Comprehensive Risk Assessment of Urban Waterlogging Disaster Based on MCDA-GIS Integration: The Case Study of Changchun, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Data and Methodology
2.2.1. Data Acquisition and Preparation Techniques
2.2.2. Analytic Hierarchy Process (AHP)
2.2.3. Modelling of Urban Waterlogging Disaster Criterion Layer
2.2.4. Modeling of Urban Waterlogging Risk Index
3. Results
3.1. Parameter Introduction and Processing Results
3.1.1. Hazard Indicator
Altitude
Slope
Rainfall
Geomorphology
Normalized Difference Moisture Index (NDMI)
Normalized Difference Vegetation Index (NDVI)
Distance to Waterbodies
Drainage Density
Land Use and Land Cover (LULC)
3.1.2. Exposure Evaluation Index
Population Density
GDP
Road Density
3.1.3. Vulnerability Evaluation Index
Proportion of Vulnerable Population
Commercial Buildings and Residential Buildings
3.1.4. Emergency Responses and Recovery Capability
Per Capita Income
Institutional Capacity
Education Status
3.2. Hazard, Exposure, Vulnerability, and Emergency Responses and Recovery Capability Map
3.3. Waterlogging Risk
4. Discussion
4.1. Waterlogging Point Verification
- The drainage pipe network in the old city of Changchun was built earlier, and the design drainage standard is relatively low. At present, it is difficult to reform the drainage pipe network, and waterlogging occurs easily with the increase in impervious ground;
- Due to the age of the drainage pipes and serious levels of deposits on them, the bottom pipe network cannot accommodate a large amount of sudden rainfall. Generally, heavy rainfall over time can be drained in two to three hours, but there will be local water accumulation;
- Because the river’s water level rises, backing up into the drainage pipe network, the water cannot be discharged in time.
4.2. Comparison with Other Evaluation Methods
4.3. The Guiding Significance of Risk Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yin, Z.; Yin, J.; Xu, S.; Wen, J. Community-based scenario modelling and disaster risk assessment of urban rainstorm waterlogging. J. Geogr. Sci. 2011, 21, 274–284. [Google Scholar] [CrossRef]
- Sofia, G.; Ragazzi, F.; Giandon, P.; Dalla Fontana, G.; Tarolli, P. On the linkage between runoff generation, land drainage, soil properties, and temporal patterns of precipitation in agricultural floodplains. Water Resour. 2019, 124, 120–138. [Google Scholar] [CrossRef]
- Sofia, G.; Roder, G.; Fontana, G.D.; Tarolli, P. Flood dynamics in urbanised landscapes: 100 years of climate and humans’ interaction. Sci. Rep. 2017, 7, 40527. [Google Scholar] [CrossRef] [PubMed]
- Sofia, G.; Prosdocimi, M.; Fontana, G.D.; Tarolli, P. Modification of artificial drainage networks during the past half-century: Evidence and effects in a reclamation area in the Veneto floodplain (Italy). Anthropocene 2014, 6, 48–62. [Google Scholar] [CrossRef]
- Su, M.; Ying, Z.; Yan, H.; Chen, Q.; Chen, S.; Chen, Z.; Hong, X. The influence of landscape pattern on the risk of urban water-logging and flood disaster. Ecol. Indic. 2017, 92, 133–140. [Google Scholar] [CrossRef]
- Hallegatte, S.; Green, C.; Nicholls, R.J.; Corfee-Morlot, J. Future flood losses in major coastal cities. Nat. Clim. Chang. 2013, 3, 802. [Google Scholar] [CrossRef]
- Woodruff, J.D.; Irish, J.L.; Camargo, S.J. Coastal flooding by tropical cyclones and sea-level rise. Nature 2013, 504, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Fahy, B.; Brenneman, E.; Chang, H.; Shandas, V. Spatial analysis of urban flooding and extreme heat hazard potential in Portland, OR. Int. J. Disaster Risk Reduct. 2019, 39, 101117. [Google Scholar] [CrossRef]
- Li, C.; Cheng, X.; Li, N.; Du, X.; Yu, Q.; Kan, G. A Framework for Flood Risk Analysis and Benefit Assessment of Flood Control Measures in Urban Areas. Int. J. Environ. Res. Public Health 2016, 13, 787. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Xi, C.; Zhu, Z.; Xie, Y.; Kai, L. The changing pattern of urban flooding in Guangzhou, China. Sci. Total Environ. 2017, 622, 394–401. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Jones, S.; Shabani, F. Identifying the essential flood conditioning factors for flood prone area mapping using machine learning techniques. Catena 2019, 175, 174–192. [Google Scholar] [CrossRef]
- Wang, C.; Du, S.; Wen, J.; Zhang, M.; Gu, H.; Shi, Y.; Xu, H. Analyzing explanatory factors of urban pluvial floods in Shanghai using geographically weighted regression. Stoch. Environ. Res. Risk Assess. 2017, 31, 1777–1790. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, J.; Yu, J.; Randall, M.; Zhang, Y.; Zhao, T.; Pan, X.; Zhai, X.; Shao, Q. Simulation and assessment of urbanization impacts on runoff metrics: Insights from landuse changes. J. Hydrol. 2018, 560, 247–258. [Google Scholar] [CrossRef]
- Shuster, W.D.; Bonta, J.; Thurston, H.; Warnemuende, E.; Smith, D.R. Impacts of impervious surface on watershed hydrology: A review. Urban Water J. 2005, 2, 263–275. [Google Scholar] [CrossRef]
- Jiansheng, W.U.; Zhang, P. The effect of urban landscape pattern on urban waterlogging. Acta Geogr. Sin. 2017, 72, 444–456. [Google Scholar] [CrossRef]
- Ahammed, F. A review of water-sensitive urban design technologies and practices for sustainable stormwater management. Sustain. Water Resour. Manag. 2017, 3, 269–282. [Google Scholar] [CrossRef]
- Miao, Z.T.; Han, M.; Hashemi, S. The effect of successive low-impact development rainwater systems on peak flow reduction in residential areas of Shizhuang, China. Environ. Earth Sci. 2019, 78, 51. [Google Scholar] [CrossRef]
- Shao, W.; Zhang, H.; Liu, J.; Yang, G.; Chen, X. Data Integration and its Application in the Sponge City Construction of CHINA. Procedia Eng. 2016, 154, 779–786. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Yang, R.; Song, J. Effectiveness of low-impact development for urban inundation risk mitigation under different scenarios: A case study in Shenzhen, China. Nat. Hazards Earth Syst. Sci. 2018, 18, 2525–2536. [Google Scholar] [CrossRef] [Green Version]
- Zimmer, C.A.; Heathcote, I.W.; Whiteley, H.R.; Schroter, H. Low-Impact-Development Practices for Stormwater: Implications for Urban Hydrology. Can. Water Resour. J. 2007, 32, 193–212. [Google Scholar] [CrossRef]
- Zhao, G.; Pang, B.; Xu, Z.; Yue, J.; Tu, T. Mapping flood susceptibility in mountainous areas on a national scale in China. Sci. Total Environ. 2018, 615, 1133–1142. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Lai, C.; Chen, X.; Yang, B.; Zhao, S.; Bai, X. Flood hazard risk assessment model based on random forest. J. Hydrol. 2015, 527, 1130–1141. [Google Scholar] [CrossRef]
- Roy, S.; Bose, A.; Singha, N.; Basak, D.; Chowdhury, I.R. Urban waterlogging risk as an undervalued environmental challenge: An Integrated MCDA-GIS based modeling approach. Environ. Chall. 2021, 4, 100194. [Google Scholar] [CrossRef]
- Dong, Y.; Ren, Z.; Fu, Y.; Miao, Z.; He, X. Recording Urban Land Dynamic and Its Effects during 2000–2019 at 15-m Resolution by Cloud Computing with Landsat Series. Remote Sens. 2020, 12, 2451. [Google Scholar] [CrossRef]
- Lb, A.; Kw, A.; Idmt, B.; Omr, C.; Apvb, C.; Mgmc, D. Urban flood resilience–A multi-criteria index to integrate flood resilience into urban planning. J. Hydrol. 2019, 573, 970–982. [Google Scholar] [CrossRef]
- Moghadas, M.; Asadzadeh, A.; Vafeidis, A.; Fekete, A.; Kötter, T. A multi-criteria approach for assessing urban flood resilience in Tehran, Iran. Int. J. Disaster Risk Reduct. 2019, 35, 101069. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation; McGraw-Hill: Basel, Switzerland, 1980. [Google Scholar]
- Qza, B.; Zwb, C.; Hui, Z.D.; Gdf, A.; Pt, A. Identifying dominant factors of waterlogging events in metropolitan coastal cities: The case study of Guangzhou, China. J. Environ. Manag. 2020, 271, 110951. [Google Scholar] [CrossRef]
- Mahmoud, S.H.; Gan, T.Y. Urbanization and climate change implications in flood risk management: Developing an efficient decision support system for flood susceptibility mapping. Sci. Total Environ. 2018, 636, 152–167. [Google Scholar] [CrossRef]
- Hoque, M.; Tasfia, S.; Ahmed, N.; Pradhan, B. Assessing Spatial Flood Vulnerability at Kalapara Upazila in Bangladesh Using an Analytic Hierarchy Process. Sensors 2019, 19, 1302. [Google Scholar] [CrossRef] [Green Version]
- Tayyab, M.; Zhang, J.; Hussain, M.; Ullah, S.; Liu, X.; Khan, S.N.; Baig, M.A.; Hassan, W.; AlShaibah, B. GIS-Based Urban Flood Resilience Assessment Using Urban Flood Resilience Model: A Case Study of Peshawar City, Khyber Pakhtunkhwa, Pakistan. Remote Sens. 2021, 13, 1864. [Google Scholar] [CrossRef]
- Sankar, S.A. A Study on Moyna Basin Water-Logged Areas (India) Using Remote Sensing and GIS Methods and Their Contemporary Economic Significance. Geogr. J. 2014, 2014, 401324. [Google Scholar] [CrossRef]
- Hamidi, A.R.; Wang, J.; Guo, S.; Zeng, Z. Flood vulnerability assessment using MOVE framework: A case study of the northern part of district Peshawar, Pakistan. Nat. Hazards J. Int. Soc. Prev. Mitig. Nat. Hazards 2020, 101, 385–408. [Google Scholar] [CrossRef]
- Peng, C.; Zhang, J.; Zhang, L.; Sun, Y. Evaluation of Resident Evacuations in Urban Rainstorm Waterlogging Disasters Based on Scenario Simulation: Daoli District (Harbin, China) as an Example. Int. J. Environ. Res. Public Health 2014, 11, 9964–9980. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.; Bose, A.; Chowdhury, I.R. Flood risk assessment using geospatial data and multi-criteria decision approach: A study from historically active flood-prone region of Himalayan foothill, India. Arab. J. Geosci. 2021, 14, 999. [Google Scholar] [CrossRef]
- Omran; El-Sayed, E. Evolving waterlogged identification system to assess spatiotemporal impact of the new Suez Canal corridor, Egypt. J. Coast. Conserv. 2017, 21, 849–865. [Google Scholar] [CrossRef]
- Sar, N.; Chatterjee, S.; Adhikari, M.D. Integrated remote sensing and GIS based spatial modelling through analytical hierarchy process (AHP) for water logging hazard, vulnerability and risk assessment in Keleghai river basin, India. Modeling Earth Syst. Environ. 2015, 1, 31. [Google Scholar] [CrossRef] [Green Version]
- Saha, A.K.; Agrawal, S. Mapping and assessment of flood risk in Prayagraj district, India: A GIS and remote sensing study. Nanotechnol. Environ. Eng. 2020, 5, 11. [Google Scholar] [CrossRef]
- Alam, R.; Quayyum, Z.; Moulds, S.; Radia, M.A.; Butler, A. Dhaka City Water logging Hazards: Area Identification and Vulnerability Assessment through GIS-Remote Sensing Techniques. Res. Sq. 2021, 1, 27. [Google Scholar] [CrossRef]
- Tran, D.; Xu, D.; Dang, V.; Alwah, A. Predicting Urban Waterlogging Risks by Regression Models and Internet Open-Data Sources. Water 2020, 12, 879. [Google Scholar] [CrossRef] [Green Version]
- Shah, A.A.; Ye, J.; Abid, M.; Khan, J.; Amir, S.M. Flood hazards: Household vulnerability and resilience in disaster-prone districts of Khyber Pakhtunkhwa province, Pakistan. Nat. Hazards 2018, 93, 147–165. [Google Scholar] [CrossRef]
Sl. No | Parameters | Data Types | Date Details | Source |
---|---|---|---|---|
Waterlogging hazard indicators | ||||
1 | Altitude | ASTER GDEM | 30 m × 30 m | https://www.gscloud.cn (accessed on 18 March 2022) |
2 | Slope | ASTER GDEM | 30 m × 30 m | https://www.gscloud.cn |
3 | Rainfall | Raster data | 2017–2021 | http://data.cma.cn/ (accessed on 9 February 2022) |
4 | Geomorphology | Vector layer | 1:4 million | https://www.databox.store (accessed on 21 April 2022) |
5 | NDMI | Landsat 8 OLI/TIRS | 30 m × 30 m | https://www.gscloud.cn (accessed on 21 April 2022) |
6 | NDVI | Landsat 8 OLI/TIRS | 30 m × 30 m | https://www.databox.store (accessed on 21 April 2022) |
7 | Distance to waterbodies | Vector layer | 2021 | https://www.gscloud.cn (accessed on 21 April 2022) |
8 | LULC | Raster data | 30 m × 30 m | https://www.databox.store (accessed on 21 April 2022) |
9 | Drainage density | Vector layer | 2021 | http://www.guihuayun.com/ (accessed on 6 April 2022) |
Exposure evaluation index | ||||
1 | Population density | Raster data | 2020 | World UN population density data set |
2 | Road density | Road network shape file | 2021 | https://www.gscloud.cn (accessed on 6 April 2022) |
3 | GDP | Raster data | 2022 | https://www.databox.store (accessed on 6 April 2022) |
Vulnerability Evaluation Index | ||||
1 | Proportion of vulnerable population | Attribute data | 2021 | Changchun Statistical Yearbook |
2 | Commercial buildings | POI | 2022 | http://www.guihuayun.com/(accessed on 6 April 2022) |
3 | Residential buildings | POI | 2022 | http://www.guihuayun.com/ (accessed on 6 April 2022) |
Emergency responses and recovery capability | ||||
1 | Per capita income | Raster data | 2021 | Changchun Statistical Yearbook |
2 | Institutional capacity | Attribute data | 2021 | Changchun Statistical Yearbook |
3 | Education status | Attribute data | 2021 | Changchun Statistical Yearbook |
The Intensity of Importance/Judgments | Numeric Value |
---|---|
Equal importance | 1 |
Moderate importance | 3 |
Strong importance | 5 |
Very strong importance | 7 |
Extreme importance | 9 |
The median value of two adjacent judgments | 2, 4, 6, 8 |
Umber of Criteria (n) | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|
RI | 0.28 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 |
Target Layer | Criterion Layer | Criterion Layer Weights | Indicator Layer | AHP Normalized Weight |
---|---|---|---|---|
Waterlogging risk | Hazard | 0.4171 | Altitude | 0.2754 |
Slope | 0.1946 | |||
Rainfall | 0.1568 | |||
Geomorphology | 0.021 | |||
NDMI | 0.0603 | |||
NDVI | 0.0433 | |||
Distance to waterbodies | 0.0298 | |||
LULC | 0.0903 | |||
Drainage density | 0.1285 | |||
Exposure | 0.1585 | Population density | 0.5714 | |
Road density | 0.1429 | |||
GDP | 0.2857 | |||
Vulnerability | 0.1294 | Proportion of vulnerable population | 0.1634 | |
Commercial buildings | 0.297 | |||
Residential buildings | 0.5396 | |||
Emergency responses and recovery capability | 0.295 | Per capita income | 0.1929 | |
Institutional capacity | 0.701 | |||
Education status | 0.1061 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, C.; Zhang, J.; Chen, Y.; Lang, Q.; Zhang, Y.; Wu, C.; Zhang, Z. Comprehensive Risk Assessment of Urban Waterlogging Disaster Based on MCDA-GIS Integration: The Case Study of Changchun, China. Remote Sens. 2022, 14, 3101. https://doi.org/10.3390/rs14133101
Duan C, Zhang J, Chen Y, Lang Q, Zhang Y, Wu C, Zhang Z. Comprehensive Risk Assessment of Urban Waterlogging Disaster Based on MCDA-GIS Integration: The Case Study of Changchun, China. Remote Sensing. 2022; 14(13):3101. https://doi.org/10.3390/rs14133101
Chicago/Turabian StyleDuan, Chenyu, Jiquan Zhang, Yanan Chen, Qiuling Lang, Yichen Zhang, Chenyang Wu, and Zhen Zhang. 2022. "Comprehensive Risk Assessment of Urban Waterlogging Disaster Based on MCDA-GIS Integration: The Case Study of Changchun, China" Remote Sensing 14, no. 13: 3101. https://doi.org/10.3390/rs14133101
APA StyleDuan, C., Zhang, J., Chen, Y., Lang, Q., Zhang, Y., Wu, C., & Zhang, Z. (2022). Comprehensive Risk Assessment of Urban Waterlogging Disaster Based on MCDA-GIS Integration: The Case Study of Changchun, China. Remote Sensing, 14(13), 3101. https://doi.org/10.3390/rs14133101