Evaluating the Vulnerability of Siberian Crane Habitats and the Influences of Water Level Intervals in Poyang Lake Wetland, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Datasets
2.2. Landscape Classification in Poyang Lake Wetland
2.3. Vulnerability Assessment of Crane Habitats
2.4. Spatial Autocorrelation Indicators
2.5. Geographical Detector
3. Results
3.1. Spatial Variation of the Habitat Vulnerability
3.2. Spatial Distribution Pattern of the Habitat Vulnerability
3.3. Explanatory Power of the Water Level Interval on Habitat Vulnerability
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Y. Poyang Lake and wintering Siberian cranes. Front. Ecol. Environ. 2020, 18, 100. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Wu, J.; Harris, J.; Burnham, J. Number and distribution of cranes wintering at Poyang Lake, China during 2011–2012. Chin. Birds 2012, 3, 180–190. [Google Scholar] [CrossRef] [Green Version]
- Dronova, I.; Beissinger, S.; Burnham, J.; Gong, P. Landscape-Level Associations of Wintering Waterbird Diversity and Abundance from Remotely Sensed Wetland Characteristics of Poyang Lake. Remote Sens. 2016, 8, 462. [Google Scholar] [CrossRef] [Green Version]
- Xia, S.; Wang, Y.; Lei, G.; Liu, Y.; Lei, J.; Yu, X.; Wen, L.; Zhou, Y. Restriction of Herbivorous Waterbird Distributions in the Middle and Lower Yangtze River Floodplain in View of Hydrological Isolation. Wetlands 2017, 37, 79–88. [Google Scholar] [CrossRef]
- Feng, L.; Hu, C.; Chen, X.; Zhao, X. Dramatic Inundation Changes of China’s Two Largest Freshwater Lakes Linked to the Three Gorges Dam. Environ. Sci. Technol. 2013, 47, 9628–9634. [Google Scholar] [CrossRef]
- Lai, X.; Jiang, J.; Yang, G.; Lu, X.X. Should the Three Gorges Dam be blamed for the extremely low water levels in the middle-lower Yangtze River? Hydrol. Process. 2014, 28, 150–160. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, M.; Wang, S.; Ma, Q.; Sun, M. Changes in temperature extremes in the Yangtze River Basin, 1962–2011. J. Geogr. Sci. 2014, 24, 59–75. [Google Scholar] [CrossRef]
- Mei, X.; Dai, Z.; Fagherazzi, S.; Chen, J. Dramatic variations in emergent wetland area in China’s largest freshwater lake, Poyang Lake. Adv. Water Resour. 2016, 96, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Jiang, F.; Qi, S.; Liao, F.; Ding, M.; Wang, Y. Vulnerability of Siberian crane habitat to water level in Poyang Lake wetland, China. GIScience Remote Sens. 2014, 51, 662–676. [Google Scholar] [CrossRef]
- Hou, J.; Liu, Y.; Fraser, J.D.; Li, L.; Zhao, B.; Lan, Z.; Jin, J.; Liu, G.; Dai, N.; Wang, W. Drivers of a habitat shift by critically endangered Siberian cranes: Evidence from long-term data. Ecol. Evol. 2020, 10, 11055–11068. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yuan, H.; Wang, S.; Zheng, L.; Liao, M. Spatiotemporal Dynamics of Water Body Changes and Their Influencing Factors in the Seasonal Lakes of the Poyang Lake Region. Water 2021, 13, 1539. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, Z.; Liu, Y.; Ji, W.; Ge, G. The function and significance of the shallow-lakes in the Poyang Lake wetland ecosystem. Jiangxi Hydraul. Sci. Technol. 2015, 41, 317–323. (In Chinese) [Google Scholar]
- Baschuk, M.S.; Koper, N.; Wrubleski, D.A.; Goldsborough, G. Effects of Water Depth, Cover and Food Resources on Habitat use of Marsh Birds and Waterfowl in Boreal Wetlands of Manitoba, Canada. Waterbirds 2012, 35, 44–55. [Google Scholar] [CrossRef]
- Li, Y.; Qian, F.; Silbernagel, J.; Larson, H. Community structure, abundance variation and population trends of waterbirds in relation to water level fluctuation in Poyang Lake. J. Gt. Lakes Res. 2019, 45, 976–985. [Google Scholar] [CrossRef]
- Wang, C.; Wang, G.; Dai, L.; Liu, H.; Li, Y.; Zhou, Y.; Chen, H.; Dong, B.; Lv, S.; Zhao, Y. Diverse usage of waterbird habitats and spatial management in Yancheng coastal wetlands. Ecol. Indic. 2020, 117, 106583. [Google Scholar] [CrossRef]
- Xu, H.; Zhao, S.; Song, N.; Liu, N.; Zhong, S.; Li, B.; Wang, T. Abundance and behavior of little egrets (Egretta garzetta) near an onshore wind farm in Chongming Dongtan, China. J. Clean. Prod. 2021, 312, 127662. [Google Scholar] [CrossRef]
- Cheng, L.; Zhou, L.; Wu, L.; Feng, G. Nest site selection and its implications for conservation of the endangered Oriental Stork Ciconia boyciana in Yellow River Delta, China. Bird Conserv. Int. 2020, 30, 323–334. [Google Scholar] [CrossRef]
- Jourdan, C.; Fort, J.; Pinaud, D.; Delaporte, P.; Gernigon, J.; Lachaussée, N.; Lemesle, J.-C.; Pignon-Mussaud, C.; Pineau, P.; Robin, F.; et al. Nycthemeral Movements of Wintering Shorebirds Reveal Important Differences in Habitat Uses of Feeding Areas and Roosts. Estuaries Coasts 2021, 44, 1454–1468. [Google Scholar] [CrossRef]
- Schwemmer, P.; Weiel, S.; Garthe, S. Spatio-temporal movement patterns and habitat choice of red foxes (Vulpes vulpes) and racoon dogs (Nyctereutes procyonoides) along the Wadden Sea coast. Eur. J. Wildl. Res. 2021, 67, 49. [Google Scholar] [CrossRef]
- Rasool, M.A.; Hassan, M.A.; Zhang, X.; Zeng, Q.; Jia, Y.; Wen, L.; Lei, G. Habitat Quality and Social Behavioral Association Network in a Wintering Waterbirds Community. Sustainability 2021, 13, 6044. [Google Scholar] [CrossRef]
- Chen, B.; Cui, P.; Xu, H.; Lu, X.; Lei, J.; Wu, Y.; Shao, M.; Ding, H.; Wu, J.; Cao, M.; et al. Assessing the Suitability of Habitat for Wintering Siberian Cranes (Leucogeranus leucogeranus) at Different Water Levels in Poyang Lake Area, China. Pol. J. Ecol. 2016, 64, 84–97. [Google Scholar] [CrossRef]
- Wang, C.; Liu, H.; Li, Y.; Dong, B.; Qiu, C.; Yang, J.; Zong, Y.; Chen, H.; Zhao, Y.; Zhang, Y. Study on habitat suitability and environmental variable thresholds of rare waterbirds. Sci. Total Environ. 2021, 785, 147316. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Lu, L.; Jiao, G.; Jiang, J.; Ye, Q. Analysis of the correlations between environmental factors and rare cranes in the Poyang Lake region of China. J. Gt. Lakes Res. 2018, 44, 140–148. [Google Scholar] [CrossRef]
- Bao, K.; Liu, J.; Meng, B.; Sun, B. The Effects of Hydrological Conditions on Eco-Exergy of Food Webs in Momoge National Nature Reserve, China. Wetlands 2019, 39, 601–617. [Google Scholar] [CrossRef]
- Jia, Y.; Jiao, S.; Zhang, Y.; Zhou, Y.; Lei, G.; Liu, G. Diet Shift and Its Impact on Foraging Behavior of Siberian Crane (Grus Leucogeranus) in Poyang Lake. PLoS ONE 2013, 8, e65843. [Google Scholar] [CrossRef]
- Burnham, J.; Barzen, J.; Pidgeon, A.M.; Sun, B.; Wu, J.; Liu, G.; Jiang, H. Novel foraging by wintering Siberian Cranes Leucogeranus leucogeranus at China’s Poyang Lake indicates broader changes in the ecosystem and raises new challenges for a critically endangered species. Bird Conserv. Int. 2017, 27, 204–223. [Google Scholar] [CrossRef] [Green Version]
- Herbert, J.A.; Chakraborty, A.; Naylor, L.W.; Beatty, W.S.; Krementz, D.G. Effects of landscape structure and temporal habitat dynamics on wintering mallard abundance. Landsc. Ecol. 2018, 33, 1319–1334. [Google Scholar] [CrossRef]
- Zhang, L.; Dong, T.; Xu, W.; Ouyang, Z. Assessment of habitat fragmentation caused by traffic networks and identifying key affected areas to facilitate rare wildlife conservation in China. Wildl. Res. 2015, 42, 266. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Fox, A.D.; Cao, L.; Jia, Q.; Lu, C.; Prins, H.H.T.; de Boer, W.F. Effects of ecological and anthropogenic factors on waterbird abundance at a Ramsar Site in the Yangtze River Floodplain. Ambio 2019, 48, 293–303. [Google Scholar] [CrossRef]
- Lehikoinen, A.; Jaatinen, K.; Vähätalo, A.V.; Clausen, P.; Crowe, O.; Deceuninck, B.; Hearn, R.; Holt, C.A.; Hornman, M.; Keller, V.; et al. Rapid climate driven shifts in wintering distributions of three common waterbird species. Glob. Chang. Biol. 2013, 19, 2071–2081. [Google Scholar] [CrossRef]
- Zhang, C.; Yuan, Y.; Zeng, G.; Liang, J.; Guo, S.; Huang, L.; Hua, S.; Wu, H.; Zhu, Y.; An, H.; et al. Influence of hydrological regime and climatic factor on waterbird abundance in Dongting Lake Wetland, China: Implications for biological conservation. Ecol. Eng. 2016, 90, 473–481. [Google Scholar] [CrossRef]
- Li, C.; Yang, Y.; Wang, Z.; Yang, L.; Zhang, D.; Zhou, L. The relationship between seasonal water level fluctuation and habitat availability for wintering waterbirds at Shengjin Lake, China. Bird Conserv. Int. 2019, 29, 100–114. [Google Scholar] [CrossRef]
- Fan, Z.; Wang, Z.; Li, Y.; Wang, W.; Tang, C.; Zeng, F. Water Level Fluctuation under the Impact of Lake Regulation and Ecological Implication in Huayang Lakes, China. Water 2020, 12, 702. [Google Scholar] [CrossRef] [Green Version]
- Zou, L.; Hu, B.; Qi, S.; Zhang, Q.; Ning, P. Spatiotemporal Variation of Siberian Crane Habitats and the Response to Water Level in Poyang Lake Wetland, China. Remote Sens. 2021, 13, 140. [Google Scholar] [CrossRef]
- Han, X.; Feng, L.; Hu, C.; Chen, X. Wetland changes of China’s largest freshwater lake and their linkage with the Three Gorges Dam. Remote Sens. Environ. 2018, 204, 799–811. [Google Scholar] [CrossRef]
- Zhao, S.; Xu, H.; Song, N.; Wang, Z.; Li, B.; Wang, T. Effect of wind farms on wintering ducks at an important wintering ground in China along the East Asian–Australasian Flyway. Ecol. Evol. 2020, 10, 9567–9580. [Google Scholar] [CrossRef]
- Li, Y.; Zhong, Y.; Shao, R.; Yan, C.; Jin, J.; Shan, J.; Li, F.; Ji, W.; Bin, L.; Zhang, X.; et al. Modified hydrological regime from the Three Gorges Dam increases the risk of food shortages for wintering waterbirds in Poyang Lake. Glob. Ecol. Conserv. 2020, 24, e01286. [Google Scholar] [CrossRef]
- Hu, B.; Qi, S.; Luo, J.; Lin, H. Monitoring Spatiotemporal Variations of Wintering Siberian crane Habitats. In Big Earth Data in Support of the Sustainable Development Goals (2021); 2021; pp. 126–128. Available online: https://www.fmprc.gov.cn/mfa_eng/topics_665678/2030kcxfzyc/202109/P020211019152777729038.pdf (accessed on 8 December 2021).
- Yao, S.; Li, X.; Liu, C.; Zhang, J.; Li, Y.; Gan, T.; Liu, B.; Kuang, W. New assessment indicator of habitat suitability for migratory bird in wetland based on hydrodynamic model and vegetation growth threshold. Ecol. Indic. 2020, 117, 106556. [Google Scholar] [CrossRef]
- Hui, F.; Xu, B.; Huang, H.; Yu, Q.; Gong, P. Modelling spatial-temporal change of Poyang Lake using multitemporal Landsat imagery. Int. J. Remote Sens. 2008, 29, 5767–5784. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, N.; Yu, X.; Xia, S.; Qi, S. Identification of Wetland Boundaries of Poyang Lake and Analysis of Seasonal Change Based on Remote Sensing and GIS technology. Resour. Sci. 2010, 32, 2239–2245. (In Chinese) [Google Scholar]
- Guo, H.; Hu, B.; Li, Q. Effects of autumn fishery by Enclosing Plate-Shaped Lake on the winter migratory birds and conservation strategies in Nanji Wetland National Natural Reserve of the Poyang Lake, Jiangxi. Resour. Environ. Yangtze Basin 2014, 23, 46–52. (In Chinese) [Google Scholar]
- Geospatial Data Cloud. Available online: http://www.gscloud.cn/home (accessed on 8 December 2021).
- Hou, J.; Li, L.; Wang, Y.; Wang, W.; Zhan, H.; Dai, N.; Lu, P. Influences of submerged plant collapse on diet composition, breadth, and overlap among four crane species at Poyang Lake, China. Front. Zool. 2021, 18, 24. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Huai, W.; Yang, Z.; Li, D.; Wang, Y. Assessing habitat suitability and habitat fragmentation for endangered Siberian cranes in Poyang Lake region, China. Ecol. Indic. 2021, 125, 107594. [Google Scholar] [CrossRef]
- Qi, J.; Liu, H.; Liu, X.; Zhang, Y. Spatiotemporal evolution analysis of time-series land use change using self-organizing map to examine the zoning and scale effects. Comput. Environ. Urban Syst. 2019, 76, 11–23. [Google Scholar] [CrossRef]
- Moran, P.A.P. Notes on Continuous Stochastic Phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, T.; Fu, B. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Christakos, G.; Liao, Y.; Zhang, T.; Gu, X.; Zheng, X. Geographical Detectors-Based Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Yin, Q.; Wang, J.; Ren, Z.; Li, J.; Guo, Y. Mapping the increased minimum mortality temperatures in the context of global climate change. Nat. Commun. 2019, 10, 4640. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Wang, J.; Li, Z.; Xu, C.; Liao, Y.; Hu, M.; Yang, J.; Lai, S.; Wang, L.; Yang, W. Seasonal association between viral causes of hospitalised acute lower respiratory infections and meteorological factors in China: A retrospective study. Lancet Planet. Health 2021, 5, e154–e163. [Google Scholar] [CrossRef]
- Hu, M.; Lin, H.; Wang, J.; Xu, C.; Tatem, A.J.; Meng, B.; Zhang, X.; Liu, Y.; Wang, P.; Wu, G.; et al. Risk of Coronavirus Disease 2019 Transmission in Train Passengers: An Epidemiological and Modeling Study. Clin. Infect. Dis. 2021, 72, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Wang, Y.; Jing, B.; Wang, L.; Wang, W. Food composition of Siberian cranes in agricultural fields in the Poyang Lake, China. Chin. J. Zool. 2019, 54, 15–21. (In Chinese) [Google Scholar] [CrossRef]
- Wang, W.; Wang, L.; Hou, J. Man-made habitats have become important foraging areas of Siberian cranes. Chin. J. Wildl. 2019, 40, 133–137. (In Chinese) [Google Scholar]
Water Level Interval | Image Acquired Date (DD/MM/YYYY) | Sensor | Water Level at Xingzi Station (Yellow Sea Elevation) |
---|---|---|---|
5–6 m | 15 February 2004 | TM | 5.30 m |
6 January 2007 | TM | 5.88 m | |
14 January 2010 | TM | 5.96 m | |
9 January 2014 | ETM+ | 5.80 m | |
13 February 2015 | OLI | 5.81 m | |
6–7 m | 31 January 1993 | TM | 6.69 m |
8 January 2002 | TM | 6.75 m | |
21 December 2006 | TM | 6.68 m | |
9 December 2010 | ETM+ | 6.16 m | |
9 December 2011 | ETM+ | 6.91 m | |
19 December 2017 | OLI | 6.32 m | |
7–8 m | 7 December 1995 | TM | 7.45 m |
27 January 2000 | TM | 7.91 m | |
15 December 2004 | TM | 7.10 m | |
16 December 2016 | OLI | 7.40 m | |
8–9 m | 10 December 1999 | TM | 8.80 m |
29 November 2004 | TM | 8.13 m | |
10 December 2008 | TM | 8.28 m | |
10 April 2018 | OLI | 8.02 m | |
9–10 m | 29 January 2001 | TM | 9.76 m |
14 November 2012 | ETM+ | 9.38 m | |
10 January 2013 | ETM+ | 9.16 m | |
10–11 m | 5 March 2005 | TM | 10.10 m |
8 March 2003 | ETM+ | 10.82 m | |
16 March 2009 | TM | 10.72 m | |
11–12 m | 16 November 1999 | TM | 11.10 m |
11 October 2015 | OLI | 11.46 m | |
9 May 2017 | OLI | 11.35 m | |
23 January 2019 | OLI | 11.48 m | |
12–16 m | 2 November 1994 | TM | 12.10 m |
5 July 2000 | ETM+ | 15.60 m | |
9 October 2000 | ETM+ | 14.20 m | |
5 October 2007 | TM | 13.00 m | |
14 March 2020 | OLI | 12.06 m |
Water Level Interval | Poyang Lake Wetland | Nanji Wetland Reserve | Poyang Lake Reserve |
---|---|---|---|
5–6 m | 903.52 | 144.56 | 131.94 |
6–7 m | 698.18 | 103.43 | 85.55 |
7–8 m | 1085.00 | 149.75 | 141.07 |
8–9 m | 1119.43 | 169.27 | 161.15 |
9–10 m | 1095.72 | 164.52 | 166.82 |
10–11 m | 1200.42 | 159.90 | 203.10 |
11–12 m | 902.28 | 118.35 | 144.53 |
12–16 m | 47.51 | 14.91 | 25.55 |
Sustainability | |||
Water level interval | Nature reserve | Sub-lake | |
Water level interval | 0.1446 † | ||
Nature reserve | 0.1995 | 0.0419 † | |
Sub-lake | 0.2200 | 0.0939 | 0.0621 † |
Stability | |||
Water level interval | Nature reserve | Sub-lake | |
Water level interval | 0.4289 † | ||
Nature reserve | 0.4673 | 0.0337 † | |
Sub-lake | 0.4925 | 0.0845 | 0.0603 † |
Variety | |||
Water level interval | Nature reserve | Sub-lake | |
Water level interval | 0.2178 † | ||
Nature reserve | 0.2584 | 0.0357 † | |
Sub-lake | 0.2422 | 0.0573 | 0.0117 † |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, B.; Zou, L.; Qi, S.; Yin, Q.; Luo, J.; Zuo, L.; Meng, Y. Evaluating the Vulnerability of Siberian Crane Habitats and the Influences of Water Level Intervals in Poyang Lake Wetland, China. Remote Sens. 2022, 14, 2774. https://doi.org/10.3390/rs14122774
Hu B, Zou L, Qi S, Yin Q, Luo J, Zuo L, Meng Y. Evaluating the Vulnerability of Siberian Crane Habitats and the Influences of Water Level Intervals in Poyang Lake Wetland, China. Remote Sensing. 2022; 14(12):2774. https://doi.org/10.3390/rs14122774
Chicago/Turabian StyleHu, Bisong, Lin Zou, Shuhua Qi, Qian Yin, Jin Luo, Lijun Zuo, and Yu Meng. 2022. "Evaluating the Vulnerability of Siberian Crane Habitats and the Influences of Water Level Intervals in Poyang Lake Wetland, China" Remote Sensing 14, no. 12: 2774. https://doi.org/10.3390/rs14122774
APA StyleHu, B., Zou, L., Qi, S., Yin, Q., Luo, J., Zuo, L., & Meng, Y. (2022). Evaluating the Vulnerability of Siberian Crane Habitats and the Influences of Water Level Intervals in Poyang Lake Wetland, China. Remote Sensing, 14(12), 2774. https://doi.org/10.3390/rs14122774