Impacts of the Urmia Lake Drought on Soil Salinity and Degradation Risk: An Integrated Geoinformatics Analysis and Monitoring Approach
Abstract
:1. Introduction
2. Study Area and Dataset
2.1. Study Area
2.2. Data Acquisition
3. Methodology
3.1. Soil Salinization Monitoring
Index | Main Equation | References |
---|---|---|
Combined Spectral Response Index (CSRI) | (B + G)/(R + NIR) × NDVI | [51] |
Normalized Differential Salinity Index (NDSI) | (R − NIR)/(R + NIR) | [52] |
Salinity index (SI-T) | (R/NIR) × 100 | [53] |
Salinity Index (SI-1) | NIR/SWIR | [54] |
Salinity Index (SI-2) | (B − R)/(B + R) | [55] |
Salinity Index (SI-3) | (B × R)/G | [55] |
Normalized Differential Infrared Index (NDII) | (NIR − SWIR1)/(NIR + SWIR1) | [56] |
Vegetation Soil Salinity Index (VSSI) | 2 × G − 5 × (R + NIR) | [56] |
3.1.1. Combined Spectral Response Index (CSRI)
3.1.2. Normalized Differential Salinity Index (NDSI)
3.1.3. Salinity Index (SI-T)
3.1.4. Salinity Index (SI-1)
3.1.5. Salinity Index (SI-2) and Salinity Index (SI-3)
3.2. Normalized Differential Infrared Index (NDII)
3.2.1. Vegetation Soil Salinity Index (VSSI)
3.2.2. Google Earth Engine
3.2.3. Accuracy Assessment of Soil Salinity Monitoring Indices
3.2.4. Soil Degradation Mapping
Criteria Selection and Standardization
Criteria Weighting and Sensitivity Analysis
Spatial Aggregation and Validation
4. Results
4.1. Soil Salinity Monitoring
4.2. Soil Degradation Mapping
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kopittkea, P.M.; Menziesa, N.W.; Wangb, P.; Brigid, A.; McKennaa, B.A. Soil and the intensification of agriculture for global food security. Environ. Int. 2019, 132, 105078. [Google Scholar] [CrossRef] [PubMed]
- Vengosh, V. Salinization and Saline Environments. Treatise Geochem. 2003, 9, 612. [Google Scholar]
- Abbasi, G.H.; Akhtar, J.; Ahmad, R.; Jamil, M.; Anwar-ul-Haq, M.; Ali, S.; Ijaz, M. Potassium application mitigates salt stress differentially at different growth stages in tolerant and sensitive maize hybrids. Plant Growth Regul. 2015, 76, 111–125. [Google Scholar] [CrossRef]
- Xiaoyan, S.; Jianghui, S.; Haijiang, W.; Xin, L. Monitoring soil salinization in Manas River Basin, Northwestern China based on multi-spectral index group. Eur. J. Remote Sens. 2021, 54, 176–188. [Google Scholar]
- Gorji, T.; Yildirim, A.; Hamzehpour, N.; Tanik, A.; Sertel, E. Soil salinity analysis of Urmia Lake Basin using Landsat-8 OLI and Sentinel-2A based spectral indices and electrical conductivity measurements. Ecol. Indic. 2020, 112, 106173. [Google Scholar] [CrossRef]
- OECD Glossary. Glossary for Statistical Terms. 2001. Available online: https://stats.oecd.org/glossary/about.asp (accessed on 1 October 2001).
- Zovkoa, M.; Romića, D.; Colombo, C.; Di Ioriob, E.; Romića, M.; Buttafuococ, G.; Castrignanò, A. A geostatistical Vis-NIR spectroscopy index to assess the incipient soil salinization in the Neretva River valley, Croatia. Geoderma 2018, 332, 60–72. [Google Scholar] [CrossRef]
- Zarei, A.; Hasanlou, M.; Mahdianpari, M. A comparison of machine learning models for soil salinity estimation using multi spectral earth observation data, ISPRS Annals of the Photogrammetry. Remote Sens. Spat. Inf. Sci. 2021, 3, 257–263. [Google Scholar]
- Gontia-Mishra, I.; Sasidharan, S.; Tiwari, S. Recent developments in use of 1-aminocyclopropane-1-carboxylate (ACC) deaminase for conferring tolerance to biotic and abiotic stress”. Biotechnol. Lett. 2014, 36, 889–898. [Google Scholar] [CrossRef]
- Kamran, M.; Parveen, A.; Ahmar, S.; Malik, Z.; Hussain, S.; Sohaib Chattha, M.; Hamzah Saleem, M.; Adil, M.; Heidari, P.; Chen, J.T. An Overview of Hazardous Impacts of Soil Salinity in Crops, Tolerance Mechanisms, and Amelioration through Selenium Supplementation. Int. J. Mol. Sci. 2020, 21, 148. [Google Scholar] [CrossRef] [Green Version]
- Allbed, A.; Kumar, L.; Aldakheel, Y.Y. Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region. Geoderma 2014, 230, 1–8. [Google Scholar] [CrossRef]
- Sinha, D.N.; Singh, A.N.; Singh, U.S. Site Suitability Analysis for Dissemination of Salt Tolerant Rice Varieties in Southern Bangladesh. In Proceedings of the ISPRS Technical Commission VIII Symposium, Hyderabad, India, 9–12 December 2014; The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Volume 8. [Google Scholar]
- Sidike, A.; Zhaom, S.; Wen, Y. Estimating soil salinity in Pingluo County of China using Quick Bird data and soil reflectance spectra. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 156–175. [Google Scholar]
- Tehrany, M.S.; Shabani, F.; Javier, D.N.; Kumar, L. Soil erosion susceptibility mapping for current and 2100 climate conditions using evidential belief function and frequency ratio. Geomat. Nat. Hazards Risk 2014, 8, 1695–1714. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, D.; Tongaria, K.; Pathak, S.; Ohri, A.; Jha, M. Soil Erosion Mapping of Watershed in Mirzapur District Using RUSLE Model in GIS Environment. Int. J. Stud. Res. Technol. Manag. 2016, 4, 56–63. [Google Scholar] [CrossRef] [Green Version]
- Shahbazi, F.; McBratney, A.; Maloneb, B.; Oustana, S.; Minasny, B. Retrospective monitoring of the spatial variability of crystalline iron in soils of the east shore of Urmia Lake, Iran using remotely sensed data and digital maps. Geoderma 2019, 337, 1196–1207. [Google Scholar] [CrossRef]
- Mukhopadhyay, R.; Sarkar, B.; Jat, H.S.; Sharma, P.C.; Bolan, N.S. Soil salinity under climate change: Challenges for sustainable agriculture and food security. J. Environ. Manag. 2020, 280, 111736. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Kazamei Garajeh, M.; Blaschke, T.; Lakes, T. A deep learning convolutional neural network algorithm for detecting saline flow sources and mapping the environmental impacts of the Urmia Lake drought in Iran. Catena 2021, 207, 105585. [Google Scholar] [CrossRef]
- Omrani, M.; Shahbazi, F.; Feizizadeh, B.; Oustan, S.; Najfai, N. Application of remote sensing indices to digital soil salt composition and ionic strength mapping in the east shore of Urmia Lake, Iran. Remote Sens. Appl. Soc. Environ. 2021, 22, 100498. [Google Scholar] [CrossRef]
- Thaker, N.P.; Brahmbatt, N.; Shah, K. Review impact of soil salinity on ecological, agriculture and socioeconomic concerns. Int. J. Adv. Res. 2021, 9, 979–986. [Google Scholar] [CrossRef]
- Abdel, L.A. Changes of antioxidative enzymes in salinity tolerance among different wheat cultivars. Cereal Res. Commun. 2010, 38, 43–55. [Google Scholar] [CrossRef]
- Najafi, P.; Navid, H.; Feizizadeh, B.; Blaschke, T. Fuzzy Object-Based Image Analysis Methods Using Sentinel-2A and Landsat-8 Data to Map and Characterize Soil Surface Residue. Remote Sens. 2019, 11, 2583. [Google Scholar] [CrossRef] [Green Version]
- Utuk, I.O.; Ekongm, E.D. Land Degradation: A Threat to Food Security: A Global Assessment. J. Environ. Earth Sci. 2015, 5, 13–22. [Google Scholar]
- Scanes, C.G. Impact of Agricultural Animals on the Environment. In Animals and Human Society; Academic Press: New York, NY, USA, 2018; pp. 427–449. [Google Scholar] [CrossRef]
- Patterson, L.A.; Lutz, B.; Doyle, M.W. Climate and direct human contributions to changes in mean annual streamflow in the South Atlantic, USA. Water Resour. Res. 2013, 49, 7278–7291. [Google Scholar] [CrossRef]
- Corwin, D.L.; Yemoto, K. Salinity: Electrical conductivity and total dissolved solids. Soil Sci. Soc. Am. J. 2020, 84, 1442–1461. [Google Scholar] [CrossRef]
- Iestyn Woolway, R.; Kraemer, B.M.; Lenters, J.D.; Merchant, C.; O’Reilly, C.M.; Sharma, S. Global lake responses to climate change. Nat. Rev. Earth Environ. 2020, 1, 388–403. [Google Scholar] [CrossRef]
- Abbasian, M.S.; RezaNajafi, M.; Abrishamchi, A. Increasing risk of meteorological drought in the Lake Urmia basin under climate change: Introducing the precipitation–temperature deciles index. J. Hydrol. 2021, 592, 125586. [Google Scholar] [CrossRef]
- Anbari, M.J.; Zargami, M.; Nadiri, A. An uncertain agent-based model for socio-ecological simulation of groundwater use in irrigation: A case study of Lake Urmia Basin, Iran. Agric. Water Manag. 2021, 249, 106796. [Google Scholar] [CrossRef]
- Hemmati, M.; Ahmadi, H.; Ahmad Hamidi, S.; Naderkhanloo, V. Environmental effects of the causeway on water and salinity balance in Lake Urmia. Reg. Stud. Mar. Sci. 2021, 44, 101756. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Mohmmadzadeh Alajujeh, K.; Lakes, T.; Blaschke, T.; Omarzadeh, D. A comparative approach of integrated fuzzy object-based deep learning and machine learning techniques for monitoring land use/cover changes and environmental impacts assessment. GISci. Remote Sens. 2021, 58, 1543–1570. [Google Scholar] [CrossRef]
- Mardi, A.H.; Khaghani, A.; MacDonald, A.B.; Nguyen, P.; Karimi, N.; Heidary, P.; Karimi, N.; Saemian, P.; Sehatkashani, S.; Tajrishy, M.; et al. The lake Urmia environmental disaster in Iran: A look at aerosol pollution. Sci. Total Environ. 2018, 633, 42–49. [Google Scholar] [CrossRef]
- Chakherlou, S.; Jafarzadeh, A.A.; Ahmadi, A.; Feizizadeh, B.; Shahbazi, F.; Darvishi Boloorani, A.; Mirzaei, S. Soil wind erodibility and erosion estimation using Landsat satellite imagery and multiple-criteria decision analysis in Urmia Lake Region, Iran. Arid Land Res. Manag. 2022, 1–21. [Google Scholar] [CrossRef]
- Sepuru, T.K.; Dube, T. An appraisal on the progress of remote sensing applications in soil erosion mapping and monitoring. Remote Sens. Appl. Soc. Environ. 2018, 9, 1–9. [Google Scholar] [CrossRef]
- Peng, J.; Biswas, A.; Jiang, Q.; Zhao, R.; Hu, J.; Hu, B.; Shi, Z. Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China. Geoderma 2019, 337, 1309–1349. [Google Scholar] [CrossRef]
- Huang, H.; Li, Z.; Huichun, Y.; Zhang, S.; Zhuo, Z.; Xing, A.; Huang, Y. Mapping Soil Electrical Conductivity Using Ordinary Kriging Combined with Back-propagation Network. Chin. Geogr. Sci. 2019, 2992, 270–282. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Persello, C.; Stein, A. Building outline delineation: From aerial images to polygons with an improved end-to-end learning framework. ISPRS J. Photogramm. Remote Sens. 2021, 175, 119–131. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Gheshlaghi, H.A.; Bui, D.T. An integrated approach of GIS and hybrid intelligence techniques applied for flood risk modeling. J. Environ. Plan. Manag. 2020, 64, 485–516. [Google Scholar] [CrossRef]
- Taghadosi, M.M.; Hasanlou, M. Developing geographic weighted regression (GWR) technique for monitoring soil salinity using Sentinel-2 multispectral imagery. Environ. Earth Sci. 2021, 80, 75. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Lakes, T.; Omarzadeh, D.; Sharifi, A.; Blaschke, T.; Karmizadeh, S.M. Scenario-based analysis of the impacts of lake drying on food production in the Lake Urmia Basin of Northern Iran. Nat. Sci. Rep. 2022, 12, 6237. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Abdollahi, Z.; Shokati, B.; Lakes, T. A GIS-based spatiotemporal impact assessment of droughts in the hyper-saline Urmia Lake Basin on the hydro-geochemical quality of nearby aquifers. Remote Sens. 2022, 14, 2516. [Google Scholar] [CrossRef]
- Ghunowa, K.; MacVicar, B.; Ashmore, P. Stream Power Index for Networks (SPIN) Tool for Erosion Risk Assessment. In AGU Fall Meeting Abstracts; American Geophysical Union: San Francisco, CA, USA, 2019; Available online: https://ui.adsabs.harvard.edu/abs/2019AGUFMEP22B..17G (accessed on 3 June 2022).
- Gokceoglu, C.; Sonmez, H.; Nefeslioglu, H.A.; Duman, T.Y.; Can, T. The 17 March 2005 Kuzulu landslide (Sivas, Turkey) and landslide-susceptibility map of its near vicinity. Eng. Geol. 2005, 81, 65–83. [Google Scholar] [CrossRef]
- Sevgen, E.; Kocaman, S.; Nefeslioglu, H.A.; Gokceoglu, C. A Novel Performance Assessment Approach using Photogrammetric Techniques for Landslide Susceptibility Mapping with Logistic Regression, ANN and Random Forest. Sensors 2019, 19, 3940. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Li, L.; Sun, R.; Zhu, D.; Zhang, C.; Chen, Q. Retrieval of the Soil Salinity From Sentinel-1 Dual Polarized SAR Data Based on Deep Neural Network Regression. IEEE Geosci. Remote Sens. Lett. 2020, 19, 1–5. [Google Scholar] [CrossRef]
- Najafi, P.; Feizizadeh, B.; Navid, H. A Comparative Approach of Fuzzy Object Based Image Analysis and Machine Learning Techniques Which Are Applied to Crop Residue Cover Mapping by Using Sentinel-2 Satellite and UAV Imagery. Remote Sens. 2021, 13, 937. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Omarzadeh, D.; Kazamei Garajeh, M.; Lakes, T.; Blaschke, T.; Omarzadeh, D. Machine learning data-driven approaches for land use/cover mapping and trend analysis using Google Earth Engine. J. Environ. Plan. Manag. 2021, 1–33. [Google Scholar] [CrossRef]
- Afrasinei, G.M.; Melis, M.T.; Buttau, C.; Bradd, J.M.; Arras, C.; Ghiglieri, G. Assessment of remote sensing-based classification methods for change detection of salt-affected areas (Biskra area, Algeria). J. Appl. Remote Sens. 2017, 11, 016025. [Google Scholar] [CrossRef] [Green Version]
- Rahmati, O.; Tahmasebipour, N.; Haghizadeh, A.; Pourghasemi, H.R.; Feizizadeh, B. Evaluating the influence of geo-environmental factors on gully erosion in a semi-arid region of Iran: An integrated framework. Sci. Total Environ. 2017, 579, 913–927. [Google Scholar] [CrossRef]
- Waqasa, M.M.; Niaza, Y.; Alib, S.; Ahmadc, I.; Fahadd, M.; Rashide, H.; Awanf, U.K. Soil salonity mapping using satelite remote sensing. A case study of lowver chenab cahal system Pnjab. Earth Sci. Pak. 2020, 4, 7–9. [Google Scholar] [CrossRef]
- Fernández-Buces, N.; Siebe, C.; Cram, S.; Palacio, J.L. Palacio, Mapping soil salinity using a combined spectral response index for bare soil and vegetation: A case study in the former lake Texcoco, Mexico. J. Arid. Environ. 2006, 65, 644–667. [Google Scholar] [CrossRef]
- Khan, M.N.; Sato, Y. Monitoring hydro-salinity status and its impact in irrigated semi-arid areas using IRS-1B LISS-II data. Asian J. Geoinform. 2001, 1, 63–73. [Google Scholar]
- Deng, Y.; Wu, C.; Li, M.; Chen, R. RNDSI: A ratio normalized difference soil index for remote sensing of urban/suburban environments. Int. J. Appl. Earth Obs. Geoinform. 2015, 39, 40–48. [Google Scholar] [CrossRef]
- Tripathi, N.K.; Rai, B.K.; Dwivedi, P. Spatial modeling of soil alkalinity in GIS environment using IRS data. In Proceedings of the 18th Asian Conference on Remote Sensing, Kuala Lumpur, Malaysia, 20–24 October 1997; pp. 81–86. [Google Scholar]
- Bannari, A.; Guedon, A.M.; El-Harti, A.; Cherkaoui, F.Z.; El-Ghmari, A. Characterization of slightly and moderately saline and sodic soils in irrigated agricultural land using simulated data of advanced land imaging (EO-1) sensor. Commun. Soil Sci. Plant Anal. 2008, 39, 2795–2811. [Google Scholar] [CrossRef]
- Khan, S.; Abbas, A. Using Remote Sensing Techniques for Appraisal of Irrigated Soil Salinity. In Proceedings of the Land, Water & Environmental Management: Integrated Systems for Sustainability, Christchurch, New Zealand, 10–13 December 2007; pp. 2632–2638. [Google Scholar]
- Dehni, A.; Lounis, M. Remote sensing techniques for salt affected soil mapping: Application to the Oran region of Algeria. Procedia Eng. 2012, 33, 188–198. [Google Scholar] [CrossRef] [Green Version]
- Uossef, G.A.; Akbari, M.; Hassanoghli, A.; Younesi, M. Monitoring Soil Salinity and Vegetation Using Multispectral Remote Sensing Data in Interceptor Drain of Salt Marsh in Qazvin Plain. Geogr. Environ. Sustain. 2020, 10, 37–52. [Google Scholar] [CrossRef]
- Yahiaoui, I.; Bradaï, A.; Douaoui, A.; Abdennour, M.A. Performance of random forest and buffer analysis of Sentinel-2 data for modelling soil salinity in the Lower-Cheliff plain (Algeria). Int. J. Remote Sens. 2020, 42, 128–151. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Paz, A.M.; Castanheira, N.; Farzamian, M.; Paz, M.C.; Gonçalves, M.C.; Santos FA, M.; Triantafilis, J. Prediction of soil salinity and sodicity using electromagnetic conductivity imaging. Geoderma 2020, 361, 114086. [Google Scholar] [CrossRef]
- Hossain, M.S.; Rahman, G.M.; Solaiman, A.R.M.; Alam, M.S.; Rahman, M.M.; Mia, M.B. Estimating Electrical Conductivity for Soil Salinity Monitoring Using Various Soil-Water Ratios Depending on Soil Texture. Commun. Soil Sci. Plant Anal. 2020, 51, 635–644. [Google Scholar] [CrossRef]
- Farzamian, M.; Paz, M.C.; Paz, A.M.; Castanheira, N.L.; Gonçalves, M.C.; Monteiro Santos, F.A.; Triantafilis, J. Mapping soil salinity using electromagnetic conductivity imaging—A comparison of regional and location-specific calibrations. Land Degrad. Dev. 2019, 30, 1393–1406. [Google Scholar] [CrossRef]
- Zaman, M.; Shabbir, A.S.; Heng, L. Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques; Springer: Gewerbestrasse, Switzerland; Cham, Switzerland, 2018; Volume 2, ISBN 978-3-319-96189-7. [Google Scholar] [CrossRef]
- Gee, G.W.; Or, D. Particle Size Analysis. In Methods of Soil Analysis; Part 4. Physical Methods; Jacob, H.D., Topp, G.C., Eds.; John Wiley & Sons, Inc.: New York, NY, USA, 2002; Volume 4, pp. 201–414. [Google Scholar]
- Feizizadeh, B.; Kazamei, M.; Blaschke, T.; Lakes, T. An object based image analysis applied for volcanic and glacial landforms mapping in Sahand Mountain, Iran. Catena 2021, 198, 105073. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon and Organic Matter. In Methods of Soil Analyses; Part 3. Chemical Methods; Sparks, D.L., Ed.; SSSA: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Omarzadeh, D.; Pourmoradian, S.; Fezizadeh, B.; Khalagei, H.; Sharifi, A.; Valizadeh Kamran, K. A GIS-based multiple ecotourism sustainability assessment of West Azerbaijan province, Iran. J. Environ. Plan. Manag. 2021, 65, 490–513. [Google Scholar] [CrossRef]
- Ghaffarian, S.; Rezaie Farhadabad, A.; Kerle, N. Post-Disaster Recovery Monitoring with Google Earth Engine. Appl. Sci. 2020, 10, 4574. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Omarzadeh, D.; Sharifi, A.; Rahmani, A.; Lakes, T.; Blaschke, T. A GIS-based spatiotemporal analysis of COVID-19 impacts on the urban traffic accident hotspots and transport network sustainability assessment in Tabriz. Sustanbility 2022, 14, 7468. [Google Scholar] [CrossRef]
- Abedi Gheshlaghi, H.; Feizizadeh, B.; Blaschke, T.; Lakes, T.; Tajbar, S. Forest fire susceptibility modeling using hybrid approaches. Trans. GIS 2020, 25, 311–333. [Google Scholar] [CrossRef]
- Senouci, R.; Taibi, N.-E.; Teodoro, A.; Duarte, L.; Mansour, H.; Meddah, R. GIS-Based Expert Knowledge for Landslide Susceptibility Mapping (LSM): Case of Mostaganem Coast District. West Algeria. Sustain. 2021, 13, 630. [Google Scholar] [CrossRef]
- Gheshlaghi, H.A.; Feizizadeh, B. An integrated approach of analytical network process and fuzzy based spatial decision making systems applied to landslide risk mapping. J. Afr. Earth Sci. 2021, 133, 15–24. [Google Scholar] [CrossRef]
- Ebrahimy, H.; Feizizadeh, B.; Salmani, S.; Azadi, H. A comparative study of land subsidence susceptibility mapping of Tasuj plane, Iran, using boosted regression tree, random forest and classifcation and regression tree methods. Environ. Earth Sci. 2020, 79, 223. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Pourmoradian, S.; Blaschke, T.; Feizizadeh, B. Mapping potential nature-based tourism areas by applying GIS-decision making systems in East Azerbaijan Province, Iran. J. Ecotourism. 2019, 18, 261–283. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Kienberger, S.; Valizadeh Kamran, K. Sensitivity and Uncertainty Analysis Approach for GIS-MCDA Based Economic Vulnerability Assessment. J. Geogr. Inf. Sci. 2015, 1, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Abedi Gheshlaghi, H.; Feizizadeh, B.; Blaschke, T. GIS-based forest fire risk mapping using the analytical network process and fuzzy logic. J. Environ. Plan. Manag. 2020, 63, 481–499. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Ronagh, Z.; Pourmoradian, S.; Gheshlaghi, H.; Lakes, T.; Blaschke, T. An efficient GIS-based approach for sustainability assessment of urban drinking water consumption patterns: A study in Tabriz city, Iran. Sustain. Cities Soc. 2021, 64, 102584. [Google Scholar] [CrossRef]
- Yalew, S.G.; Van Griensven, A.; van der Zaag, P. AgriSuit: A web-based GIS-MCDA framework for agricultural land suitability assessment. Comput. Electron. Agric. 2016, 128, 1–8. [Google Scholar] [CrossRef]
- Teshome, A.; Halefom, A. Mapping of Soil Erosion Hotspot Areas Using GIS Based-MCDA Techniques in South Gondar Zone, Amhara Region, Ethiopia. World News Nat. Sci. 2019, 24, 218–238. [Google Scholar]
- Malczewski, J. GIS-based multicriteria decision analysis: A survey of the literature. Int. J. Geogr. Inf. Sci. 2006, 20, 703–726. [Google Scholar] [CrossRef]
- Shokati, B.; Feizizadeh, B. Sensitivity and uncertainty analysis of agro-ecological modeling for saffron plant cultivation using GIS spatial decision-making methods. J. Environ. Plan. Manag. 2018, 62, 517–533. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision Making with Dependence and Feedback: The Analytic Network Process; RWS Publications: Pittsburgh, PA, USA, 1996; Volume 4922. [Google Scholar]
- Guo, H.; Qiao, W.; Zheng, Y. Effectiveness Evaluation of Financing Platform Operation of Buildings Energy Saving Transformation Using ANP-Fuzzy in China: An Empirical Study. Sustainability 2020, 12, 2826. [Google Scholar] [CrossRef] [Green Version]
- Kahraman, C.; Onar, S.C.; Oztaysi, B. Fuzzy multicriteria decision-making: A literature review. Int. J. Comput. Intell. Syst. 2015, 8, 637–666. [Google Scholar] [CrossRef] [Green Version]
- Szabolcs, I. Salt-Affected Soils; CRC Press: Boca Raton, FL, USA, 1989. [Google Scholar]
- Panagos, P.; Borrelli, P.; Poesen, J.; Ballabio, C.; Lugato, E.; Meusburger, K.; Alewell, C. The new assessment of soil loss by water erosion in Europe. Environ. Sci. Policy 2015, 54, 438–447. [Google Scholar] [CrossRef]
- Novotný, I.; Žížala, D.; Kapička, J.; Beitlerová, H.; Mistr, M.; Kristenová, H.; Papaj, V. Adjusting the CPmax factor in the universal soil loss equation (USLE): Areas in need of soil erosion protection in the Czech Republic. J. Maps 2016, 12 (Suppl. 1), 58–62. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Sui, B.; Shen, H.; Ouyang, L. Mapping stocks of soil total nitrogen using remote sensing data: A comparison of random forest models with different predictors. Comput. Electron. Agric. 2019, 160, 23–30. [Google Scholar] [CrossRef]
- Kazemi Garajeh, M.; Malaky, F.; Weng, Q.; Feizizadeha, B.; Blaschke, T.; Lakes, T. An automated deep learning convolutional neural network algorithm applied for soil salinity distribution mapping in Lake Urmia, Iran. Sci. Total Environ. 2021, 778, 146253. [Google Scholar] [CrossRef]
Satellite | Sensor | Band/Pixel Size | Wavelength (nm) | Description |
---|---|---|---|---|
Landsat 5 For the study years of 1990, 1995, 2000, 2005, 2010 | Thematic Mapper (TM) | B1/30 m | 0.45–0.52 µm | Blue |
B2/30 m | 0.52–0.60 µm | Green | ||
B3/30 m | 0.63–0.69 µm | Red | ||
B4/30 m | 0.76–0.90 µm | Near-infrared | ||
B5/30 m | 1.55–1.75 µm | Short-wave infrared 1 | ||
B6/30 m | 10.40–12.50 µm | Thermal Infrared 1 | ||
B7/30 m | 2.08–2.35 µm | Short-wave infrared 2 | ||
Landsat 8 for the study years of 2015 and 2020 | Operational Land Imager (OLI) | B1/30 m | 0.435–0.451 μm | Ultra-blue |
B2/30 m | 0.452–0.512 μm | Blue | ||
B3/30 m | 0.533–0.590 μm | Green | ||
B4/30 m | 0.636–0.673 μm | Red | ||
B5/30 m | 0.851–0.879 μm | Near-infrared | ||
B6/30 m | 1.566–1.651 μm | Short-wave infrared 1 | ||
B7/30 m | 2.107–2.294 μm | Short-wave infrared 2 | ||
B8/15 m | 0.20–0.68 μm | Panchromatic | ||
B9/30 m | 1.36–1.38 μm | Cirrus | ||
B10/100 m | 10.60–11.19 μm | Thermal Infrared 1 | ||
B11/100 m | 11.50–12.51 μm | Thermal Infrared 2 |
Main Group | Selected Criteria for SMDM | Sources | Scale and Resolution |
---|---|---|---|
Soil salinity dataset | Spectral indices from satellite images | Time-series Landsat Satellite images | Spatial resolution of 30 m |
Field survey and ground control sample points | pedology maps, field survey and laboratory analysis | GPS data and soil maps in the scale of 1/50,000 In the scale of 1:25,000 | |
Soil erodibility | Geology maps | ||
Topography dataset | Elevation (DEM) | Topography maps and DEM. These datasets were obtained from the Spatial Data Infrastructure project of lake Urmia | In the scale of 1:25,000 |
Slope | |||
Aspect | |||
Slope/slope length | |||
Curvature | |||
Climatology and Hydrology | Rainfall | Meteorology station datasets from SDI | In the scale of 1:25,000 |
Stream Power Index | Topography maps and DEM | In the scale of 1:25,000 | |
Topographic Wetness Index | |||
Anthropic | LULC | Time-series Landsat Satellite images | Spatial resolution of 30 m |
NDVI |
Variable | Min | Mean | Max | Standard Deviation (σ) | Coefficient of Variation (CV) |
---|---|---|---|---|---|
Sand (%) | 7.7 | 42.3 | 90.0 | 26.9 | 0.64 |
Silt (%) | 1.3 | 31.8 | 58.7 | 16.2 | 0.51 |
Clay (%) | 5.6 | 25.7 | 51.2 | 14.2 | 0.55 |
Organic compounds (%) | 0.0 | 1.4 | 4.3 | 1.5 | 1.09 |
Specific Gravity (g/cm3) | 2.1 | 2.3 | 2.4 | 0.08 | 0.04 |
CaCO3 (%) | 5.2 | 16.4 | 30.2 | 6.27 | 0.38 |
pH | 7.7 | 8.0 | 8.6 | 0.29 | 0.04 |
ECe (dS/m) | 0.8 | 2.5 | 4.8 | 1.4 | 0.58 |
Sodium absorption ratio (SAR) | 1.9 | 14.7 | 44.4 | 13.9 | 0.95 |
Exchangeable Sodium Percentage (ESP1) | 17.17 | 27.16 | 50.32 | 13.9 | 0.51 |
ESP2 | 15.37 | 31.89 | 40.81 | 13.9 | 0.44 |
Criteria Groups | Criteria | Data Sources |
---|---|---|
Topography | Elevation | DEM obtained from topography maps |
Slope | DEM products | |
Slope length | DEM products | |
Aspect | DEM products | |
Geology | Soil depth | Pedology maps |
Curvature | DEM products | |
Soil erodibility | Soil erodibility maps | |
Drainage Density | DEM products | |
Hydrology | Distance from River | DEM products—drainage analysis |
Rainfall | Synoptic climate stations | |
Stream Power Index | ||
Topographic Wetness Index | C = 0.001 | |
Anthropic | Land use | Landsat −8/OLI |
Object-based image analysis | ||
NDVI | Landsat-8/OLI | |
R = Band 4 NIR = Band 5 |
Criteria Groups | Criteria | FANP’s Weights | S | St |
---|---|---|---|---|
Topography | Elevation | 0.027 | 0.031 | 0.044 |
Slope degree | 0.035 | 0.071 | 0.071 | |
Slope length | 0.013 | 0.008 | 0.004 | |
Aspect | 0.016 | 0.008 | 0.028 | |
Curvature | 0.056 | 0.126 | 0.218 | |
Soil characteristics | Soil depth | 0.033 | 0.010 | 0.072 |
Soil texture | 0.191 | 0.188 | 0.296 | |
Hydrology | Distance from river | 0.101 | 0.182 | 0.198 |
Drainage density | 0.102 | 0. 152 | 0.148 | |
Annual precipitation | 0.077 | 0.015 | 0.161 | |
Stream Power Index | 0.048 | 0.068 | 0.166 | |
Topographic Wetness Index | 0.147 | 0.189 | 0.249 | |
Anthropic | Land use | 0.063 | 0.115 | 0.165 |
Vegetation density | 0.083 | 0.071 | 0.074 |
Risk Class | Area (ha) | Area at Risk (Percentage) |
---|---|---|
Very high risk | 6462.87 | 12.49% |
High risk | 13,425.70 | 25.96% |
Moderate risk | 12,654.32 | 24.47% |
Low risk | 7145.74 | 13.82% |
Very low risk | 8501.09 | 6.79% |
Without risk | 3514.12 | 16.44% |
Class | EC < 4 | 4 < EC < 8 | 8 < EC < 16 | 16 < EC < 32 | EC > 32 | SUM |
---|---|---|---|---|---|---|
EC < 4 | 12 | 0 | 0 | 2 | 0 | 14 |
4 < EC < 8 | 0 | 15 | 0 | 0 | 0 | 15 |
8 < EC < 12 | 0 | 0 | 13 | 4 | 0 | 17 |
12 < EC < 16 | 0 | 0 | 3 | 35 | 0 | 39 |
16 < EC < 32 | 0 | 3 | 2 | 4 | 52 | 65 |
SUM | 12 | 18 | 18 | 45 | 52 | 150 |
EC | Limitations Caused by Salinity | The Reaction of the Plants |
---|---|---|
EC < 4 | No limitation or low limitation | Most plants can grow |
4 < EC < 8 | Relatively high limitation | sensitive plants are affected |
8 < EC < 12 | High limitation | most plants affected |
12 < EC < 16 | Very high limitation | Only plants that are resistant to salinity have normal growth |
16 < EC < 32 | Significant limitation | Most of the halophytes have reduced crops in this salinity |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feizizadeh, B.; Omarzadeh, D.; Mohammadzadeh Alajujeh, K.; Blaschke, T.; Makki, M. Impacts of the Urmia Lake Drought on Soil Salinity and Degradation Risk: An Integrated Geoinformatics Analysis and Monitoring Approach. Remote Sens. 2022, 14, 3407. https://doi.org/10.3390/rs14143407
Feizizadeh B, Omarzadeh D, Mohammadzadeh Alajujeh K, Blaschke T, Makki M. Impacts of the Urmia Lake Drought on Soil Salinity and Degradation Risk: An Integrated Geoinformatics Analysis and Monitoring Approach. Remote Sensing. 2022; 14(14):3407. https://doi.org/10.3390/rs14143407
Chicago/Turabian StyleFeizizadeh, Bakhtiar, Davoud Omarzadeh, Keyvan Mohammadzadeh Alajujeh, Thomas Blaschke, and Mohsen Makki. 2022. "Impacts of the Urmia Lake Drought on Soil Salinity and Degradation Risk: An Integrated Geoinformatics Analysis and Monitoring Approach" Remote Sensing 14, no. 14: 3407. https://doi.org/10.3390/rs14143407
APA StyleFeizizadeh, B., Omarzadeh, D., Mohammadzadeh Alajujeh, K., Blaschke, T., & Makki, M. (2022). Impacts of the Urmia Lake Drought on Soil Salinity and Degradation Risk: An Integrated Geoinformatics Analysis and Monitoring Approach. Remote Sensing, 14(14), 3407. https://doi.org/10.3390/rs14143407