A. Estimating interspecific economic risk of bird strikes with aircraft. Wildl. Soc. Bull. 2018, 42, 94–101. [Google Scholar] [CrossRef] [Green Version]
- Dolbeer, R.A.; Begier, M.J.; Miller, P.R.; Weller, J.R.; Anderson, A.L. Wildlife Strikes to Civilian Aircraft in the United States 1990−2020; Federal Aviation Administration, Wildlife Aircraft Strike Database Serial Report Number 27; Department of Transportation, Federal Aviation Administration, Airport Safety: Washington, DC, USA, 2021.
- Nohara, T.J.; Beason, R.C.; Weber, P. Using radar cross-section to enhance situational awareness tools for airport avian radars. Hum.-Wildl. Interact. 2011, 5, 210–217. [Google Scholar]
- McCann, D.L.; Bell, P.S. Visualizing the aspect-dependent radar cross section of seabirds over a tidal energy test site using a commercial marine radar system. Int. J. Mar. Energy 2017, 17, 56–63. [Google Scholar] [CrossRef]
- Desholm, M.; Fox, A.D.; Beasley, P.D.L.; Kahlert, J. Remote techniques for counting and estimating the number of bird-wind turbine collisions at sea: A review. Ibis 2006, 148, 76–89. [Google Scholar] [CrossRef]
- Plonczkier, P.; Simms, I.C. Radar monitoring of migrating pink-footed geese: Behavioural responses to offshore wind farm development. J. Appl. Ecol. 2012, 49, 1187–1194. [Google Scholar] [CrossRef]
- Urmy, S.S.; Warren, J.D. Quantitative ornithology with a commercial marine radar: Standard-target calibration, target detection and tracking, and measurements of echoes from individuals and flocks. Methods Ecol. Evol. 2017, 8, 800–809. [Google Scholar] [CrossRef] [Green Version]
- Stepanian, P.M.; Chilson, P.B.; Kelly, J.F. An introduction to radar image processing in ecology. Methods Ecol. Evol. 2014, 5, 730–738. [Google Scholar] [CrossRef] [Green Version]
Model | K a | LL b | AICc c | ∆AICc d | wi e | Cumulative AICc Weight |
---|---|---|---|---|---|---|
AR1 radar | ||||||
Distance + Angle | 3 | –156.72 | 319.46 | 0.00 | 0.30 | 0.30 |
Distance + Altitude | 3 | –157.10 | 320.22 | 0.76 | 0.21 | 0.51 |
Distance | 2 | –158.51 | 321.03 | 1.57 | 0.14 | 0.65 |
AR2–1 radar | ||||||
Altitude | 2 | –37.48 | 79.00 | 0.00 | 0.23 | 0.23 |
Distance | 2 | –37.76 | 79.56 | 0.56 | 0.17 | 0.40 |
Altitude + Angle | 3 | –37.44 | 80.97 | 1.97 | 0.09 | 0.49 |
Distance + Altitude | 3 | –37.45 | 80.99 | 1.99 | 0.08 | 0.57 |
AR2–2 radar | ||||||
Angle | 2 | –16.68 | 37.67 | 0.00 | 0.24 | 0.24 |
Angle + Temperature | 3 | –16.20 | 39.03 | 1.35 | 0.12 | 0.36 |
All radars combined | ||||||
Distance + Angle | 3 | –217.57 | 441.14 | 0.00 | 0.30 | 0.30 |
Distance | 2 | –218.86 | 441.73 | 0.58 | 0.22 | 0.52 |
Distance + Altitude + Angle | 4 | –217.22 | 442.47 | 1.32 | 0.15 | 0.68 |
Distance + Altitude | 3 | –218.50 | 443.00 | 1.86 | 0.12 | 0.80 |
Parameter | Estimate | SE | LCL | UCL |
---|---|---|---|---|
AR1 radar unit | ||||
Intercept | –1.56 | 0.70 | –2.93 | –0.19 |
Distance | <–0.001 | <0.001 | <–0.001 | <–0.001 |
AR2–1 radar unit | ||||
Intercept | –2.16 | 0.62 | –3.70 | –0.62 |
Distance | <–0.001 | <0.001 | <–0.001 | <–0.001 |
Altitude | –0.01 | 0.01 | –0.02 | 0.00 |
AR2–2 radar unit | ||||
Intercept | –7.54 | 3.41 | –14.22 | –0.86 |
Angle | 0.85 | 0.53 | –0.19 | 1.90 |
All radars combined | ||||
Intercept | –2.12 | 0.27 | –3.14 | –1.10 |
Distance | <–0.001 | <0.001 | <–0.001 | <–0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Washburn, B.E.; Maher, D.; Beckerman, S.F.; Majumdar, S.; Pullins, C.K.; Guerrant, T.L. Monitoring Raptor Movements with Satellite Telemetry and Avian Radar Systems: An Evaluation for Synchronicity. Remote Sens. 2022, 14, 2658. https://doi.org/10.3390/rs14112658
Washburn BE, Maher D, Beckerman SF, Majumdar S, Pullins CK, Guerrant TL. Monitoring Raptor Movements with Satellite Telemetry and Avian Radar Systems: An Evaluation for Synchronicity. Remote Sensing. 2022; 14(11):2658. https://doi.org/10.3390/rs14112658
Chicago/Turabian StyleWashburn, Brian E., David Maher, Scott F. Beckerman, Siddhartha Majumdar, Craig K. Pullins, and Travis L. Guerrant. 2022. "Monitoring Raptor Movements with Satellite Telemetry and Avian Radar Systems: An Evaluation for Synchronicity" Remote Sensing 14, no. 11: 2658. https://doi.org/10.3390/rs14112658
APA StyleWashburn, B. E., Maher, D., Beckerman, S. F., Majumdar, S., Pullins, C. K., & Guerrant, T. L. (2022). Monitoring Raptor Movements with Satellite Telemetry and Avian Radar Systems: An Evaluation for Synchronicity. Remote Sensing, 14(11), 2658. https://doi.org/10.3390/rs14112658