Time Series of Remote Sensing Data for Interaction Analysis of the Vegetation Coverage and Dust Activity in the Middle East
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Selection and Method
3. Results
3.1. Spatio-Temporal Analysis
3.2. Statistical Analysis
4. Discussion
5. Conclusions
- ▪
- Eight dust hotspots were extracted in Syria, Iraq, Iran, Saudi Arabia, and Yemen using long-term daily AOD products in the Middle East.
- ▪
- According to standard deviation maps, AOD changes in coincidence with NDVI changes.
- ▪
- The dust hotspots’ spatial distribution did not change during the three study periods.
- ▪
- During three study periods, increases in AOD coincide with a reduction in vegetative cover.
- ▪
- Interannual variation in annual mean AOD and NDVI support a significant negative effect of vegetation cover on dust activity in twenty consecutive years in all dust hotspots.
- ▪
- The statistical relationship between vegetation and dust intensity shows a significant relationship based on the correlation coefficient between NDVI and AOD.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bollen, J.; Hers, S.; van der Zwaan, B. An integrated assessment of climate change, air pollution, and energy security policy. Energy Policy 2010, 38, 4021–4030. [Google Scholar] [CrossRef] [Green Version]
- Srikanth, M.; Satyanarayana, A.N.V.; Venkata Srinivas, C. Simulation of atmospheric dispersion of NOX over complex terrain region of Ranchi with FLEXPART-WRF by incorporation of improved turbulence intensity relationships. Atmos. Environ. 2015, 123, 139–155. [Google Scholar]
- Morelli, X.; Rieux, C.; Cyrys, J.; Forsberg, B.; Slama, R. Air pollution, health and social deprivation: A fine-scale risk assessment. Environ. Res. 2016, 147, 59–70. [Google Scholar] [CrossRef]
- Middleton, N.; Kang, U. Sand and Dust Storms: Impact Mitigation. Sustainability 2017, 9, 1053. [Google Scholar] [CrossRef] [Green Version]
- Guan, Q.; Li, F.; Yang, L.; Zhao, R.; Yang, Y.; Luo, H. Spatial-temporal variations andmineral dust fractions in particulate matter mass concentrations in an urban area of northwestern China. J. Environ. Manag. 2018, 222, 95–103. [Google Scholar] [CrossRef]
- Soleimani, Z.; Teymouri, P.; Darvishi Boloorani, A.; Mesdaghinia, A.; Middleton, N.; Griffin, D.W. An overview of bioaerosol load and health impacts associated with dust storms: A focus on the Middle East. Atmos. Environ. 2020, 223, 117–187. [Google Scholar] [CrossRef]
- Schilling, J.; Hertig, E.; Tramblay, Y.; Scheffran, J. Climate change vulnerability, water resources and social implications in North Africa. Reg. Environ. Chang. 2020, 20, 15. [Google Scholar] [CrossRef] [Green Version]
- Middleton, N.; Kashani, S.S.; Attarchi, S.; Rahnama, M.; Mosalman, S.T. Synoptic Causes and Socio-Economic Consequences of a Severe Dust Storm in the Middle East. Atmosphere 2021, 12, 1435. [Google Scholar] [CrossRef]
- Al-Dousari, A.; Domenico, D.; Modi, A. Types, indications and impact evaluation of sand and dust storms trajectories in the Arabian Gulf. Sustainability 2017, 9, 1526. [Google Scholar] [CrossRef] [Green Version]
- Engelstaedter, S.; Kohfeld, K.E.; Tegen, I.; Harrison, S.P. Controls of dust emissions by vegetation and topographic depressions: An evaluation using dust storm frequency data, Geophys. Res. Lett. 2003, 30, 1294. [Google Scholar] [CrossRef]
- Miri, A.; Moghaddamnia, A.; Pahlavanravi, A.; Panjehkeh, N. Dust storm frequency after the 1999 drought in the Sistan region, Iran. Clim. Res. 2010, 41, 83–90. Available online: http://www.jstor.org/stable/24870477 (accessed on 1 April 2021). [CrossRef] [Green Version]
- Fan, B.; Guo, L.; Li, N.; Chen, J.; Lin, H.; Zhang, X.; Shen, M.; Rao, Y.; Wang, C.; Ma, L. Earlier vegetation green-up has reduced spring dust storms. Sci. Rep. 2014, 4, 6749. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Notaro, M.; Wang, F.; Mao, J.; Shi, X.; Wei, Y. Observed positive vegetation-rainfall feedbacks in the Sahel dominated by a moisture recycling mechanism. Nat. Commun. 2017, 8, 1873. [Google Scholar] [CrossRef] [PubMed]
- Vali, A.A.; Mousavi, S.H.; Zamani, E. Statistical analysis of occurrence frequency of dust storms in Yazd province and its modeling based on climatic elements and vegetation cover. J. Spat. Anal. Environ. Hazards 2019, 6, 121–142. Available online: http://jsaeh.khu.ac.ir/article-1-2792-en.html (accessed on 5 April 2021). [CrossRef]
- Jiang, L.; Jiapaer, G.; Bao, A.; Kurban, A.; Guo, H.; Zheng, G.; De Maeyer, P. Monitoring the long-term desertification process and assessing the relative roles of its drivers in Central Asia. Ecol. Indic. 2019, 104, 195–208. [Google Scholar] [CrossRef]
- Zou, X.K.; Zhai, P.M. Relationship between vegetation coverage and spring dust storms over northern China. J. Geophys. Res. 2004, 109, D03104. [Google Scholar] [CrossRef]
- Gong, S.L.; Zhang, X.Y.; Zhao, T.L.; Barrie, L.A. Sensitivity of Asian dust storm to natural and anthropogenic factors. Geophys. Res. Lett. 2004, 31, L07210. [Google Scholar] [CrossRef]
- Yang, B.; Bräuning, A.; Zhang, Z.; Dong, Z.; Esper, J. Dust storm frequency and its relation to climate changes in Northern China during the past 1000 years. Atmos. Environ. 2007, 41, 9288–9299. [Google Scholar] [CrossRef]
- Yu, H.; Chin, M.; Yuan, T.; Bian, H.; Remer, L.A.; Prospero, J.M.; Omar, A.; Winker, D.; Yang, Y.; Zhang, Y.; et al. The fertilizing role of African dust in the Amazon rainforest: A first multiyear assessment based on CALIPSO LIDAR observations. Geophys. Res. Lett. 2015, 42, 1984–1991. [Google Scholar] [CrossRef]
- Tan, M. Exploring the relationship between vegetation and dust-storm intensity (DSI) in China. J. Geogr. Sci. 2016, 26, 387–396. [Google Scholar] [CrossRef] [Green Version]
- Parolari, A.J.; Li, D.; Bou-Zeid, E.; Katul, G.G.; Assouline, S. Climate, not conflict, explains extreme Middle East dust storm. Environ. Res. Lett. 2016, 11, 114013. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Garshick, E.; Al-Hemoud, A.; Huang, S.; Koutrakis, P. Impacts of meteorology and vegetation on surface dust concentrations in Middle Eastern countries. Sci. Total Environ. 2020, 712, 136597. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Chin, M.; Remer, L.A.; Diehl, T.; Bian, H.; Yu, H.; Brown, M.E.; Stockwell, W.R. Role of surface wind and vegetation cover in multi-decadal variations of dust emission in the Sahara and Sahel. Atmos. Environ. 2017, 148, 282–296. [Google Scholar] [CrossRef]
- Tai, A.P.K.; Ma, P.H.L.; Chan, Y.C.; Chow, M.K.; Ridley, D.A.; Kok, J.F. Impacts of climate and land cover variability and trends on springtime East Asian dust emission over 1982–2010: A modeling study. Atmos. Environ. 2021, 254, 118348. [Google Scholar] [CrossRef]
- Yao, W.; Gui, K.; Wang, Y.; Che, H.; Zhang, X. Identifying the dominant local factors of 2000–2019 changes in dust loading over East Asia. Sci. Total Environ. 2021, 777, 146064. [Google Scholar] [CrossRef]
- Bao, C.; Yong, M.; Bi, L.; Gao, H.; Li, J.; Bao, Y. Impacts of underlying surface on the dusty weather in central Inner Mongolian steppe, China. Earth Space Sci. 2021, 8, e2021EA001672. [Google Scholar] [CrossRef]
- Gholami, H.; Mohamadifar, A.; Rahimi, S.; Kaskaoutis, D.G.; Collins, A.L. Predicting land susceptibility to atmospheric dust emissions in central Iran by combining integrated data mining and a regional climate model. Atmos. Pollut. Res. 2021, 12, 172–187. [Google Scholar] [CrossRef]
- Rezazadeh, M.; Irannejad, P.; Shao, Y. Climatology of the Middle East dust events. Aeolian Res. 2013, 10, 103–109. [Google Scholar] [CrossRef]
- Gherboudj, I.; Beegum, S.N.N.; Ghedira, H. Identifying natural dust source regions over the Middle-East and North-Africa: Estimation of dust emission potential. Earth Sci. Rev. 2017, 165, 342–355. [Google Scholar] [CrossRef]
- Anoruo, C.M. Sub-seasonal aerosol characterization at the Middle East regions of AERONET site. Urban Clim. 2021, 37, 100827. [Google Scholar] [CrossRef]
- Darvishi Boloorani, A.; Papi, R.; Soleimani, M.; Karami, L.; Amiri, F.; Neysani Samany, N. Water bodies changes in Tigris and Euphrates basin has impacted dust storms phenomena. Aeolian Res. 2021, 50, 100698. [Google Scholar] [CrossRef]
- Al Ameri, I.D.S.; Briant, R.; Engels, S. Drought severity and increased dust storm frequency in the Middle East: A case study from the Tigris-Euphrates alluvial plain, central Iraq. Weather 2019, 74, 416–426. [Google Scholar] [CrossRef] [Green Version]
- Lelieveld, J.; Beirle, S.; Hörmann, C.; Stenchikov, G.; Wagner, T. Abrupt recent trend changes in atmospheric nitrogen dioxide over the Middle East. Sci. Adv. 2015, 1, 1500498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alizadeh-Choobari, O. Impact of aerosol number concentration on precipitation under different precipitation. Meteorol. Appl. 2018, 25, 596–605. [Google Scholar] [CrossRef] [Green Version]
- Javadian, M.; Behrangi, A.; Sorooshian, A. Impact of drought on dust storms: Case study over Southwest Iran. Environ. Res. Lett. 2019, 14, 124029. [Google Scholar] [CrossRef]
- Goudie, A.S.; Middleton, N.J. Desert Dust in the Global System; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Rashki, A.; Kaskaoutis, D.G.; Sepehr, A. Statistical evaluation of the dust events at selected stations in southwest Asia: From the Caspian Sea to the Arabian Sea. Catena 2018, 165, 590–603. [Google Scholar] [CrossRef]
- Hafeznia, M.R.; Taheri, A.; FarajzadehAsl, M. Political Effects Resulting from Dust Storms in Tigris and Euphrates Basins. Geopolit. Q. 2017, 12, 13–38. [Google Scholar]
- Hamidi, M. The key role of water resources management in the middle east dust events. Catena 2020, 187, 104337. [Google Scholar] [CrossRef]
- Qi, Y.; Ge, J.; Huang, J. Spatial and temporal distribution of MODIS and MISR aerosol optical depth over northern China and comparison with AERONET. Chin. Sci. Bull. 2013, 58, 2497–2506. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef] [Green Version]
- Namdari, S.; Valizadeh Kamran, K.; Sorooshian, A. Analysis of some factors related to dust storms occurrence in the Sistan region. Environ. Sci. Pollut. Res. 2021, 28, 45450–45458. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.A.; Kaufman, Y.J. Effects of neglecting polarization on the MODIS aerosol retrieval over land. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2576–2583. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, C.; Band, L.; Sun, G.; Li, J. Reanalysis of global terrestrial vegetation trends from MODIS products: Browning or greening? Remote Sens. Environ. 2017, 191, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Ginoux, P.; Garbuzov, D.; Hsu, N.C. Identification of anthropogenic and natural dust sources using Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue level 2 data. J. Geophys. Res. 2010, 115, D05204. [Google Scholar] [CrossRef] [Green Version]
- Fatichi, S.; Ivanov, V.Y.; Caporali, E. Investigating interannual variability of precipitation at the global scale: Is there a connection with seasonality? J. Clim. 2012, 25, 5512–5523. [Google Scholar] [CrossRef]
- Li, Y.; Wang, F. Thermocline spiciness variations in the tropical Indian Ocean observed during 2003–2014. Deep Sea Res. Part I Oceanogr. Res. Pap. 2015, 97, 52–66. [Google Scholar] [CrossRef] [Green Version]
- Lennartz, S.T.; Gauss, M.; von Hobe, M.; Marandino, C.A. Monthly resolved modelled oceanic emissions of carbonyl sulfide and carbon disulfide for the period 2000–2019. Earth Syst. Sci. 2020, 389. [Google Scholar] [CrossRef]
- Hennen, M.; White, K.; Shahgedanova, M. An assessment of SEVIRI imagery at various temporal resolutions and the effect on accurate dust emission mapping. Remote Sens. 2019, 11, 918. [Google Scholar] [CrossRef] [Green Version]
- Middleton, N.J. Dust storms in the Middle East. J. Arid. Environ. 1986, 10, 83–96. [Google Scholar] [CrossRef]
- Cao, H.; Amiraslani, F.; Liu, J.; Zhou, N. Identification of dust storm source areas in West Asia using multiple environmental datasets. Sci. Total Environ. 2015, 502, 224–235. [Google Scholar] [CrossRef]
- Ginoux, P.; Prospero, J.M.; Gill, T.E.; Hsu, N.C.; Zhao, M. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys. 2012, 50. [Google Scholar] [CrossRef]
- Namdari, S.; Karimi, N.; Sorooshian, A.; Mohammadi, G.; Sehatkashani, S. Impacts of climate and synoptic fluctuations on dust storm activity over the Middle East. Atmos. Environ. 2018, 173, 265–276. [Google Scholar] [CrossRef]
AOD | (2000–2006) | (2007–2013) | (2014–2019) | % Change: 1st (2000–2006) to 2nd Period (2007–2013) | % Change: 1st (2000–2006) to 3rd Period (2014–2019) |
---|---|---|---|---|---|
East of Syria | 0.37 | 0.44 | 0.39 | 19.24% | 4.97% |
South of Syria | 0.38 | 0.41 | 0.35 | 6.86% | −8.47% |
North of Iraq | 0.42 | 0.55 | 0.44 | 32.52% | 4.50% |
East of Iraq | 0.44 | 0.53 | 0.45 | 21.22% | 2.45% |
South of Iraq | 0.46 | 0.49 | 0.46 | 5.47% | 0.11% |
Khuzestan | 0.41 | 0.46 | 0.42 | 12.02% | 2.43% |
South East of Saudi Arabia | 0.49 | 0.55 | 0.50 | 12.14% | 2.29% |
Yemen−Oman | 0.50 | 0.53 | 0.51 | 6.86% | 2.25% |
R (p Value) | R (p Value) | ||
---|---|---|---|
East of Syria | −0.80 (0.00) | South of Iraq | −0.65 (0.00) |
South of Syria | −0.83 (0.00) | South East of Saudi Arabia | −0.50 (0.00) |
North of Iraq | −0.82 (0.00) | Khuzestan | −0.87 (0.00) |
East of Iraq | −0.57 (0.00) | Yemen−Oman | −0.13 (0.17) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Namdari, S.; Zghair Alnasrawi, A.I.; Ghorbanzadeh, O.; Sorooshian, A.; Kamran, K.V.; Ghamisi, P. Time Series of Remote Sensing Data for Interaction Analysis of the Vegetation Coverage and Dust Activity in the Middle East. Remote Sens. 2022, 14, 2963. https://doi.org/10.3390/rs14132963
Namdari S, Zghair Alnasrawi AI, Ghorbanzadeh O, Sorooshian A, Kamran KV, Ghamisi P. Time Series of Remote Sensing Data for Interaction Analysis of the Vegetation Coverage and Dust Activity in the Middle East. Remote Sensing. 2022; 14(13):2963. https://doi.org/10.3390/rs14132963
Chicago/Turabian StyleNamdari, Soodabeh, Ali Ibrahim Zghair Alnasrawi, Omid Ghorbanzadeh, Armin Sorooshian, Khalil Valizadeh Kamran, and Pedram Ghamisi. 2022. "Time Series of Remote Sensing Data for Interaction Analysis of the Vegetation Coverage and Dust Activity in the Middle East" Remote Sensing 14, no. 13: 2963. https://doi.org/10.3390/rs14132963
APA StyleNamdari, S., Zghair Alnasrawi, A. I., Ghorbanzadeh, O., Sorooshian, A., Kamran, K. V., & Ghamisi, P. (2022). Time Series of Remote Sensing Data for Interaction Analysis of the Vegetation Coverage and Dust Activity in the Middle East. Remote Sensing, 14(13), 2963. https://doi.org/10.3390/rs14132963