Temporal Variation and Component Allocation Characteristics of Geometric and Physical Parameters of Maize Canopy for the Entire Growing Season
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sites Description
2.2. Measurements of Maize Canopy Parameters
2.3. Localization Methods for GPMCM
2.4. Evaluation Indicators
3. Results
3.1. Geometric Parameters Simulation Results in GPMCM
3.2. Allocation Characteristics of Simulated Biomass
3.3. Temporal Characteristics of Simulated VWC and RWC
4. Discussion
4.1. Accuracy of Simulated Maize Canopy Parameters by Incorporate MODIS LAI Product
4.2. Effect of Wilted Leaves on Simulated Accuracy of Canopy Parameters
4.3. Applicability Analysis of the GPMCM
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Site | Index | LAI | Height | Long Radius | Short Radius | FAGB of Stems | FAGB of Leaves | AGB of Stems | AGB of Leaves | VWC of Stems | VWC of Leaves |
---|---|---|---|---|---|---|---|---|---|---|---|
cm | mm | mm | ————————— kg/m2 ————————— | ||||||||
Kaoshan | 0.54 | 9.92 | 1.58 | 1.12 | 0.27 | 0.16 | 0.10 | 0.12 | 0.23 | 0.10 | |
0.39 | 2.57 | 0.91 | 0.53 | 0.07 | 0.06 | 0.01 | 0.05 | 0.11 | 0.02 | ||
0.96 | 0.99 | 0.51 | 0.68 | 0.95 | 0.89 | 0.86 | 0.86 | 0.96 | 0.93 | ||
* | 14.0 | 4.8 | 11.3 | 9.1 | 7.8 | 11.1 | 15.6 | 18.6 | 11.3 | 13.3 | |
Donglalatun | 0.51 | 32.25 | 2.83 | 2.22 | 0.51 | 0.23 | 0.16 | 0.14 | 0.40 | 0.15 | |
0.02 | 3.09 | 0.96 | 0.11 | 0.03 | 0.04 | 0.07 | 0.05 | 0.02 | 0.02 | ||
0.94 | 0.97 | 0.79 | 0.84 | 0.90 | 0.86 | 0.82 | 0.36 | 0.90 | 0.90 | ||
26.56 | 22.01 | 17.92 | 24.40 | 20.38 | 21.86 | 26.65 | 43.31 | 34.57 | 36.86 | ||
Taipingshan | 0.54 | 46.85 | 2.63 | 2.74 | 0.81 | 0.30 | 0.16 | 0.11 | 0.67 | 0.17 | |
0.39 | 24.52 | 1.23 | 1.43 | 0.14 | 0 | 0 | 0.06 | 0.28 | 0.01 | ||
1 | 0.91 | 0.34 | 0.24 | 0.81 | 0.81 | 0.75 | 0.73 | 0.85 | 0.91 | ||
16.6 | 22.7 | 16.3 | 19.1 | 23.2 | 22.7 | 24.1 | 23.6 | 21.9 | 18.1 | ||
Shuangchengpu | 0.31 | 20.25 | 1.57 | 1.11 | 0.54 | 0.24 | 0.08 | 0.11 | 0.50 | 0.19 | |
0.13 | 9.44 | 0.67 | 0.87 | 0.05 | 0.09 | 0.01 | 0.07 | 0 | 0.03 | ||
0.98 | 0.96 | 0.30 | 0.71 | 0.87 | 0.96 | 0.93 | 0.62 | 0.89 | 0.87 | ||
8.0 | 6.6 | 8.9 | 6.7 | 13.9 | 12.6 | 9.4 | 17.9 | 15.0 | 12.3 | ||
Longwang | 0.26 | 12.88 | 1.5 | 1.18 | 0.45 | 0.18 | 0.07 | 0.09 | 0.46 | 0.20 | |
0.21 | 9.10 | 0.79 | 0.66 | 0.09 | 0.07 | 0.03 | 0.05 | 0.14 | 0.12 | ||
0.99 | 0.99 | 0.83 | 0.84 | 0.94 | 0.95 | 0.96 | 0.88 | 0.92 | 0.92 | ||
8.6 | 5.0 | 8.9 | 8.20 | 12.7 | 9.8 | 10.8 | 14.9 | 19.5 | 14.6 | ||
Chenjiadian | 0.48 | 37.36 | 2.24 | 1.47 | 0.47 | 0.17 | 0.15 | 0.06 | 0.42 | 0.12 | |
0.34 | 14.59 | 1.59 | 1.11 | 0.11 | 0.11 | 0.09 | 0.05 | 0 | 0.06 | ||
0.99 | 0.94 | 0.85 | 0.92 | 0.95 | 0.97 | 0.88 | 0.97 | 0.94 | 0.97 | ||
10.6 | 15.9 | 13.2 | 10.2 | 14.2 | 11.7 | 22.7 | 15.0 | 14.6 | 8.6 |
References
- Varella, H.; Guérif, M.; Buis, S. Global sensitivity analysis measures the quality of parameter estimation: The case of soil parameters and a crop model. Environ. Model. Softw. 2010, 25, 310–319. [Google Scholar] [CrossRef]
- Kim, S.H.; Yang, Y.; Timlin, D.J.; Fleisher, D.H.; Dathe, A.; Reddy, V.R.; Staver, K. Modeling Temperature Responses of Leaf Growth, Development, and Biomass in Maize with MAIZSIM. Agron. J. 2012, 104, 1523–1537. [Google Scholar] [CrossRef] [Green Version]
- Shawon, A.R.; Ko, J.; Ha, B.; Jeong, S.; Kim, H.Y. Assessment of a Proximal Sensing-integrated Crop Model for Simulation of Soybean Growth and Yield. Remote Sens. 2020, 12, 410. [Google Scholar] [CrossRef] [Green Version]
- Rahman, H. Influence of atmospheric correction on the estimation of biophysical parameters of crop canopy using satellite remote sensing. Int. J. Remote Sens. 2001, 22, 1245–1268. [Google Scholar] [CrossRef]
- Yang, H.S.; Dobermann, A.; Lindquist, J.; Walters, D.T.; Arkebauer, T.J.; Cassman, K. Hybrid-maize—A maize simulation model that combines two crop modeling approaches. Field Crops Res. 2004, 87, 131–154. [Google Scholar] [CrossRef] [Green Version]
- Réjou-Méchain, M.; Barbier, N.; Couteron, P.; Ploton, P.; Vincent, G.; Herold, M.; Mermoz, S.; Saatchi, S.; Chave, J.; De Boissieu, F.; et al. Upscaling Forest Biomass from Field to Satellite Measurements: Sources of Errors and Ways to Reduce Them. Surv. Geophys. 2019, 40, 881–911. [Google Scholar] [CrossRef]
- El Hajj, M.; Bégué, A.; Guillaume, S.; Martiné, J.-F. Integrating SPOT-5 time series, crop growth modeling and expert knowledge for monitoring agricultural practices—The case of sugarcane harvest on Reunion Island. Remote Sens. Environ. 2009, 113, 2052–2061. [Google Scholar] [CrossRef]
- Gao, F.; Anderson, M.; Zhang, X.; Yang, Z.; Alfieri, J.; Kustas, W.; Mueller, R.; Johnson, D. Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery. Remote Sens. Environ. 2017, 188, 9–25. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Zhang, X.; Yu, Y.; Yang, Z. Real-Time Monitoring of Crop Phenology in the Midwestern United States Using VIIRS Observations. Remote Sens. 2018, 10, 1540. [Google Scholar] [CrossRef] [Green Version]
- Lähivaara, T.; Seppänen, A.; Kaipio, J.; Vauhkonen, J.; Korhonen, L.; Tokola, T.; Maltamo, M. Bayesian Approach to Tree Detection Based on Airborne Laser Scanning Data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2690–2699. [Google Scholar] [CrossRef]
- le Maire, G.; Francois, C.; Soudani, K.; Berveiller, D.; Pontailler, J.-Y.; Nathalie, B.; Genet, H.; Davi, H.; Dufrêne, E. Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass. Remote Sens. Environ. 2008, 112, 3846–3864. [Google Scholar] [CrossRef]
- van Diepen, C.A.; Wolf, J.; van keulen, H.; Rappoldt, C. WOFOST: A simulation model of crop production. Soil Use Manag. 1989, 5, 16–24. [Google Scholar] [CrossRef]
- Boogaard, H.L.; Diepen, C.A.; Rötter, R.P.; Cabrera, J.M.C.A.; Van Laar, H.H. WOFOST 7.1; User’s Guide for the WOFOST 7.1 Crop Growth Simulation Model and WOFOST Control Center 1.5; DLO Winand Staring Centre: Wageningen, The Netherlands, 1998. [Google Scholar]
- van Laar, H.H.; Goudriaan, J.; van Keulen, H. Simulation of Crop Growth for Potential and Water-Limited Production Situations: As Applied to Spring Wheat; Wageningen Agricultural University: Wageningen, The Netherlands, 1997. [Google Scholar]
- Brisson, N.; Gary, C.; Justes, E.; Roche, R.; Mary, B.; Ripoche, D.; Zimmer, D.; Sierra, J.; Bertuzzi, P.; Burger, P.; et al. An overview of the crop model STICS. Eur. J. Agron. 2003, 18, 309–332. [Google Scholar] [CrossRef]
- Batchelor, W.; Basso, B.; Paz, J. Examples of strategies to analyze spatial and temporal yield variability using crop models. Eur. J. Agron. 2002, 18, 141–158. [Google Scholar] [CrossRef]
- Gabrielle, B.; Roche, R.; Pueyo, P.; Cantero-Martínez, C.; Cosentino, S.; Mantineo, M.; Langensiepen, M.; Hénault, C.; Laville, P.; Nicoullaud, B.; et al. A priori parameterisation of the CERES soil-crop models and tests against several European data sets. Agronomie 2002, 22, 119–132. [Google Scholar] [CrossRef] [Green Version]
- Tremblay, M.; Wallach, D. Comparison of parameter estimation methods for crop models. Agronomie 2004, 24, 351–365. [Google Scholar] [CrossRef] [Green Version]
- Brisson, N.; Ruget, F.; Gate, P.; Lorgeou, J.; Nicoullaud, B.; Tayot, X.; Plenet, D.; Jeuffroy, M.-H.; Bouthier, A.; Ripoche, D.; et al. STICS: A generic model for simulating crops and their water and nitrogen balances. II. Model validation for wheat and maize. Agronomie 2002, 22, 69–93. [Google Scholar] [CrossRef]
- Jones, C.A.; Kiniry, J.R. Ceres-N Maize: A Simulation Model of Maize Growth and Development; Texas A&M University: College Station, TX, USA, 1986. [Google Scholar]
- Steduto, P.; Hsiao, T.; Fereres, E. AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying Principles. Agron. J. 2009, 101, 426–437. [Google Scholar] [CrossRef] [Green Version]
- Paredes, P.; Melo-Abreu, J.; Alves, I.; Pereira, L. Assessing the performance of the FAO AquaCrop model to estimate maize yields and water use under full and deficit irrigation with focus on model parameterization. Agric. Water Manag. 2014, 144, 81–97. [Google Scholar] [CrossRef] [Green Version]
- Nana, E.; Corbari, C.; Bocchiola, D. A model for crop yield and water footprint assessment: Study of maize in the Po valley. Agric. Syst. 2014, 127, 139–149. [Google Scholar] [CrossRef]
- Battude, M.; Al Bitar, A.; Morin, D.; Cros, J.; Huc, M.; Sicre, C.; Le Dantec, V.; Demarez, V. Estimating maize biomass and yield over large areas using high spatial and temporal resolution Sentinel-2 like remote sensing data. Remote Sens. Environ. 2016, 184, 668–681. [Google Scholar] [CrossRef]
- Escobar-Gutiérrez, A.; Combe, L. Senescence in field-grown maize: From flowering to harvest. Field Crops Res. 2012, 134, 47–58. [Google Scholar] [CrossRef]
- Liu, Z.; Ying, H.; Chen, M.; Bai, J.; Xue, Y.; Yin, Y.; Batchelor, W.; Yang, Y.; Bai, Z.; Du, M.; et al. Optimization of China’s maize and soy production can ensure feed sufficiency at lower nitrogen and carbon footprints. Nat. Food. 2021, 2, 426–433. [Google Scholar] [CrossRef]
- Paloscia, S.; Pampaloni, P. Microwave vegetation indexes for detecting biomass and water conditions of agricultural crops. Remote Sens. Environ. 1992, 40, 15–26. [Google Scholar] [CrossRef]
- Ferrazzoli, P.; Guerriero, L. Emissivity of vegetation: Theory and computational aspects. J. Electromagn. Waves Appl. 1996, 10, 609–628. [Google Scholar] [CrossRef]
- Abimbola, O.; Franz, T.; Rudnick, D.; Heeren, D.; Yang, H.; Wolf, A.; Katimbo, A.; Nakabuye, H.N.; Amori, A. Improving crop modeling to better simulate maize yield variability under different irrigation managements. Agric. Water Manag. 2022, 262, 107429. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.; Rueda, C.; Ustin, S. Water Content Estimation in Vegetation With MODIS Reflectance Data and Model Inversion Methods. Remote Sens. Environ. 2003, 85, 109–124. [Google Scholar] [CrossRef]
- Fang, H.; Zhang, Y.; Wei, S.; Li, W.; Ye, Y.; Sun, T.; Liu, W. Validation of global moderate resolution leaf area index (LAI) products over croplands in northeastern China. Remote Sens. Environ. 2019, 233, 111377. [Google Scholar] [CrossRef]
- Greener, J.; Kandathil, S.; Moffat, L.; Jones, D. A guide to machine learning for biologists. Nat. Rev. Mol. Cell Biol. 2021, 23, 40–55. [Google Scholar] [CrossRef]
- Yoosefzadeh Najafabadi, M.; Tulpan, D.; Eskandari, M. Using Hybrid Artificial Intelligence and Evolutionary Optimization Algorithms for Estimating Soybean Yield and Fresh Biomass Using Hyperspectral Vegetation Indices. Remote Sens. 2021, 13, 2555. [Google Scholar] [CrossRef]
- Jin, Z.; Zhuang, Q.; Tan, Z.; Dukes, J.; Zheng, B.; Melillo, J. Do maize models capture the impacts of heat and drought stresses on yield? Using algorithm ensembles to identify successful approaches. Glob. Change Biol. 2016, 22, 3112–3126. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Feng, Z.; Xu, H.; Sun, Y.; Li, L.; Li, B.; Jiang, T.; Li, X.; Li, X.J.R.S. A New Soil Moisture Retrieval Algorithm from the L-Band Passive Microwave Brightness Temperature Based on the Change Detection Principle. Remote Sens. 2020, 12, 1303. [Google Scholar] [CrossRef] [Green Version]
- Lei, L.; Li, X.; Xingming, Z.; Li, X.; Jiang, T.; Ju, H.; Wan, X. The effects of declining soil moisture levels on suitable maize cultivation areas in Northeast China. J. Hydrol. 2022, 608, 127636. [Google Scholar] [CrossRef]
- Wei, Y.; Li, X.; Li, L.; Gu, L.; Xingming, Z.; Jiang, T.; Li, X. An Approach to Improve the Spatial Resolution and Accuracy of AMSR2 Passive Microwave Snow Depth Product Using Machine Learning in Northeast China. Remote Sens. 2022, 14, 1480. [Google Scholar] [CrossRef]
- Chen, J.; Black, T.A. Defining Leaf-Area Index for Non-Flat Leaves. Plant Cell Environ. 1992, 15, 421–429. [Google Scholar] [CrossRef]
- Araza, A.; de Bruin, S.; Herold, M.; Quegan, S.; Labriere, N.; Rodriguez-Veiga, P.; Avitabile, V.; Santoro, M.; Mitchard, E.; Ryan, C.; et al. A comprehensive framework for assessing the accuracy and uncertainty of global above-ground biomass maps. Remote Sens. Environ. 2022, 272, 112917. [Google Scholar] [CrossRef]
- Meiyan, S.; Mengyuan, S.; Qizhou, D.; Xiaohong, Y.; Baoguo, L.; Yuntao, M. Estimating the maize above-ground biomass by constructing the tridimensional concept model based on UAV-based digital and multi-spectral images. Field Crops Res. 2022, 282, 108491. [Google Scholar] [CrossRef]
- Ahl, D.; Gower, S.; Burrows, S.; Shabanov, N.; Myneni, R.; Knyazikhin, Y. Monitoring spring canopy phenology of a deciduous broadleaf forest using MODIS. Remote Sens. Environ. 2006, 104, 88–95. [Google Scholar] [CrossRef] [Green Version]
- Knyazikhin, Y.; Martonchik, J.V.; Myneni, R.B.; Diner, D.J.; Running, S.W. Synergistic algorithm for estimating vegetation canopy Leaf Area Index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data. J. Geophys. Res. 1998, 103, 32257–32275. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Shabanov, N.S.; Huang, D.; Wang, W.; Dickinson, R.; Nemani, R.; Knyazikhin, Y.; Myneni, R.B. Analysis of leaf area index products from combination of MODIS Terra and Aqua data. Remote Sens. Environ. 2006, 104, 297–312. [Google Scholar] [CrossRef]
- Myneni, R.K.Y.; Park, T. MODIS/Terra+Aqua Leaf Area Index/FPAR 4-Day L4 Global 500 m SIN Grid V061; The Land Processes Distributed Active Archive Center (LP DAAC): Sioux Falls, SD, USA, 2021. [CrossRef]
- Huang, S.; Gao, Y.; Li, Y.; Xu, L.; Tao, H.; Wang, P. Influence of plant architecture on maize physiology and yield in the Heilonggang River valley. Crop J. 2016, 5, 52–62. [Google Scholar] [CrossRef] [Green Version]
- Lizaso, J.; Batchelor, W.; Westgate, M. A leaf area model to simulate cultivar-specific expansion and senescence of maize leaves. Field Crops Res. 2003, 80, 1–17. [Google Scholar] [CrossRef]
- Kropff, M.J.; van Laar, H.H. Modelling Crop–Weed Interactions; CABI: Wallingford, UK, 1993. [Google Scholar]
- Chotchutima, S.; Boonsaen, P.; Jenweerawat, S.; Pleangkai, S.; Romkaew, J.; Jompuk, C.; Sarobol, E.; Tudsri, S. Influence of Varieties and Spacings on Growth, Biomass Yield and Nutritional Value of Corn Silage in Paddy Field. Chiang Mai Univ. J. Nat. Sci. 2022, 21, 1–10. [Google Scholar] [CrossRef]
Parameters | Units | Numerical Range | Number of Samples | |
---|---|---|---|---|
LAI | * | 0.2–4.8 | 214 | |
Height | cm | 25.4–291.2 | 207 | |
Stem long radius | mm | 5.9–17.0 | 208 | |
Stem short radius | mm | 3.4–14.4 | 208 | |
FAGB | Stems | kg/m2 | 0.04–4.11 | 214 |
Leaves | kg/m2 | 0.06–1.75 | 214 | |
Green leaves | kg/m2 | 0.06–1.75 | 48 | |
Wilted leaves | kg/m2 | 0.26–0.58 | 48 | |
AGB | Stems | kg/m2 | 0.01–0.91 | 214 |
Leaves | kg/m2 | 0.01–0.68 | 214 | |
Green leaves | kg/m2 | 0.01–0.53 | 48 | |
Wilted leaves | kg/m2 | 0.19–0.49 | 48 | |
VWC | Stems | kg/m2 | 0.04–3.31 | 214 |
Leaves | kg/m2 | 0.05–1.25 | 214 | |
RWC | Stems | % | 69.48–90.33 | 214 |
Leaves | % | 24.28–82.53 | 214 |
Parameters | Piecewise Point | Equation of Pre-Stage | R of Pre-Stage | Equation of Post-Stage | R of Post-Stage |
---|---|---|---|---|---|
Height | DOY 230 | 0.98 | 0.53 | ||
Long radius | DOY 230 | 0.97 | 0.25 | ||
Short radius | DOY 230 | 0.96 | 0.14 | ||
FAGB of stems | DOY 218 | 0.99 | 0.71 | ||
FAGB of leaves | DOY 218 | 0.98 | 0.95 | ||
AGB of stems | DOY 233 | 0.96 | 0 | ||
AGB of leaves | DOY 233 | 0.95 | 0.75 | ||
VWC of stems | DOY 218 | 0.98 | 0.83 | ||
VWC of leaves | DOY 218 | 0.98 | 0.98 | ||
RWC of stems | DOY 218 | 0.87 | 0.81 | ||
RWC of leaves | DOY 218 | 0.93 | 0.95 |
Parameters | Units | ||||
---|---|---|---|---|---|
Height | cm | 12.91 | 0.44 | 0.99 | 4.9 |
Long radius | mm | 0.74 | 0.09 | 0.96 | 3.4 |
Short radius | mm | 0.73 | 0.74 | 0.96 | 4.0 |
Parameters | Units | ||||
---|---|---|---|---|---|
FAGB of stems | kg/m2 | 0.27 | 0.017 | 0.98 | 7.0 |
FAGB of leaves | kg/m2 | 0.10 | 0 | 0.98 | 5.7 |
AGB of stems | kg/m2 | 0.11 | 0.001 | 0.91 | 12.8 |
AGB of leaves | kg/m2 | 0.07 | 0 | 0.91 | 11.1 |
Parameters | Units | ||||
---|---|---|---|---|---|
VWC of stems | kg/m2 | 0.20 | 0.01 | 0.98 | 12.9 |
VWC of leaves | kg/m2 | 0.05 | 0 | 0.99 | 7.6 |
RWC of stems | % | 2.10 | 0.02 | 0.95 | 2.0 |
RWC of leaves | % | 4.24 | 0 | 0.97 | 5.7 |
Piecewise Point | Index | Height | Long Radius | Short Radius | FAGB of Stems | FAGB of Leaves | AGB of Stems | AGB of Leaves | VWC of Stems | VWC of Leaves |
---|---|---|---|---|---|---|---|---|---|---|
cm | mm | mm | ————————— kg/m2 ————————— | |||||||
MODIS LAI fitted | 28.1 | 2.06 | 1.72 | 0.52 | 0.22 | 0.12 | 0.13 | 0.46 | 0.16 | |
3.17 | 0.11 | 0 | 0.01 | 0.02 | 0.01 | 0.05 | 0 | 0 | ||
0.95 | 0.57 | 0.63 | 0.90 | 0.89 | 0.85 | 0.85 | 0.90 | 0.91 | ||
11.0 | 12.4 | 12.4 | 14.7 | 14.6 | 17.5 | 17.9 | 18.5 | 16.5 | ||
Field observations fitted | 28.09 | 1.90 | 1.61 | 0.52 | 0.21 | 0.12 | 0.13 | 0.47 | 0.16 | |
4.89 | 0.26 | 0.11 | 0.02 | 0.03 | 0.01 | 0.04 | 0.02 | 0.01 | ||
0.95 | 0.63 | 0.68 | 0.90 | 0.89 | 0.85 | 0.83 | 0.89 | 0.89 | ||
11.5 | 11.4 | 11.4 | 15.5 | 13.5 | 16.8 | 17.6 | 20.6 | 16.5 |
Component of Leaves | FAGB | AGB | VWC |
---|---|---|---|
Green leaves | 0.91% | 0.87% | 0.97% |
Wilted leaves | 0.09% | 0.13% | 0.03% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Ma, M.; Chen, S.; Li, X.; Chen, S.; Zheng, X. Temporal Variation and Component Allocation Characteristics of Geometric and Physical Parameters of Maize Canopy for the Entire Growing Season. Remote Sens. 2022, 14, 3017. https://doi.org/10.3390/rs14133017
Li B, Ma M, Chen S, Li X, Chen S, Zheng X. Temporal Variation and Component Allocation Characteristics of Geometric and Physical Parameters of Maize Canopy for the Entire Growing Season. Remote Sensing. 2022; 14(13):3017. https://doi.org/10.3390/rs14133017
Chicago/Turabian StyleLi, Bingze, Ming Ma, Shengbo Chen, Xiaofeng Li, Si Chen, and Xingming Zheng. 2022. "Temporal Variation and Component Allocation Characteristics of Geometric and Physical Parameters of Maize Canopy for the Entire Growing Season" Remote Sensing 14, no. 13: 3017. https://doi.org/10.3390/rs14133017
APA StyleLi, B., Ma, M., Chen, S., Li, X., Chen, S., & Zheng, X. (2022). Temporal Variation and Component Allocation Characteristics of Geometric and Physical Parameters of Maize Canopy for the Entire Growing Season. Remote Sensing, 14(13), 3017. https://doi.org/10.3390/rs14133017