Generalized Labeled Multi-Bernoulli Multi-Target Tracking with Doppler-Only Measurements
Abstract
:1. Introduction
2. Target and Sensor Models
3. Generalized Labeled Multi-Bernoulli Recursion
4. Multi-Sensor GLMB Filter with CAR Based Birth Model
4.1. Problem Formulation
4.2. Measurement Classification
4.3. CAR Based Birth Distribution Estimation
4.4. Detailed Implementation Steps
- sensor model parameters: position , carrier frequency , detection probability , and clutter intensity for sensor ;
- birth model parameters: the maximum speed , the minimum and maximum detection ranges of the sensor, and the number of birth samples;
- likelihood function and transition density ;
- survival probability function .
Algorithm 1 Step-by-step pseudocode for a single run of the CAR-GLMB method. |
INPUT: → The posterior and birth distribution from previous time step |
OUTPUT: → The posterior and birth distribution at the current time |
1: Predict persistent and birth distributions to obtain the prior distribution |
2: Select P sensors: |
3: Collect measurement set from sensors |
4: for sensor do |
5: if then |
6: Predict |
7: else |
8: Pseudo-predict |
9: end if |
10: Calculate parameters of the posterior to obtain |
11: end for |
12: The fused posterior |
13: Collect the complementary measurement set from sensors |
14: for do |
15: |
16: while do |
17: Generate a birth sample using (38)–(43). |
18: . |
19: end while |
20: Collect the birth distribution for z as |
21: end for |
22: The birth distribution is obtained as |
5. Numerical Simulations and Results
5.1. Scenario 1: Single Target Simulation
5.2. Scenario 2: Multi-Target Simulation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Salinger, S.N.; Brandstatter, J.J. Application of recursive estimation and Kalman filtering to Doppler tracking. IEEE Trans. Aerosp. Electron. Syst. 1970, 4, 585–592. [Google Scholar] [CrossRef]
- Chan, Y.T.; Jardine, F.L. Target localization and tracking from Doppler-shift measurements. IEEE J. Ocean. Eng. 1990, 15, 251–257. [Google Scholar] [CrossRef]
- Richter, Y.; Gerasimov, J.; Balal, N.; Pinhasi, Y. Tracking of evasive objects using bistatic Doppler radar operating in the millimeter wave regime. Remote Sens. 2022, 14, 867. [Google Scholar] [CrossRef]
- Sun, W.; Ji, M.; Huang, W.; Ji, Y.; Dai, Y. Vessel tracking using bistatic compact HFSWR. Remote Sens. 2020, 12, 1266. [Google Scholar] [CrossRef] [Green Version]
- Subedi, S.; Zhang, Y.D.; Amin, M.G.; Himed, B. Group sparsity based multi-target tracking in passive multi-static radar systems using Doppler-only measurements. IEEE Trans. Signal Process. 2016, 64, 3619–3634. [Google Scholar] [CrossRef]
- Ristic, B.; Farina, A. Recursive Bayesian state estimation from Doppler-shift measurements. In Proceedings of the International Conference on Intelligent Sensors, Sensor Networks and Information Processing, Adelaide, SA, Australia, 6–9 December 2011; pp. 538–543. [Google Scholar]
- Borisov, A.; Bosov, A.; Miller, B.; Miller, G. Passive Underwater Target Tracking: Conditionally Minimax Nonlinear Filtering with Bearing-Doppler Observations. Sensors 2020, 20, 2257. [Google Scholar] [CrossRef]
- Miller, A.; Miller, B.; Miller, G. Navigation of Underwater Drones and Integration of Acoustic Sensing with Onboard Inertial Navigation System. Drones 2021, 5, 83. [Google Scholar] [CrossRef]
- Asaf, T.; Itzik, K.; Reuven, K. Inertial Navigation System/Doppler Velocity Log (INS/DVL) Fusion with Partial DVL Measurements. Sensors 2017, 17, 415. [Google Scholar]
- Shames, I.; Bishop, A.N.; Smith, M.; Anderson, B.D.O. Doppler shift target localization. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 266–276. [Google Scholar] [CrossRef] [Green Version]
- Battistelli, G.; Chisci, L.; Fantacci, C.; Farina, A.; Graziano, A. A new approach for Doppler-only target tracking. In Proceedings of the 16th International Conference on Information Fusion, Istanbul, Turkey, 9–12 July 2013; pp. 1616–1623. [Google Scholar]
- Bosse, J.; Krasnov, O.; Yarovoy, A. Direct target localization and deghosting in active radar network. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 3139–3150. [Google Scholar] [CrossRef]
- Mallick, M.; Krishnamurthy, V.; Vo, B.N. Integrated Tracking, Classification, and Sensor Management: Theory and Applications; Wiley: Hoboken, NJ, USA; IEEE: Piscataway, NJ, USA, 2012. [Google Scholar]
- Fortmann, T.E.; Bar-Shalom, Y.; Scheffe, M. Sonar tracking of multiple targets using joint probabilistic data association. IEEE J. Ocean. Eng. 1983, 8, 173–184. [Google Scholar] [CrossRef] [Green Version]
- Reid, D. An algorithm for tracking multiple targets. IEEE Trans. Autom. Control 1979, 24, 843–854. [Google Scholar] [CrossRef]
- Kurien, T. Issues in the design of practical multitarget tracking algorithms. In Multitarget-Multisensor Tracking: Advanced Applications; Bar-Shalom, Y., Ed.; Artech House: Norwood, MA, USA, 1990; Chapter 3; pp. 43–83. [Google Scholar]
- Roecker, J.A. Multiple scan joint probabilistic data association. IEEE Trans. Aerosp. Electron. Syst. 1995, 31, 1204–1210. [Google Scholar] [CrossRef]
- Pattipati, K.; Deb, S.; Bar-Shalom, Y.; Washburn, R. A new relaxation algorithm and passive sensor data association. IEEE Trans. Autom. Control 1992, 37, 198–213. [Google Scholar] [CrossRef]
- Poore, A.; Rijavec, N. A Lagrangian relaxation algorithm for multidimensional assignment problems arising from multitarget tracking. SIAM J. Optim. 1993, 3, 544–563. [Google Scholar] [CrossRef]
- Fitzgerald, R.J. Track Biases and Coalescence with Probabilistic Data Association. IEEE Trans. Aerosp. Electron. Syst. 1985, AES-21, 822–825. [Google Scholar] [CrossRef]
- Blom, H.; Bloem, E.A. Probabilistic data association avoiding track coalescence. IEEE Trans. Autom. Control 2000, 45, 247–259. [Google Scholar] [CrossRef]
- Zhu, Y.; Liang, S.; Wu, X.; Yang, H. A random finite set based joint probabilistic data association filter with non-homogeneous Markov chain. Front. Inf. Technol. Electron. Eng. 2021, 22, 1114–1126. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, J.; Liang, S.; Wang, J. Covariance control joint integrated probabilistic data association filter for multi-target tracking. IET Radar Sonar Navig. 2019, 13, 584–592. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, J.; Liang, S. Efficient joint probabilistic data association filter based on Kullback–Leibler divergence for multi-target tracking. IET Radar Sonar Navig. 2017, 11, 1540–1548. [Google Scholar] [CrossRef]
- Mahler, R. Statistical Multisource-Multitarget Information Fusion; Artech House: Norwood, MA, USA, 2007. [Google Scholar]
- Mahler, R. Advances in Statistical Multisource-Multitarget Information Fusion; Artech House: Norwood, MA, USA, 2014. [Google Scholar]
- Vo, B.N.; Mallick, M.; Bar-Shalom, Y.; Coraluppi, S.; Osborne, R., III; Mahler, R.; Vo, B.T. Multitarget tracking. In Wiley Encyclopedia of Electrical and Electronics Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 1–25. [Google Scholar]
- Mahler, R. Multitarget Bayes filtering via first-order multitarget moments. IEEE Trans. Aerosp. Electron. Syst. 2003, 39, 1152–1178. [Google Scholar] [CrossRef]
- Mahler, R. PHD filters of higher order in target number. IEEE Trans. Aerosp. Electron. Syst. 2007, 43, 1523–1543. [Google Scholar] [CrossRef]
- Vo, B.T.; Vo, B.N.; Cantoni, A. The cardinality balanced multi-target multi-Bernoulli filter and its implementations. IEEE Trans. Signal Process. 2009, 57, 409–423. [Google Scholar]
- Vo, B.T.; Vo, B.N. Labeled random finite sets and multi-target conjugate priors. IEEE Trans. Signal Process. 2013, 61, 3460–3475. [Google Scholar] [CrossRef]
- Vo, B.N.; Vo, B.T.; Phung, D. Labeled random finite sets and the Bayes multi-target tracking filter. IEEE Trans. Signal Process. 2014, 62, 6554–6567. [Google Scholar] [CrossRef] [Green Version]
- Vo, B.T.; Vo, B.N. Multi-scan generalized labeled multi-Bernoulli filter. In Proceedings of the 2018 21st International Conference on Information Fusion (FUSION), Cambridge, UK, 10–13 July 2018; pp. 195–202. [Google Scholar]
- Vo, B.N.; Vo, B.T. A multi-scan labeled random finite set model for multi-object state estimation. IEEE Trans. Signal Process. 2019, 67, 4948–4963. [Google Scholar] [CrossRef] [Green Version]
- Reuter, S.; Vo, B.T.; Vo, B.N.; Dietmayer, K. The labeled multi-Bernoulli filter. IEEE Trans. Signal Process. 2014, 62, 3246–3260. [Google Scholar]
- Vo, B.N.; Vo, B.T.; Hoang, H.G. An efficient implementation of the generalized labeled multi-Bernoulli filter. IEEE Trans. Signal Process. 2017, 65, 1975–1987. [Google Scholar] [CrossRef] [Green Version]
- Beard, M.; Vo, B.T.; Vo, B.N. A solution for large-scale multi-object tracking. IEEE Trans. Signal Process. 2020, 68, 2754–2769. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Kim, D.Y.; Xue, K. Multi-Bernoulli filter for target tracking with multi-static Doppler only measurement. Signal Process. 2014, 108, 102–110. [Google Scholar]
- Mahler, R. Statistics 101 for multisensor, multitarget data fusion. IEEE Aerosp. Electron. Syst. Mag. 2004, 19, 53–64. [Google Scholar] [CrossRef]
- Mahler, R. “Statistics 102” for Multisource-Multitarget Detection and Tracking. IEEE J. Sel. Top. Signal Process. 2013, 7, 376–389. [Google Scholar] [CrossRef]
- Ristic, B. Particle Filters for Random Set Models; Springer: Berlin, Germany, 2013. [Google Scholar]
- Papi, F. Multi-sensor d-GLMB filter for multi-target tracking using Doppler only measurements. In Proceedings of the 2015 European Intelligence and Security Informatics Conference, Manchester, UK, 7–9 September 2015; pp. 83–89. [Google Scholar]
- Zhu, Y.; Zhao, L.; Zhang, Y.; Wu, X. Receiver selection for multi-target tracking in multi-static Doppler radar systems. EURASIP J. Adv. Signal Process. 2021, 2021, 118. [Google Scholar] [CrossRef]
- Do, C.T.; Nguyen, H.V. Tracking multiple targets from multistatic Doppler radar with unknown probability of detection. Sensors 2019, 19, 1672. [Google Scholar] [CrossRef] [Green Version]
- Vo, B.N.; Vo, B.T.; Beard, M. Multi-sensor multi-object tracking with the generalized labeled multi-Bernoulli filter. IEEE Trans. Signal Process. 2019, 67, 5952–5967. [Google Scholar] [CrossRef] [Green Version]
- Reuter, S.; Meissner, D.; Wilking, B.; Dietmayer, K. Cardinality balanced multi-target multi-Bernoulli filtering using adaptive birth distributions. In Proceedings of the 16th International Conference on Information Fusion Istanbul, Istanbul, Turkey, 9–12 July 2013; pp. 1608–1615. [Google Scholar]
- Lin, S.F.; Vo, B.T.; Nordholm, S.E. Measurement driven birth model for the generalized labeled multi-Bernoulli filter. In Proceedings of the International Conference on Control, Automation and Information Sciences, Ansan, Korea, 27–29 October 2016; pp. 94–99. [Google Scholar]
- Guldogan, M.B. Consensus Bernoulli filter for distributed detection and tracking using multi-static Doppler shifts. IEEE Signal Process. Lett. 2014, 21, 672–676. [Google Scholar] [CrossRef]
- Ristic, B.; Farina, A. Target tracking via multi-static Doppler shifts. IET Radar Sonar Navig. 2011, 7, 508–516. [Google Scholar] [CrossRef]
- Guldogan, M.B.; Lindgren, D.; Gustafsson, F.; Habberstad, H. Multi-target tracking with PHD filter using Doppler-only measurements. Digit. Signal Process. 2014, 27, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Jones, B.A. PHD filter birth modeling using the probabilistic admissible region. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 1456–1469. [Google Scholar] [CrossRef]
- Fujimoto, K.; Scheeres, D.J.; Herzog, J.; Schildknecht, T. Association of optical tracklets from a geosynchronous belt survey via the direct Bayesian admissible region approach. Adv. Space Res. 2014, 53, 295–308. [Google Scholar] [CrossRef] [Green Version]
- Bar-Shalom, Y. Multitarget-Multisensor Tracking: Advanced Applications; Artech House: Norwood, MA, USA, 1990. [Google Scholar]
- Blackman, S.S. Multiple-Target Tracking with Radar Applications; Artech House: Norwood, MA, USA, 1986. [Google Scholar]
- Bar-Shalom, Y.; Li, X.R.; Kirubarajan, T. Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software; John Wiley and Sons, Inc.: New York, NY, USA, 2001; pp. 268–274. [Google Scholar]
- Horn, R.A.; Johnson, C.R. Matrix Analysis; Cambridge University Press: Cambridge, UK, 1985. [Google Scholar]
- Richards, M.A. Fundamentals of Radar Signal Processing; McGraw-Hill: New York, NY, USA, 2005. [Google Scholar]
- Ristic, B.; Clark, D.; Vo, B.N.; Vo, B.T. Adaptive target birth intensity for PHD and CPHD filters. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 1656–1668. [Google Scholar] [CrossRef]
- Mallick, M.; Bar-Shalom, Y.; Kirubarajan, T.; Moreland, M. An improved single-point track initiation using GMTI measurements. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 2697–2714. [Google Scholar] [CrossRef]
- Ristic, B.; Arulampalam, S.; Gordon, N. Beyond the Kalman Filter-Particle Filters for Tracking Applications; Artech House: Norwood, MA, USA, 2004. [Google Scholar]
- Beard, M.; Vo, B.T.; Vo, B.N.; Arulampalam, S. Void probabilities and Cauchy-Schwarz divergence for generalized labeled multi-Bernoulli models. IEEE Trans. Signal Process. 2017, 65, 5047–5061. [Google Scholar] [CrossRef] [Green Version]
- Panicker, S.; Gostar, A.K.; Bab-Hadiashar, A.; Hoseinnezhad, R. Tracking of targets of interest using labeled multi-Bernoulli filter with multi-sensor control. Signal Process. 2020, 171, 107451. [Google Scholar] [CrossRef]
- Zhu, Y.; Liang, S.; Gong, M.; Yan, J. Decomposed POMDP optimization-based sensor management for multi-target tracking in passive multi-sensor systems. IEEE Sens. J. 2022, 22, 3565–3578. [Google Scholar] [CrossRef]
- Schuhmacher, D.; Vo, B.T.; Vo, B.N. A consistent metric for performance evaluation of multi-object filters. IEEE Trans. Signal Process. 2008, 56, 3447–3457. [Google Scholar] [CrossRef] [Green Version]
Method | Number of Sensors | Computing Time (s) | Relative Computing Time | OSPA Error (m) | OSPA Error (m) |
---|---|---|---|---|---|
A-R (threshold = 0) | 1 | 5.34 | 1.02 | 5818.91 | 6883.98 |
2 | 20.23 | 1.07 | 3832.67 | 5375.01 | |
3 | 36.54 | 1.07 | 3488.99 | 4758.76 | |
A-R (threshold = ) | 1 | 20.05 | 3.84 | 4991.90 | 6257.66 |
2 | 70.84 | 3.74 | 3496.93 | 4934.66 | |
3 | 167.75 | 4.92 | 2360.85 | 3668.70 | |
A-R (threshold = 1) | 1 | 38.27 | 7.33 | 4500.24 | 5893.79 |
2 | 130.31 | 6.87 | 3072.37 | 4542.32 | |
3 | 325.87 | 9.56 | 2141.50 | 3417.82 | |
CAR | 1 | 5.22 | 1.00 | 4135.93 | 5581.78 |
2 | 18.96 | 1.00 | 2145.42 | 3613.66 | |
3 | 34.08 | 1.00 | 1438.66 | 2688.03 |
Method | Number of Sensors | Computing Time (s) | Relative Computing Time | OSPA Error (m) | OSPA Error (m) |
---|---|---|---|---|---|
A-R (threshold = 0) | 1 | 81.85 | 1.06 | 5949.45 | 6697.29 |
2 | 206.51 | 1.04 | 4729.47 | 6533.19 | |
3 | 301.63 | 1.02 | 4184.66 | 6116.06 | |
A-R (threshold = ) | 1 | 127.71 | 1.66 | 5824.85 | 6600.18 |
2 | 311.41 | 1.57 | 4188.66 | 6078.71 | |
3 | 484.16 | 1.63 | 2975.35 | 4950.81 | |
A-R (threshold = ) | 1 | 185.02 | 2.41 | 5558.52 | 6204.03 |
2 | 475.90 | 2.40 | 3456.05 | 5550.20 | |
3 | 773.32 | 2.61 | 2198.64 | 4167.35 | |
CAR | 1 | 76.92 | 1.00 | 4341.22 | 5331.12 |
2 | 198.32 | 1.00 | 2634.28 | 4709.37 | |
3 | 296.51 | 1.00 | 1556.83 | 3446.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Mallick, M.; Liang, S.; Yan, J. Generalized Labeled Multi-Bernoulli Multi-Target Tracking with Doppler-Only Measurements. Remote Sens. 2022, 14, 3131. https://doi.org/10.3390/rs14133131
Zhu Y, Mallick M, Liang S, Yan J. Generalized Labeled Multi-Bernoulli Multi-Target Tracking with Doppler-Only Measurements. Remote Sensing. 2022; 14(13):3131. https://doi.org/10.3390/rs14133131
Chicago/Turabian StyleZhu, Yun, Mahendra Mallick, Shuang Liang, and Junkun Yan. 2022. "Generalized Labeled Multi-Bernoulli Multi-Target Tracking with Doppler-Only Measurements" Remote Sensing 14, no. 13: 3131. https://doi.org/10.3390/rs14133131
APA StyleZhu, Y., Mallick, M., Liang, S., & Yan, J. (2022). Generalized Labeled Multi-Bernoulli Multi-Target Tracking with Doppler-Only Measurements. Remote Sensing, 14(13), 3131. https://doi.org/10.3390/rs14133131