Atmospheric Formaldehyde Monitored by TROPOMI Satellite Instrument throughout 2020 over São Paulo State, Brazil
Abstract
:1. Introduction
2. Data and Methods
2.1. Formaldehyde Columns
2.2. Study Area and Analysis Windows
2.3. Meteorological Parameters and Auxiliary Data
2.4. Estimate of HCHO Surface Concentration
3. Results
3.1. Annual and Seasonal Statistics
3.2. Case Studies
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Andrade, M.V.A.S.; Pinheiro, H.L.C.; Pereira, P.A.d.P.; de Andrade, J.B. Compostos carbonílicos atmosféricos: Fontes, reatividade, níveis de concentração e efeitos toxicológicos. Química Nova 2002, 25, 1117–1131. [Google Scholar] [CrossRef] [Green Version]
- Manahan, S.E. Organic Air Pollutants and Photochemical Smog. In Fundamentals of Environmental Chemistry; CRC Press LLC: Boca Raton, FL, USA, 2001; Chapter 16. [Google Scholar]
- Cooke, M.C.; Utembe, S.R.; Gorrotxategi Carbajo, P.; Archibald, A.T.; Orr-Ewing, A.J.; Jenkin, M.E.; Derwent, R.G.; Lary, D.J.; Shallcross, D.E. Impacts of formaldehyde photolysis rates on tropospheric chemistry. Atmos. Sci. Lett. 2010, 11, 33–38. [Google Scholar] [CrossRef]
- Fortems-Cheiney, A.; Chevallier, F.; Pison, I.; Bousquet, P.; Saunois, M.; Szopa, S.; Cressot, C.; Kurosu, T.P.; Chance, K.; Fried, A. The formaldehyde budget as seen by a global-scale multi-constraint and multi-species inversion system. Atmos. Chem. Phys. 2012, 12, 6699–6721. [Google Scholar] [CrossRef] [Green Version]
- Wolfe, G.M.; Kaiser, J.; Hanisco, T.F.; Keutsch, F.N.; De Gouw, J.A.; Gilman, J.B.; Graus, M.; Hatch, C.D.; Holloway, J.; Horowitz, L.W.; et al. Formaldehyde production from isoprene oxidation across NOx regimes. Atmos. Chem. Phys. 2016, 16, 2597–2610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millet, D.B.; Jacob, D.J.; Turquety, S.; Hudman, R.C.; Wu, S.; Fried, A.; Walega, J.; Heikes, B.G.; Blake, D.R.; Singh, H.B.; et al. Formaldehyde distribution over North America: Implications for satellite retrievals of formaldehyde columns and isoprene emission. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Stavrakou, T.; Müller, J.F.; De Smedt, I.; Van Roozendael, M.; Van Der Werf, G.R.; Giglio, L.; Guenther, A. Global emissions of non-methane hydrocarbons deduced from SCIAMACHY formaldehyde columns through 2003–2006. Atmos. Chem. Phys. 2009, 9, 3663–3679. [Google Scholar] [CrossRef] [Green Version]
- Guenther, A.; Hewitt, C.N.; Erickson, D.; Fall, R.; Geron, C.; Graedel, T.; Harley, P.; Klinger, L.; Lerdau, M.; McKay, W.A.; et al. A global model of natural volatile organic compound emissions. J. Geophys. Res. 1995, 100, 8873–8892. [Google Scholar] [CrossRef]
- Andreae, M.O.; Merlet, P. Emission of trace gases and aerosols from biomass burning. Glob. Biogeochem Cycles 2001, 15, 955–966. [Google Scholar] [CrossRef] [Green Version]
- Olivier, J.G.J.; Berdowski, J.J.M.; Peters, J.A.H.; Bakker, W.; Visschedijk, A.J.H.; Bloos, J.P.J. Applications of EDGAR. Including a description of EDGAR 3.0: Reference Database with Trend Data for 1970–1995; Technical Report; Rijksinstituut voor Volksgezondheid en Milieu RIVM: Bilthoven, The Netherlands, 2001. [Google Scholar]
- Shen, L.; Jacob, D.J.; Zhu, L.; Zhang, Q.; Zheng, B.; Sulprizio, M.P.; Li, K.; De Smedt, I.; González Abad, G.; Cao, H.; et al. The 2005–2016 Trends of Formaldehyde Columns Over China Observed by Satellites: Increasing Anthropogenic Emissions of Volatile Organic Compounds and Decreasing Agricultural Fire Emissions. Geophys. Res. Lett. 2019, 46, 4468–4475. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.H.; Jahan, S.A.; Lee, J.T. Exposure to formaldehyde and its potential human health Hazards. J. Environ. Sci. Health Part C 2011, 29, 277–299. [Google Scholar] [CrossRef]
- Suresh, S.; Bandosz, T.J. Removal of formaldehyde on carbon-based materials: A review of the recent approaches and findings. Carbon 2018, 137, 207–221. [Google Scholar] [CrossRef]
- Nussbaumer, C.M.; Crowley, J.N.; Schuladen, J.; Williams, J.; Hafermann, S.; Reiffs, A.; Axinte, R.; Harder, H.; Ernest, C.; Novelli, A.; et al. Measurement report: Photochemical production and loss rates of formaldehyde and ozone across Europe. Atmos. Chem. Phys. 2021, 21, 18413–18432. [Google Scholar] [CrossRef]
- Palmer, P.I.; Jacob, D.J.; Fiore, A.M.; Martin, R.V.; Chance, K.; Kurosu, T.P. Mapping isoprene emissions over North America using formaldehyde column observations from space. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, R.A.; Khalil, M.A. Isoprene over the Amazon Basin. J. Geophys. Res. 1988, 93, 1417–1421. [Google Scholar] [CrossRef]
- Fall, R. Biogenic Emissions of Volatile Organic Compounds from Higher Plants. React. Hydrocarb. Atmos. 1999, 41–96. [Google Scholar] [CrossRef]
- Borbon, A.; Ruiz, M.; Bechara, J.; Aumont, B.; Chong, M.; Huntrieser, H.; Mari, C.; Reeves, C.E.; Scialom, G.; Hamburger, T.; et al. Transport and chemistry of formaldehyde by mesoscale convective systems in West Africa during AMMA 2006. J. Geophys. Res. 2012, 117, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Horowitz, A.; Calvert, J.G. The quantum efficiency of the primary processes in formaldehyde photolysis at 3130 Å and 25 °C. Int. J. Chem. Kinet. 1978, 10, 713–732. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Hazra, M.K.; Francisco, J.S.; Sinha, A. Gas phase hydrolysis of formaldehyde to form methanediol: Impact of formic acid catalysis. J. Phys. Chem. A 2013, 117, 11704–11710. [Google Scholar] [CrossRef]
- Lee, Y.N.; Zhou, X. Method for the Determination of Some Soluble Atmospheric Carbonyl Compounds. Environ. Sci. Technol. 1993, 27, 749–756. [Google Scholar] [CrossRef]
- Santos, M.A.; Pedrotti, J.J.; Fornaro, A. Evaluation of hydrogen peroxide in rainwater in downtown São Paulo. In Highway and Urban Environment, Proceedings of the 8th Highway and Urban Environment Symposium, Series: Alliance for Global Sustainability Bookseries; Morrison, G.M., Rauch, S., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 119–128. [Google Scholar]
- Barkley, M.P.; Smedt, I.D.; Van Roozendael, M.; Kurosu, T.P.; Chance, K.; Arneth, A.; Hagberg, D.; Guenther, A.; Paulot, F.; Marais, E.; et al. Top-down isoprene emissions over tropical South America inferred from SCIAMACHY and OMI formaldehyde columns. J. Geophys. Res. Atmos. 2013, 118, 6849–6868. [Google Scholar] [CrossRef] [Green Version]
- Boeke, N.L.; Marshall, J.D.; Alvarez, S.; Chance, K.V.; Fried, A.; Kurosu, T.P.; Rappenglück, B.; Richter, D.; Walega, J.; Weibring, P.; et al. Formaldehyde columns from the Ozone Monitoring Instrument: Urban versus background levels and evaluation using aircraft data and a global model. J. Geophys. Res. Atmos. 2011, 116, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, J.R.; Crawford, J.H.; Fried, A.; Walega, J.; Weinheimer, A.; Wisthaler, A.; Müller, M.; Mikoviny, T.; Chen, G.; Shook, M.; et al. Formaldehyde column density measurements as a suitable pathway to estimate near-surface ozone tendencies from space. J. Geophys. Res. 2016, 121, 13088–13112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fishman, J.; Bowman, K.W.; Burrows, J.P.; Richter, A.; Chance, K.V.; Edwards, D.P.; Martin, R.V.; Morris, G.A.; Pierce, R.B.; Ziemke, J.R.; et al. Remote sensing of tropospheric pollution from space. Bull. Am. Meteorol. Soc. 2008, 89, 805–821. [Google Scholar] [CrossRef] [Green Version]
- Biswas, M.S.; Pandithurai, G.; Aslam, M.Y.; Patil, R.D.; Anilkumar, V.; Dudhambe, S.D.; Lerot, C.; De Smedt, I.; Van Roozendael, M.; Mahajan, A.S. Effect of boundary layer evolution on nitrogen dioxide (NO2) and formaldehyde (HCHO) concentrations at a high-altitude observatory in western India. Aerosol. Air Qual. Res. 2021, 21, 1–21. [Google Scholar] [CrossRef]
- Abbot, D.S.; Palmer, P.I.; Martin, R.V.; Chance, K.V.; Jacob, D.J.; Guenther, A. Seasonal and interannual variability of North American isoprene emissions as determined by formaldehyde column measurements from space. Geophys. Res. Lett. 2003, 30, 1999–2002. [Google Scholar] [CrossRef] [Green Version]
- Chance, K.; Palmer, P.I.; Spurr, R.J.; Martin, R.V.; Kurosu, T.P.; Jacob, D.J. Satellite observations of formaldehyde over North America from GOME. Geophys. Res. Lett. 2000, 27, 3461–3464. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Jacob, D.J.; Mickley, L.J.; Marais, E.A.; Cohan, D.S.; Yoshida, Y.; Duncan, B.N.; Abad, G.G.; Chance, K.V. Anthropogenic emissions of highly reactive volatile organic compounds in eastern Texas inferred from oversampling of satellite (OMI) measurements of HCHO columns. Environ. Res. Lett. 2014, 9. [Google Scholar] [CrossRef] [Green Version]
- Bai, J.; de Leeuw, G.; van der, A.R.; De Smedt, I.; Theys, N.; Van Roozendael, M.; Sogacheva, L.; Chai, W. Variations and photochemical transformations of atmospheric constituents in North China. Atmos. Environ. 2018, 189, 213–226. [Google Scholar] [CrossRef]
- Chang, C.Y.; Faust, E.; Hou, X.; Lee, P.; Kim, H.C.; Hedquist, B.C.; Liao, K.J. Investigating ambient ozone formation regimes in neighboring cities of shale plays in the Northeast United States using photochemical modeling and satellite retrievals. Atmos. Environ. 2016, 142, 152–170. [Google Scholar] [CrossRef]
- Gonzalez Abad, G.; Souri, A.H.; Bak, J.; Chance, K.; Flynn, L.E.; Krotkov, N.A.; Lamsal, L.; Li, C.; Liu, X.; Miller, C.C.; et al. Five decades observing Earth’s atmospheric trace gases using ultraviolet and visible backscatter solar radiation from space. J. Quant. Spectrosc. Radiat. Transf. 2019, 238, 106478. [Google Scholar] [CrossRef]
- World Meteorological Organization. Measurement Timeline for HCHO Total Column; World Meteorological Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Nogueira, T.; Dominutti, P.A.; De Carvalho, L.R.F.; Fornaro, A.; Andrade, M.D.F. Formaldehyde and acetaldehyde measurements in urban atmosphere impacted by the use of ethanol biofuel: Metropolitan Area of Sao Paulo (MASP), 2012–2013. Fuel 2014, 134, 505–513. [Google Scholar] [CrossRef]
- Nogueira, T.; Dominutti, P.A.; Fornaro, A.; Andrade, M.d.F. Seasonal Trends of Formaldehyde and Acetaldehyde in the Megacity of São Paulo. Atmosphere 2017, 8, 18. [Google Scholar] [CrossRef] [Green Version]
- CETESB. Qualidade do Ar no Estado de São Paulo—2020; Secretaria de Infraestrutura e Meio Ambiente, Série Relatórios: São Paulo, Brazil, 2021; p. 152.
- Siddans, R.; Smith, A. Sentinel-5 Precursor/TROPOMI Level 2 Product User Manual NPP Cloud; DLR: Cologne, Germany, 2018. [Google Scholar]
- Carbone, S. Modelagem de Ozônio Troposférico em Regiões Urbanas—AperfeiçOamento do módulo Químico no Modelo CIT. Ph.D. Thesis, Universidade de São Paulo, São Paulo, Brazil, 2008. [Google Scholar]
- De Smedt, I.; Theys, N.; Yu, H.; Vlietinck, J.; he Lerot, C.; Roozendael, M.V. S5P/TROPOMI HCHO ATBD; Technical Report 2.3.0; BIRA-IASB: Uccle, Belgium, 2021. [Google Scholar]
- Veefkind, J.P.; Aben, I.; McMullan, K.; Förster, H.; de Vries, J.; Otter, G.; Claas, J.; Eskes, H.J.; de Haan, J.F.; Kleipool, Q.; et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- Chance, K.; Kurucz, R.L. An improved high-resolution solar reference spectrum for earth’s atmosphere measurements in the ultraviolet, visible, and near infrared. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 1289–1295. [Google Scholar] [CrossRef]
- De Smedt, I.; Eichmann, K.U.; Lambert, J.C.; Loyola, D.; Veefkind, J.P. S5P Mission Performance Centre Formaldehyde [L2__HCHO___] Readme; Technical Report; BIRA-IASB: Uccle, Belgium, 2019. [Google Scholar]
- Vigouroux, C.; Langerock, B.; Augusto Bauer Aquino, C.; Blumenstock, T.; Cheng, Z.; De Mazière, M.; De Smedt, I.; Grutter, M.; Hannigan, J.W.; Jones, N.; et al. TROPOMI-Sentinel-5 Precursor formaldehyde validation using an extensive network of ground-based Fourier-transform infrared stations. Atmos. Meas. Technol. 2020, 13, 3751–3767. [Google Scholar] [CrossRef]
- IBGE, Panorama: São Paulo. 2020. Available online: https://cidades.ibge.gov.br/brasil/sp/panorama (accessed on 10 December 2021).
- Instituto Florestal. Inventário Florestal do Estado de São Paulo—Mapeamento da Cobertura Vegetal Nativa; Secretaria de Infraestrutura e Meio Ambiente, Instituto Florestal: São Paulo, Brazil, 2020; Volume 60.
- Zhang, Y.; Li, R.; Min, Q.; Bo, H.; Fu, Y.; Wang, Y.; Gao, Z. The Controlling Factors of Atmospheric Formaldehyde (HCHO) in Amazon as Seen From Satellite. Earth Space Sci. 2019, 6, 959–971. [Google Scholar] [CrossRef] [Green Version]
- Observatório da Cana. Área Cultivada Com Cana-de-Açúcar—Área Total por Estado; Observatório da Cana: São Paulo, Brazil, 2018. [Google Scholar]
- Ribeiro, H.; de Assunção, J.V. Efeitos das queimadas na saúde humana. Estudos Avançados 2002, 16, 125–148. [Google Scholar] [CrossRef] [Green Version]
- CETESB. Emissões Veiculares no Estado de São Paulo; Secretaria de Infraestrutura e Meio Ambiente, Série Relatórios: São Paulo, Brazil, 2019; p. 140.
- CONAMA. Resolução n° 18/1986; Diário Oficial da República Federativa do Brasil: Brasília, Brazil, 1986.
- IBAMA. PROCONVE/PROMOT, 3rd ed.; Coleção Meio Ambiente, Série Diretrizes: Brasília, Brazil, 2011; p. 584.
- Carvalho, V.S.B.; Freitas, E.D.; Martins, L.D.; Martins, J.A.; Mazzoli, C.R.; Andrade, M.d.F. Air quality status and trends over the Metropolitan Area of São Paulo, Brazil as a result of emission control policies. Environ. Sci. Policy 2015, 47, 68–79. [Google Scholar] [CrossRef]
- IEA. Valor da Produção Agropecuária do Estado de São Paulo: Resultado Preliminar 2020; Instituto de Economia Agrícola: São Paulo, Brazil, 2020. [Google Scholar]
- da Costa, M.L.O. A Queima da Palha da Cana-de-Açúcar no Estado de São Paulo; Migalhas: São Paulo, Brazil, 2013. [Google Scholar]
- Paraiso, M.L.d.S.; Gouveia, N. Riscos à saúde devido à queima prévia da palha de cana-de-açúcar no Estado de São Paulo, Brasil. Rev. Bras. Epidemiol. 2015, 18, 691. [Google Scholar] [CrossRef] [Green Version]
- Baccarin, J.G.; de Oliveira, J.A.; Mardegan, G.E. The environmental, social and economic effects of recent technological changes in sugarcane on the State of São Paulo, Brazil. J. Agrar. Chang. 2020, 20, 598–617. [Google Scholar] [CrossRef]
- Valente, F.; Laurini, M. Pre-harvest sugarcane burning: A statistical analysis of the environmental impacts of a regulatory change in the energy sector. Clean. Eng. Technol. 2021, 4, 14. [Google Scholar] [CrossRef]
- Aguiar, D.A.; Rudorff, B.F.T.; Silva, W.F.; Adami, M.; Mello, M.P. Remote sensing images in support of environmental protocol: Monitoring the sugarcane harvest in São Paulo State, Brazil. Remote Sens. 2011, 3, 2682–2703. [Google Scholar] [CrossRef] [Green Version]
- Metzger, J.P.; Alves, L.F.; Goulart, W.; Teixeira, A.M.d.G.; Simões, S.J.C.; Catharino, E.L.M. Uma área de relevante interesse biológico, porém pouco conhecida: A Reserva Florestal do Morro Grande. Biota Neotrop. 2006, 6, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Thomaziello, S.A. Sustentabilidade Ambiental e serviços Ecossistêmicos: Uma Estratégia para Avaliar Zonas Amortecimento de Paisagens Protegidas—O caso da Reserva Florestal do Morro Grande/SP. Ph.D. Thesis, Universidade Estadual de Campinas, Campinas, Brazil, 2016. [Google Scholar]
- Corrêa, S.M.; Arbilla, G.; Martins, E.M.; Quitério, S.L.; de Souza Guimarães, C.; Gatti, L.V. Five years of formaldehyde and acetaldehyde monitoring in the Rio de Janeiro downtown area—Brazil. Atmos. Environ. 2010, 44, 2302–2308. [Google Scholar] [CrossRef]
- De Andrade, J.B.; Andrade, M.V.; Pinheiro, H.L. Atmospheric levels of formaldehyde and acetaldehyde and their relationship with the vehicular fleet composition in Salvador, Bahia, Brazil. J. Braz. Chem. Soc. 1998, 9, 219–223. [Google Scholar] [CrossRef]
- Pinto, J.P.; Solci, M.C. Comparison of rural and urban atmospheric aldehydes in Londrina, Brazil. J. Braz. Chem. Soc. 2007, 18, 928–936. [Google Scholar] [CrossRef]
- Piñero Sánchez, M.; de Oliveira, A.P.; Varona, R.P.; Tito, J.V.; Codato, G.; Ribeiro, F.N.D.; Marques Filho, E.P.; da Silveira, L.C. Rawinsonde based analysis of the urban boundary layer in the metropolitan region of São Paulo, Brazil. Earth Space Sci. 2020, 7. [Google Scholar] [CrossRef]
- de Souza, A.; Abreu, M.C.; de Oliveira-Júnior, J.F.; Aviv-Sharon, E.; Fernandes, W.A.; Aristone, F. Variations in the tropospheric concentration of NO2 in the central west of Brazil, MS, and their relationship with the COVID-19. Air Qual. Atmos. Health 2021. [Google Scholar] [CrossRef]
- Libonati, R.; Geirinhas, J.L.; Silva, P.S.; Russo, A.; Rodrigues, J.A.; Belém, L.B.; Nogueira, J.; Roque, F.O.; Dacamara, C.C.; Nunes, A.M.; et al. Assessing the role of compound drought and heatwave events on unprecedented 2020 wildfires in the Pantanal. Environ. Res. Lett. 2022, 17. [Google Scholar] [CrossRef]
- do Rosário, N.É.; Sena, E.T.; Yamasoe, M.A.; Paulo, S. South American regional smoke plume in recent years: Main sources and impact on solar radiation focusing on the Pantanal 2020 biomass burning season. Atmos. Chem. Phys. 2022, 24. [Google Scholar] [CrossRef]
- Garcia, L.C.; Szabo, J.K.; de Oliveira Roque, F.; de Matos Martins Pereira, A.; Nunes da Cunha, C.; Damasceno-Júnior, G.A.; Morato, R.G.; Tomas, W.M.; Libonati, R.; Ribeiro, D.B. Record-breaking wildfires in the world’s largest continuous tropical wetland: Integrative fire management is urgently needed for both biodiversity and humans. J. Environ. Manag. 2021, 293, 112870. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Holloway, T.; Bindl, M.; Harkey, M.; De Smedt, I. Ambient Formaldehyde over the United States from Ground-Based (AQS) and Satellite (OMI) Observations. Remote Sens. 2022, 14, 2191. [Google Scholar] [CrossRef]
- Friedenson, B. Inherited mutations impair responses to environmental carcinogens: Cancer prevention in mutation carriers. Nat. Preced. 2011. [Google Scholar] [CrossRef] [Green Version]
- ANFAVEA. Autoveículos—Produção, Vendas Internas e Exportações; Technical Report; Anuário da Indústria Automobilística Brasileira: Indianópolis, São Paulo, Brazil, 2008. [Google Scholar]
- Siciliano, B.; Carvalho, G.; da Silva, C.M.; Arbilla, G. The Impact of COVID-19 Partial Lockdown on Primary Pollutant Concentrations in the Atmosphere of Rio de Janeiro and São Paulo Megacities (Brazil). Bull. Environ. Contam. Toxicol. 2020, 105, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Zhu, L.; De Smedt, I.; Bai, B.; Pu, D.; Chen, Y.; Shu, L.; Wang, D.; Fu, T.M.; Wang, X.; et al. Global Significant Changes in Formaldehyde (HCHO) Columns Observed From Space at the Early Stage of the COVID-19 Pandemic. Geophys. Res. Lett. 2021, 48. [Google Scholar] [CrossRef] [PubMed]
- Rudke, A.P.; Martins, J.A.; de Almeida, D.S.; Martins, L.D.; Beal, A.; Hallak, R.; Freitas, E.D.; Andrade, M.F.; Foroutan, H.; Baek, B.H.; et al. How mobility restrictions policy and atmospheric conditions impacted air quality in the State of São Paulo during the COVID-19 outbreak. Environ. Res. 2021, 198. [Google Scholar] [CrossRef] [PubMed]
Analysis Window | Days with Data | HCHO (10−4 mol/m²) | Tukey’s Test Result |
---|---|---|---|
Zona Leste | 181 | A | |
Campo Limpo | 185 | A | |
Mirante de Santana | 201 | A | |
Parque CienTec | 193 | AB | |
Mauá | 180 | ABC | |
Osasco | 204 | ABC | |
Barueri | 203 | ABCD | |
Guarulhos | 196 | ABCDE | |
Morro Grande 2 | 168 | BCDE | |
Morro Grande 1 | 170 | CDEF | |
PEMD 3 | 206 | DEF | |
NERG 2 | 241 | EF | |
NERG 3 | 246 | EF | |
PEMD 2 | 200 | EF | |
PETAR 2 | 172 | F | |
PETAR 3 | 150 | F | |
NERG 1 | 246 | F | |
PEMD 1 | 195 | F | |
PETAR 1 | 140 | F |
Analysis Window | Summer (10−4 mol/m²) | Autumn (10−4 mol/m²) | Winter (10−4 mol/m²) | Spring (10−4 mol/m²) |
---|---|---|---|---|
Zona Leste | (29) | (57) | (61) | (34) |
Campo Limpo | (31) | (43) | (67) | (44) |
Mirante de Santana | (36) | (50) | (69) | (46) |
Parque CienTec | (30) | (51) | (69) | (43) |
Mauá | (31) | (45) | (63) | (41) |
Osasco | (35) | (53) | (68) | (48) |
Barueri | (36) | (48) | (68) | (51) |
Guarulhos | (33) | (50) | (64) | (49) |
Morro Grande 2 | (30) | (43) | (63) | (32) |
Morro Grande 1 | (29) | (50) | (58) | (33) |
PEMD 3 | (48) | (45) | (62) | (51) |
NERG 2 | (54) | (54) | (76) | (57) |
NERG 3 | (50) | (54) | (80) | (62) |
PEMD 2 | (45) | (44) | (63) | (48) |
PETAR 2 | (38) | (44) | (52) | (38) |
PETAR 3 | (34) | (35) | (50) | (31) |
NERG 1 | (52) | (60) | (69) | (65) |
PEMD 1 | (45) | (38) | (65) | (47) |
PETAR 1 | (29) | (33) | (43) | (35) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freitas, A.D.; Fornaro, A. Atmospheric Formaldehyde Monitored by TROPOMI Satellite Instrument throughout 2020 over São Paulo State, Brazil. Remote Sens. 2022, 14, 3032. https://doi.org/10.3390/rs14133032
Freitas AD, Fornaro A. Atmospheric Formaldehyde Monitored by TROPOMI Satellite Instrument throughout 2020 over São Paulo State, Brazil. Remote Sensing. 2022; 14(13):3032. https://doi.org/10.3390/rs14133032
Chicago/Turabian StyleFreitas, Arthur Dias, and Adalgiza Fornaro. 2022. "Atmospheric Formaldehyde Monitored by TROPOMI Satellite Instrument throughout 2020 over São Paulo State, Brazil" Remote Sensing 14, no. 13: 3032. https://doi.org/10.3390/rs14133032
APA StyleFreitas, A. D., & Fornaro, A. (2022). Atmospheric Formaldehyde Monitored by TROPOMI Satellite Instrument throughout 2020 over São Paulo State, Brazil. Remote Sensing, 14(13), 3032. https://doi.org/10.3390/rs14133032